Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Habitat characteristics may override climatic influences on ant assemblage composition: a study using a 300-km climatic gradient

Michelle L. Yates A C , Heloise Gibb B and Nigel R. Andrew A
+ Author Affiliations
- Author Affiliations

A Centre for Behavioural and Physiological Ecology, Zoology, Trevanna Road, University of New England, Armidale, NSW 2351, Australia.

B Department of Zoology, La Trobe University, Bundoora, Vic. 3086, Australia.

C Corresponding author. Email: myates7@une.edu.au

Australian Journal of Zoology 59(5) 332-338 https://doi.org/10.1071/ZO11096
Submitted: 5 December 2011  Accepted: 2 March 2012   Published: 27 March 2012

Abstract

We assessed the relative importance of a variety of climatic and habitat variables in structuring ant communities along a 300-km climatic gradient. Sampling was conducted in semiarid, transitional and cool temperate climatic zones in New South wales, Australia. