Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE

A methodology for determining operational priorities for prevention and suppression of wildland fires

Francisco Rodríguez y Silva A , Juan Ramón Molina Martínez A and Armando González-Cabán B C
+ Author Affiliations
- Author Affiliations

A Department of Forest Engineering, University of Córdoba, Edificio Leonardo da Vinci, Campus de Rabanales, E-14071 Córdoba, Spain.

B United States Department of Agriculture, Forest Service, Pacific Southwest Research Station, 4955 Canyon Crest Drive, Riverside, CA 92507, USA.

C Corresponding author. Email: agonzalezcaban@fs.fed.us

International Journal of Wildland Fire 23(4) 544-554 https://doi.org/10.1071/WF13063
Submitted: 16 April 2013  Accepted: 4 February 2014   Published: 15 May 2014

Abstract

Traditional uses of the forest (timber, forage) have been giving way to other uses more in demand (recreation, ecosystem services). An observable consequence of this process of forest land use conversion is an increase in more difficult and extreme wildfires. Wildland forest management and protection program budgets are limited, and managers are requesting help in finding ways to objectively assign their limited protection resources based on the intrinsic environmental characteristics of a site and the site’s interrelationship with available firefighting resources and existing infrastructure. A Fire Suppression Priority Index, integrating information on both the potential fire behaviour risk (Potential Fire Behaviour Index) and the fire suppression difficulty (Suppression Difficulty Index), provides managers with fundamental information for strategic planning and development of tactical operations to protect the natural environment. Results in the Córdoba Province, Andalusia’s autonomous region, Spain, showed a statistically significant relationship between wildfire size and all three indices, demonstrating the utility of the methodology to identify and prioritise forest areas for strategic and tactical fire management operations. In addition, the methodology was tested and validated by trained and qualified wildfire management personnel in Chile and Israel, obtaining similar results as in Spain.

Additional keywords: strategic fire management planning, wildfire behaviour, wildfire risk, wildfire suppression difficulty.


References

Agee JK, Bahro B, Finney M, Omi P, Sapsis D, Skinner C, Van Wagtendonk JW, Weatherspoon P (2000) The use of shaded fuelbreaks in landscape fire management. Forest Ecology and Management 127, 55–66.
The use of shaded fuelbreaks in landscape fire management.Crossref | GoogleScholarGoogle Scholar |

Andersen HE, McGaughcy RJ, Reutebuch SE (2005) Estimating forest canopy fuel parameters using LIDAR data. Remote Sensing of Environment 94, 441–449.
Estimating forest canopy fuel parameters using LIDAR data.Crossref | GoogleScholarGoogle Scholar |

Andrews PL (1986) BEHAVE: fire behaviour prediction and fuel modelling system – BURN subsystem, Part I. USDA Forest Service, Intermountain Research Station, General Technical Report GTR-INT-194. (Ogden, UT)

Andrews PL, Queen PL (2001) Fire modelling and information system technology. International Journal of Wildland Fire 10, 343–352.
Fire modelling and information system technology.Crossref | GoogleScholarGoogle Scholar |

Andrews PL, Bevins CD, Seli RC (2003) BehavePlus fire modelling system, version 2.0: User´s Guide. USDA Forest Service, Rocky Mountain Research Station, General Technical Report RMRS-GTR-106WWW. (Ogden, UT)

Burgan RE, Rothermel RC (1984) BEHAVE: Fire behaviour prediction and fuel modelling system–FUEL subsystem. USDA Forest Service, Intermountain Forest and Range Experiment Station, General Technical Report GTR-INT-167. (Ogden, UT)

Busby W (2008) Wildfire risk management: strategic interaction and spatial interdependence. PhD thesis, Oregon State University.

Calkin DE, Thompson MP, Finney MA, Hyde KD (2011) A real-time risk assessment tool supporting wildland fire decisionmaking. Journal of Forestry 109, 274–280.

Castillo M, Rodríguez y Silva F, Molina JR (2009) Situación de los incendios forestales de vegetación nativa en la región de Valparaíso, Chile Central. Geographicalia 56, 89–110.

