Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Testing the regional genetic representativeness of captive koala populations in South-East Queensland

Jennifer M. Seddon A F , Kristen E. Lee B , Stephen D. Johnston C , Vere N. Nicolson D , Michael Pyne E , Frank N. Carrick B and William A. H. Ellis B
+ Author Affiliations
- Author Affiliations

A School of Veterinary Science, The University of Queensland, Gatton, Qld 4343, Australia.

B Koala Study Program, Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, St Lucia, Qld 4072, Australia.

C Wildlife Biology Unit, School of Agriculture and Food Science, The University of Queensland, Gatton, Qld 4343, Australia.

D Dreamworld, Dreamworld Parkway, Coomera, Qld 4209, Australia.

E Currumbin Wildlife Sanctuary, 28 Tomewin Street, Currumbin, Qld 4223, Australia.

F Corresponding author. Email j.seddon1@uq.edu.au

Wildlife Research 41(4) 277-286 https://doi.org/10.1071/WR13103
Submitted: 3 June 2013  Accepted: 5 September 2014   Published: 3 December 2014

Abstract

Context: Captive breeding for release back to the wild is an important component of ex situ conservation but requires genetic diversity that is representative of the wild population and has the ultimate goal of producing ecologically sustainable and resilient populations. However, defining and testing for representativeness of captive populations is difficult. Koalas (Phascolarctos cinereus) are bred for educational and tourism purposes in zoos and wildlife parks in South-East Queensland, but there are drastic declines evident in some wild koala populations in this region.

Aim: We compared genetic diversity at microsatellite loci and mitochondrial DNA in two captive koala populations with that of the local, wild koalas of South-East Queensland, determining the degree to which genetic diversity of neutral loci had been preserved and was represented in the captive populations.

Key results: The expected heterozygosity and the allelic richness was significantly greater in one captive colony than one wild South-East Queensland population. There was low but significant differentiation of the captive from wild populations using FST, with greater differentiation described by Jost’s Dest. In contrast, a newly introduced Kullback–Leibler divergence measure, which assesses similarity of allele frequencies, showed no significant divergence of colony and wild populations. The captive koalas lacked many of the mitochondrial haplotypes identified from South-East Queensland koalas and possessed seven other haplotypes.

Conclusions: Captive colonies of koalas have maintained levels of overall neutral genetic diversity similar to wild populations at microsatellite loci and low but significant differentiation likely resulted from drift and founder effects in small captive colonies or declining wild populations. Mitochondrial DNA suggests that captive founders were from a wider geographic source or that haplotypes have been lost locally.

Implications: Overall, tested captive koalas maintain sufficient microsatellite diversity to act as an in situ reservoir for neutral genetic diversity of regional populations.

Additional keywords: ex situ conservation, koala, reservoir, zoo.


References

Allen, C. D., Burridge, M., Mulhall, S., Chafer, M. L., Nicolson, V. N., Pyne, M., Zee, Y. P., Jago, S. C., Lundie-Jenkins, G., Holt, W. V., Carrick, F. N., Curlewis, J. D., Lisle, A. T., and Johnston, S. D. (2008). Successful artificial insemination in the koala (Phascolarctos cinereus) using extended and extended-chilled semen collected by electroejaculation. Biology of Reproduction 78, 661–666.
Successful artificial insemination in the koala (Phascolarctos cinereus) using extended and extended-chilled semen collected by electroejaculation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjvVaiur4%3D&md5=7e867a632de8875598f3be8077876e80CAS |

Ballou, J. D., and Lacy, R. C. (1995). Identifying genetically important individuals for management of genetic diversity in pedigreed populations. In ‘Population Management for Survival & Recovery Analytical Methods and Strategies in Small Population Conservation’. (Eds J. D. Ballou, M. Gilpin and T. Foose.) pp. 76–111. (Columbia University Press: New York.)

Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N., and Bonhomme, F. (1996). ‘GENETIX, Logiciel sous WindowsTM pour la Génétique des Populations.’ (Laboratoire Génome, Populations, Interactions CNRS UMR 5000, Université de Montpellier II: Montpellier, France.)

Bouzat, J. L., Lewin, H. A., and Paige, K. N. (1998). The ghost of genetic diversity past: historical DNA analysis of the greater prairie chicken. American Naturalist 152, 1–6.
The ghost of genetic diversity past: historical DNA analysis of the greater prairie chicken.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cnit1yktA%3D%3D&md5=07b862ca9d060d66aedaf3f8e0a2e224CAS | 18811397PubMed |

Britt, A., Welch, C., and Katz, A. (2004). Can small, isolated primate populations be effectively reinforced through the release of individuals from a captive population? Biological Conservation 115, 319–327.
Can small, isolated primate populations be effectively reinforced through the release of individuals from a captive population?Crossref | GoogleScholarGoogle Scholar |

Caballero, A., Rodriguez-Ramilo, S., Avila, V., and Fernandez, J. (2010). Management of genetic diversity of subdivided populations in conservation programmes. Conservation Genetics 11, 409–419.
Management of genetic diversity of subdivided populations in conservation programmes.Crossref | GoogleScholarGoogle Scholar |

Crawford, N. G. (2010). SMOGD: software for the measurement of genetic diversity. Molecular Ecology Resources 10, 556–557.
SMOGD: software for the measurement of genetic diversity.Crossref | GoogleScholarGoogle Scholar | 21565057PubMed |

Crawford, A.J., Cruz, C., Griffith, E., Ross, H., Ibanez, R., Lips, K.R., Driskell, A.C., Bermingham, E., and Crump, P. (2013). DNA barcoding applied to ex situ tropical amphibian conservation programme reveals cryptic diversity in captive populations. Molecular Ecology Resources 13, 1005–1018.
DNA barcoding applied to ex situ tropical amphibian conservation programme reveals cryptic diversity in captive populations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1eksL7K&md5=9ce03ca76b1b81b81d415a3342bbdff3CAS | 23280343PubMed |

Earnhardt, J., Thompson, S., and Schad, K. (2004). Strategic planning for captive populations: projecting changes in genetic diversity. Animal Conservation 7, 9–16.
Strategic planning for captive populations: projecting changes in genetic diversity.Crossref | GoogleScholarGoogle Scholar |

Ellis, W., Melzer, A., and Bercovitch, F. B. (2009). Spatiotemporal dynamics of habitat use by koalas: the checkerboard model. Behavioral Ecology and Sociobiology 63, 1181–1188.
Spatiotemporal dynamics of habitat use by koalas: the checkerboard model.Crossref | GoogleScholarGoogle Scholar |

Evanno, G., Regnaut, S., and Goudet, J. (2005). Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology 14, 2611–2620.
Detecting the number of clusters of individuals using the software structure: a simulation study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvF2qtrg%3D&md5=47b8c28392d919354f4ad3143ea38e23CAS | 15969739PubMed |

Fowler, E. V., Houlden, B. A., Hoeben, P., and Timms, P. (2000). Genetic diversity and gene flow among south-eastern Queensland koalas (Phascolarctos cinereus). Molecular Ecology 9, 155–164.
Genetic diversity and gene flow among south-eastern Queensland koalas (Phascolarctos cinereus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvF2ku7Y%3D&md5=e1bd30ce822756dbe67003825ef53d75CAS | 10672159PubMed |

Frankham, R., Hemmer, H., Ryder, O., Cothran, E., Soulé, M., Murray, N., and Snyder, M. (1986). Selection in captive populations. Zoo Biology 5, 127–138.
Selection in captive populations.Crossref | GoogleScholarGoogle Scholar |