Chuvieco E, Salas J (1996) Mapping the spatial distribution of forest fire danger using GIS. International Journal of Geographical Information Science 10, 333–345.
Mapping the spatial distribution of forest fire danger using GIS.Crossref | GoogleScholarGoogle Scholar |

Chuvieco E, Aguado I, Yebra M, Nieto H, Sala J, Martín P, Vilar L, Martínez J, Martín S, Ibarra P, De la Riva J, Baeza J, Rodríguez F, Molina JR, Herrera MA, Zamora R (2010) Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecological Modelling 221, 46–58.
Development of a framework for fire risk assessment using remote sensing and geographic information system technologies.Crossref | GoogleScholarGoogle Scholar |

Cohen J (2000) Preventing disaster: home ignitability in the wildland–urban interface. Journal of Forestry 98, 15–21.

Deeming JE, Burgan RE, Cohen JD (1977) The national fire danger rating system. USDA, Forest Service, Intermountain Forest and Range Experiment Station, General Technical Report GTR-INT-39. (Ogden, UT)

Finney MA (1998) FARSITE: fire area simulator-model development and evaluation. USDA Forest Service, Rocky Mountain Research Station, Research Paper RMRS-RP-4. (Ogden, UT)

Finney MA (2005) The challenge of quantitative risk analysis for wildland fire. Forest Ecology and Management 211, 97–108.
The challenge of quantitative risk analysis for wildland fire.Crossref | GoogleScholarGoogle Scholar |

Finney MA (2007) A computational method for optimizing fuel treatment locations. International Journal of Wildland Fire 16, 702–711.
A computational method for optimizing fuel treatment locations.Crossref | GoogleScholarGoogle Scholar |

Flannigan MD, Amiro BD, Logan KA, Stocks BJ, Wotton BM (2006) Forest fires and climate change in the 21st century. Mitigation and Adaptation Strategies for Global Change 11, 847–859.
Forest fires and climate change in the 21st century.Crossref | GoogleScholarGoogle Scholar |

González JR, Pukkala T (2007) Characterization of wildfire events in Catalonia (north-east Spain). European Journal of Forest Research 126, 421–429.
Characterization of wildfire events in Catalonia (north-east Spain).Crossref | GoogleScholarGoogle Scholar |

González Bernáldez F (1991) Ecological consequences of the abandonment of traditional land use systems in central Spain. In ‘Land Abandonment and its Role in Conservation’, Options Méditerranéennes, Série A. Séminaires. (Eds J Baudry, RGH Bunce) pp. 23–29. (CIHEAM: Zaragoza, Spain)

Hardy CC (2005) Wildland fire hazard and risk: problems, definitions and context. Forest Ecology and Management 211, 73–82.
Wildland fire hazard and risk: problems, definitions and context.Crossref | GoogleScholarGoogle Scholar |

Hernando C (2009) Combustibles forestales: inflamabilidad. In ‘La Defensa contra incendios forestales. Fundamentos y experiencias’. (Ed. R Vélez) pp. 123–130. (McGraw-Hill: Madrid)

IBM SPSS Statistics (2010) SPSS advance models 19.0. (IBM/SPSS, Inc.: Chicago, IL).

Keane RE (2013) Describing wildland surface fuel loading for fire management: a review of approaches, methods and systems. International Journal of Wildland Fire 22, 51–62.
Describing wildland surface fuel loading for fire management: a review of approaches, methods and systems.Crossref | GoogleScholarGoogle Scholar |

Keane RE, Garner JL, Schmidt KM, Long DG, Menakis JP, Finney MA (1998) Development of input data layers for the FARSITE fire growth model for the Selway-Bitterroot Wilderness Complex. USA. USDA Forest Service, Rocky Mountain Research Station, RMRS-GTR-3. (Ogden, UT)

Kötz B, Schaepman M, Morsdorf F, Bowyer P, Itten K, Allgöwer B (2004) Radiative transfer modeling within a heterogeneous canopy for estimating of forest fire fuel properties. Remote Sensing of Environment 92, 332–344.
Radiative transfer modeling within a heterogeneous canopy for estimating of forest fire fuel properties.Crossref | GoogleScholarGoogle Scholar |

Lasaponara R, Cuomo V, Tramutoli V, Pergola N, Pietrapertosa C, Simoniello T (1999) Forest fire danger estimation based on the integration of satellite AVHRR data and topographic factors. Proceedings of the Society for Photo-Instrumentation Engineers 3868, 241
Forest fire danger estimation based on the integration of satellite AVHRR data and topographic factors.Crossref | GoogleScholarGoogle Scholar |

Lasaponara R, Lanorte A, Pignatti S (2006) Multiscale fuel type mapping in fragmented ecosystems: preliminary results from hyperspectral MIVIS and multispectral Landsat TM data. International Journal of Remote Sensing 27, 587–593.
Multiscale fuel type mapping in fragmented ecosystems: preliminary results from hyperspectral MIVIS and multispectral Landsat TM data.Crossref | GoogleScholarGoogle Scholar |

López AS, San Miguel AJ, Burgan RE (2002) Integration of satellite sensor data, fuel types maps and meteorological observations for evaluation of forest fire risk at the pan-European scale. International Journal of Remote Sensing 23, 2713–2719.
Integration of satellite sensor data, fuel types maps and meteorological observations for evaluation of forest fire risk at the pan-European scale.Crossref | GoogleScholarGoogle Scholar |

Millán MM, Estrela MJ, Sanz MJ, Mantilla E (2005) Climatic feedbacks and desertification: the Mediterranean model. Journal of Climate 18, 684–701.
Climatic feedbacks and desertification: the Mediterranean model.Crossref | GoogleScholarGoogle Scholar |

Miller C, Ager AA (2013) A review of recent advances in risk analysis for wildfire management. International Journal of Wildland Fire 22, 1–14.
A review of recent advances in risk analysis for wildfire management.Crossref | GoogleScholarGoogle Scholar |

Molina Martínez JR, Rodríguez y Silva F, Herrera MA (2011a) Potential crown fire behaviour in P. pinea stands following different fuel treatments. Forest Systems 20, 266–277.
Potential crown fire behaviour in P. pinea stands following different fuel treatments.Crossref | GoogleScholarGoogle Scholar |

Molina Martínez JR, Herrera MA, Zamora R, Rodríguez y Silva F, González-Cabán A (2011b) Economic losses to Iberian swine production from forest fires. Forest Policy and Economics 13, 614–621.
Economic losses to Iberian swine production from forest fires.Crossref | GoogleScholarGoogle Scholar |

Morris JA, Gardner MJ (1988) Calculating confidence intervals for relative risks (odds ratios) and standardised ratios and rates. British Medical Journal 296, 1313–1316.
Calculating confidence intervals for relative risks (odds ratios) and standardised ratios and rates.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c3lt1OjsQ%3D%3D&md5=806c74404fbf99000a8e2b58248d19abCAS | 3133061PubMed |

Pausas J (2004) Changes in fire and climate in the Eastern Iberian Peninsula (Mediterranean Basin). Climatic Change 63, 337–350.
Changes in fire and climate in the Eastern Iberian Peninsula (Mediterranean Basin).Crossref | GoogleScholarGoogle Scholar |

Perry G, Sparrow A, Owens I (1999) A GIS supported model for the simulation of the spatial structure of wildland fire. Cass Basin, New Zealand. Journal of Applied Ecology 36, 502–518.
A GIS supported model for the simulation of the spatial structure of wildland fire. Cass Basin, New Zealand.Crossref | GoogleScholarGoogle Scholar |

Piñol J, Terradas J, Lloret F (1998) Climate warming, wildfire hazard and wildfire occurrence in coastal eastern Spain. Climatic Change 38, 345–357.
Climate warming, wildfire hazard and wildfire occurrence in coastal eastern Spain.Crossref | GoogleScholarGoogle Scholar |

Reams MA, Haines TK, Renner CR, Wascom MW, Kingre H (2005) Goals, obstacles and effective strategies of wildfire mitigation programs in the wildland–urban interface. Forest Policy and Economics 7, 818–826.
Goals, obstacles and effective strategies of wildfire mitigation programs in the wildland–urban interface.Crossref | GoogleScholarGoogle Scholar |

Rodríguez y Silva F (1999) A forest fire simulation tool for economic planning in fire management models: an application of the Arc-Cardin strategic model. In ‘Proceedings of the Symposium on Fire Economics, Planning and Policy: Bottom Lines’, 5–9 April 1999, San Diego, CA. (Eds A González-Cabán, P Omi) USDA Forest Service, Pacific Southwest Research Station, PSW-GTR-173, pp. 143–148. (Albany, CA)