Frankham, R., Ballou, J. D., Eldridge, M. D. B., Lacy, R. C., Ralls, K., Dudash, M. R., and Fenster, C. B. (2011). Predicting the probability of outbreeding depression. Conservation Biology 25, 465–475.
Predicting the probability of outbreeding depression.Crossref | GoogleScholarGoogle Scholar | 21486369PubMed |

Goncalves da Silva, A., Lalonde, D. R., Quse, V., Shoemaker, A., and Russello, M. A. (2010). Genetic approaches refine ex situ lowland tapir (Tapirus terrestris) conservation. The Journal of Heredity 101, 581–590.
Genetic approaches refine ex situ lowland tapir (Tapirus terrestris) conservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptleiu7g%3D&md5=40a5cfa62ee467ac5325029f67fbc441CAS | 20484384PubMed |

Goudet, J. (2001). ‘FSTAT, a Program to Estimate and Test Gene Diversities and Fixation Indices. Version 2.9.3.’ Available at http://www.unil.ch/izea/softwares/fstat.html [Accessed July 2013]

Henry, P., Miquelle, D., Sugimoto, T., McCullough, D. R., Caccone, A., and Russello, M. A. (2009). In situ population structure and ex situ representation of the endangered Amur tiger. Molecular Ecology 18, 3173–3184.
In situ population structure and ex situ representation of the endangered Amur tiger.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1MrlsF2rsw%3D%3D&md5=2ec34851e046005544a00fb88cc59d34CAS | 19555412PubMed |

Hoffmann, A. A., and Willi, Y. (2008). Detecting genetic responses to environmental change. Nature Reviews. Genetics 9, 421–432.
Detecting genetic responses to environmental change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvFKrtLw%3D&md5=62e906c59c0dd5145956fa98f4d8eb43CAS | 18463665PubMed |

Houlden, B. A., England, P., and Sherwin, W. B. (1996a). Paternity exclusion in koalas using hypervariable microsatellites. The Journal of Heredity 87, 149–152.
Paternity exclusion in koalas using hypervariable microsatellites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtV2iu7c%3D&md5=d2a3cfa92bb01b7b0a7d12fce33664f3CAS | 8830092PubMed |

Houlden, B. A., England, P. R., Taylor, A. C., Greville, W. D., and Sherwin, W. B. (1996b). Low genetic variability of the koala Phascolarctos cinereus in south-eastern Australia following a severe population bottleneck. Molecular Ecology 5, 269–281.
Low genetic variability of the koala Phascolarctos cinereus in south-eastern Australia following a severe population bottleneck.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK283jvFKnsA%3D%3D&md5=1b7496cd63e7e01d0f5558437767e409CAS | 8673272PubMed |

Houlden, B. A., Costello, B. H., Sharkey, D., Fowler, E. V., Melzer, A., Ellis, W., Carrick, F., Baverstock, P. R., and Elphinstone, M. S. (1999). Phylogeographic differentiation in the mitochondrial control region in the koala, Phascolarctos cinereus (Goldfuss 1817). Molecular Ecology 8, 999–1011.
Phylogeographic differentiation in the mitochondrial control region in the koala, Phascolarctos cinereus (Goldfuss 1817).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltVOns7c%3D&md5=9ce60e4e97e8e54a23befc81abf29e64CAS | 10434420PubMed |

Ivy, J. A., Miller, A., Lacy, R. C., and Dewoody, J. A. (2009). Methods and prospects for using molecular data in captive breeding programs: an empirical example using parma wallabies (Macropus parma). The Journal of Heredity 100, 441–454.
Methods and prospects for using molecular data in captive breeding programs: an empirical example using parma wallabies (Macropus parma).Crossref | GoogleScholarGoogle Scholar | 19423700PubMed |

Johnston, S. D., McGowan, M. R., O’Callaghan, P., Cox, R., Houlden, B., Haig, S., and Taddeo, G. (2003). Birth of koalas Phascolarctos cinereus at Lone Pine Koala Sanctuary following artificial insemination. International Zoo Yearbook 38, 160–172.
Birth of koalas Phascolarctos cinereus at Lone Pine Koala Sanctuary following artificial insemination.Crossref | GoogleScholarGoogle Scholar |

Johnston, S. D., Mucci, A., and Ellis, W. (2013). The role of captive koalas in koala conservation. In ‘Conserving Central Queensland Koalas’. (Eds N. Flint, and A. Melzer.) pp. 54–59. (Koala Research Centre of Central Queensland, Central Queensland University: Rockhampton, Qld.)

Jost, L. (2008). G ST and its relatives do not measure differentiation. Molecular Ecology 17, 4015–4026.
G ST and its relatives do not measure differentiation.Crossref | GoogleScholarGoogle Scholar | 19238703PubMed |

Kitanishi, S., Nishio, M., Uehara, K., Ogawa, R., Yokoyama, T., and Edo, K. (2013). Patterns of genetic diversity of mitochondrial DNA within captive populations of the endangered itasenpara bitterling: implications for a reintroduction program. Environmental Biology of Fishes 96, 567–572.
Patterns of genetic diversity of mitochondrial DNA within captive populations of the endangered itasenpara bitterling: implications for a reintroduction program.Crossref | GoogleScholarGoogle Scholar |

Kullback, S., and Leibler, R. (1951). On information and sufficiency. Annals of Mathematical Statistics 22, 79–86.
On information and sufficiency.Crossref | GoogleScholarGoogle Scholar |

Lacy, R. C. (1994). Managing genetic diversity in captive populations of animals. In ‘Restoration of Endangered Species: Conceptual Issues, Planning and Implementation’. (Eds M. Bowles, C. Whelan.) pp. 63–89. (Cambridge University Press: Cambridge, UK.)

Lacy, R. C. (2013). Achieving true sustainability of zoo populations. Zoo Biology 32, 19–26.
Achieving true sustainability of zoo populations.Crossref | GoogleScholarGoogle Scholar | 22753040PubMed |

Lawson, V., and Carrick, F. (1998). Morphology of the thyroid in coastal and non-coastal populations of the koala (Phascolarctos cinereus) in Queensland. General and Comparative Endocrinology 110, 295–306.
Morphology of the thyroid in coastal and non-coastal populations of the koala (Phascolarctos cinereus) in Queensland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjsFKjtr4%3D&md5=43539d61a242608f571b6448c9bfe5c7CAS | 9593650PubMed |

Lee, K., Seddon, J., Corley, S., Ellis, W., Johnston, S., de Villiers, D., Preece, H., and Carrick, F. (2010). Genetic variation and structuring in the threatened koala populations of south-east Queensland. Conservation Genetics 11, 2091–2103.
Genetic variation and structuring in the threatened koala populations of south-east Queensland.Crossref | GoogleScholarGoogle Scholar |

Lee, K., Ellis, W., Carrick, F., Corley, S., Johnston, S., Baverstock, P. R., Nock, C., Rowe, K., and Seddon, J. (2013a). Anthropogenic changes to the landscape resulted in colonization of koalas in north-east New South Wales, Australia. Austral Ecology 38, 355–363.
Anthropogenic changes to the landscape resulted in colonization of koalas in north-east New South Wales, Australia.Crossref | GoogleScholarGoogle Scholar |

Lee, K., Seddon, J., Johnston, S., Fitzgibbon, S., Carrick, F., Melzer, A., Bercovitch, F., and Ellis, W. (2013b). Genetic diversity in natural and introduced island populations of koalas in Queensland. Australian Journal of Zoology , .