Rodríguez y Silva F (2009) Planes de defensa en España. Ejemplos de aplicación en Andalucía. In ‘La defensa contra incendios forestales. Fundamentos y experiencias’. (Ed. R Vélez) pp. 289–323. (McGraw-Hill: Madrid)

Rodríguez y Silva F, González-Cabán A (2010) ‘SINAMI’: a tool for the economic evaluation of forest fire management programs in Mediterranean ecosystems. International Journal of Wildland Fire 19, 927–936.
‘SINAMI’: a tool for the economic evaluation of forest fire management programs in Mediterranean ecosystems.Crossref | GoogleScholarGoogle Scholar |

Rodríguez y Silva F, Molina Martínez JR (2012) Modelling Mediterranean forest fuels by integrating field data and mapping tools. European Journal of Forest Research 131, 571–582.
Modelling Mediterranean forest fuels by integrating field data and mapping tools.Crossref | GoogleScholarGoogle Scholar |

Rodríguez y Silva F, Molina Martínez JR, Carmona JF (2010a) Manual técnico de aplicaciones informáticas para la defensa contra incendios forestales. Servicio de Publicaciones Forestales. MANPAI XXI. (Córdoba, Spain)

Rodríguez y Silva F, Julio G, Castillo M, Molina Martínez JR, Cerda C, Toral M, Herrera MA, González LA (2010b) Aplicación y adaptación del modelo SEVEIF para la evaluación socioeconómica del impacto de incendios forestales en la provincia de Valparaíso, Chile. Agencia Española de Cooperación Internacional para el Desarrollo, Universidad de Córdoba (España), Universidad de Chile. (Córdoba, Spain)

Rothermel RC (1972) A mathematical model for predicting fire spread in wildland fuels. USDA Forest Service, Intermountain Forest and Range Experiment Station, Research Paper INT-115. (Ogden, UT)

Scott JH, Burgan RE (2005) Standard fire behaviour fuel model: a comprehensive set for use with Rothermel’s Surface Fire Spread Model. USDA Forest Service, Rocky Mountain Research Station, RMRS-GTR-153. (Fort Collins, CO)

Stephens SL (1998) Evaluation of the effects of silvicultural and fuel treatments on potential fire behaviour in Sierra Nevada mixed conifer forest. Forest Ecology and Management 105, 21–35.
Evaluation of the effects of silvicultural and fuel treatments on potential fire behaviour in Sierra Nevada mixed conifer forest.Crossref | GoogleScholarGoogle Scholar |

Stephens SL, Moghaddas J (2005) Experimental fuel treatment impacts on forest structure potential fire behavior and predicted tree mortality in a California mixed conifer-forest. Forest Ecology and Management 215, 21–36.
Experimental fuel treatment impacts on forest structure potential fire behavior and predicted tree mortality in a California mixed conifer-forest.Crossref | GoogleScholarGoogle Scholar |

Stratton RD (2004) Assessing the effectiveness of landscape fuel treatments of fire growth and behaviour. Journal of Forestry 102, 32–40.

Taylor SW, Alexander ME (2006) Science, technology, and human factors in fire danger rating: the Canadian experience. International Journal of Wildland Fire 15, 121–135.
Science, technology, and human factors in fire danger rating: the Canadian experience.Crossref | GoogleScholarGoogle Scholar |

Thompson MP, Calkin DE (2011) Uncertainty and risk in wildland fire management: a review. Journal of Environmental Management 92, 1895–1909.
Uncertainty and risk in wildland fire management: a review.Crossref | GoogleScholarGoogle Scholar | 21489684PubMed |

USDA Forest Service (2004) Fireline Handbook. National wildfire Coordinating Group, Handbook #3. (Washington, DC)

Vélez R (Ed.) (2009) ‘La defensa contra incendios forestales. Fundamentos y experiencias.’ (McGraw-Hill: Madrid)

Weise DR, Wright CS (2014) Wildland fire emissions, carbon and climate: characterizing wildland fuels Forest Ecology and Management 317, 26–40.
Wildland fire emissions, carbon and climate: characterizing wildland fuelsCrossref | GoogleScholarGoogle Scholar |