Marsden, C., Verbekmoes, H., Thomsas, R., Wayne, R., and Mable, B. (2013). Pedigrees, MHC and microsatellites: an integrated approach for genetic management of captive African wild dogs (Lycaon pictus). Conservation Genetics 14, 171–183.
Pedigrees, MHC and microsatellites: an integrated approach for genetic management of captive African wild dogs (Lycaon pictus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslanurY%3D&md5=f11d4ba66911b28816b97dde91572d80CAS |

Melzer, A., Carrick, F., Menkhorst, P., Lunney, D., and St John, B. (2000). Overview, critical assessment, and conservation implications of koala distribution and abundance. Conservation Biology 14, 619–628.
Overview, critical assessment, and conservation implications of koala distribution and abundance.Crossref | GoogleScholarGoogle Scholar |

Milinkovitch, M. C., Kanitz, R., Tiedemann, R., Tapia, W., Llerena, F., Caccone, A., Gibbs, J. P., and Powell, J. R. (2013). Recovery of a nearly extinct Galapagos tortoise despite minimal genetic variation. Evolutionary Applications 6, 377–383.
Recovery of a nearly extinct Galapagos tortoise despite minimal genetic variation.Crossref | GoogleScholarGoogle Scholar | 23467700PubMed |

Mitchell, A., Lau, J., Chemnick, L., Thompson, E., Alberts, A., Ryder, O., and Gerber, G. (2011). Using microsatellite diversity in wild Anegada iguanas (Cyclura pinguis) to establish relatedness in a captive breeding group of this critically endangered species. Conservation Genetics 12, 771–781.
Using microsatellite diversity in wild Anegada iguanas (Cyclura pinguis) to establish relatedness in a captive breeding group of this critically endangered species.Crossref | GoogleScholarGoogle Scholar |

Norton, J., and Ashley, M. (2004). Genetic variability and population differentiation in captive Baird’s tapirs (Tapirus bairdii). Zoo Biology 23, 521–531.
Genetic variability and population differentiation in captive Baird’s tapirs (Tapirus bairdii).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCmsLc%3D&md5=b6e0e406fc41140a29a5543000795b73CAS |

Peakall, R., and Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research: an update. Bioinformatics 28, 2537–2539.
GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research: an update.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVehtbjI&md5=fc2da1da01e7925b24efe59f72f94c65CAS | 22820204PubMed |

Preece, H. (2007). Monitoring and modeling threats to koala populations in rapidly urbanising landscapes: Koala Coast, South East Queensland, Australia. PhD Thesis, University of Queensland, Brisbane.

Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155, 945–959.
| 1:STN:280:DC%2BD3cvislKrtA%3D%3D&md5=3df2c4ee650e5fd73e22c059d6ef7e0bCAS | 10835412PubMed |

Pye, G., Hamlin-Andrus, C., and Moll, J. (2008). Hip dysplasia in koalas (Phascolarctos cinereus) at the San Diego Zoo. Journal of Zoo and Wildlife Medicine 39, 61–68.
Hip dysplasia in koalas (Phascolarctos cinereus) at the San Diego Zoo.Crossref | GoogleScholarGoogle Scholar | 18432097PubMed |

Queensland Government (2009). ‘Decline of the Koala Coast Koala Population: Population Status in 2008.’ (Department of Environment and Resource Management: Brisbane.)

Ramirez, O., Altet, L., Ensenat, C., Vilà, C., Sanchez, A., and Ruiz, A. (2006). Genetic assessment of the Iberian wolf Canis lupus signatus captive breeding program. Conservation Genetics 7, 861–878.
Genetic assessment of the Iberian wolf Canis lupus signatus captive breeding program.Crossref | GoogleScholarGoogle Scholar |

Raymond, M., and Rousset, F. (1995). GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. The Journal of Heredity 86, 248–249.

Russello, M. A., and Amato, G. (2004). Ex situ population management in the absence of pedigree information. Molecular Ecology 13, 2829–2840.
Ex situ population management in the absence of pedigree information.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotlemu7k%3D&md5=a7419e55fd9676ceff195f399c59e146CAS | 15315693PubMed |

Russello, M. A., and Amato, G. (2007). On the horns of a dilemma: molecular approaches refine ex situ conservation in crisis. Molecular Ecology 16, 2405–2406.
On the horns of a dilemma: molecular approaches refine ex situ conservation in crisis.Crossref | GoogleScholarGoogle Scholar | 17561901PubMed |

Saura, M., Perez-Figueroa, A., Fernandez, J., Toro, M. A., and Caballero, A. (2008). Preserving population allele frequencies in ex situ conservation programs. Conservation Biology 22, 1277–1287.
Preserving population allele frequencies in ex situ conservation programs.Crossref | GoogleScholarGoogle Scholar | 18680505PubMed |

Shen, F., Zhang, Z., He, W., Yue, B., Zhang, A., Zhang, L., Hou, R., Wang, C., and Watanabe, T. (2009). Microsatellite variability reveals the necessity for genetic input from wild giant pandas (Ailuropoda melanoleuca) into the captive population. Molecular Ecology 18, 1061–1070.
Microsatellite variability reveals the necessity for genetic input from wild giant pandas (Ailuropoda melanoleuca) into the captive population.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFOqtLk%3D&md5=8c1fe52336e935ed7322e642249efa99CAS | 19222753PubMed |

Tamura, K. (1992). Estimation of the number of nucleotide substitutions when there are strong transition–transversion and G+C content biases. Molecular Biology and Evolution 9, 678–687.
| 1:CAS:528:DyaK38Xks1eqsbY%3D&md5=4b7b31c1859aa41a3e433d6f7eabb741CAS | 1630306PubMed |

Vilà, C., Sundqvist, A.-K., Flagstad, Ø., Seddon, J., Björnerfeldt, S., Kojola, I., Casulli, A., Sand, H., Wabakken, P., and Ellegren, H. (2003). Rescue of a severely bottlenecked wolf (Canis lupus) population by a single immigrant. Proceedings. Biological Sciences 270, 91–97.
Rescue of a severely bottlenecked wolf (Canis lupus) population by a single immigrant.Crossref | GoogleScholarGoogle Scholar |

Weeks, A. R., Sgro, C. M., Young, A. G., Frankham, R., Mitchell, N. J., Miller, K. A., Byrne, M., Coates, D. J., Eldridge, M. D., Sunnucks, P., Breed, M. F., James, E. A., and Hoffmann, A. A. (2011). Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evolutionary Applications 4, 709–725.
Assessing the benefits and risks of translocations in changing environments: a genetic perspective.Crossref | GoogleScholarGoogle Scholar | 22287981PubMed |

Witzenberger, K., and Hochkirch, A. (2011). Ex situ conservation genetics: a review of molecular studies on the genetic consequences of captive breeding programmes for endangered animal species. Biodiversity and Conservation 20, 1843–1861.
Ex situ conservation genetics: a review of molecular studies on the genetic consequences of captive breeding programmes for endangered animal species.Crossref | GoogleScholarGoogle Scholar |

Worthington-Wilmer, J.M., Melzer, A., Carrick, F., and Moritz, C. (1993). Low genetic diversity and inbreeding depression in Queensland koalas. Wildlife Research 20, 177–188.
Low genetic diversity and inbreeding depression in Queensland koalas.Crossref | GoogleScholarGoogle Scholar |

Zee, Y. P., Holt, W. V., Gosalvez, J., Allen, C. D., Nicolson, V., Pyne, M., Burridge, M., Carrick, F. N., and Johnston, S. D. (2008). Dimethylacetamide can be used as an alternative to glycerol for the successful cryopreservation of koala (Phascolarctos cinereus) spermatozoa. Reproduction, Fertility and Development 20, 724–733.
Dimethylacetamide can be used as an alternative to glycerol for the successful cryopreservation of koala (Phascolarctos cinereus) spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlCnu78%3D&md5=162727b1aa399e779066486fe2118d47CAS |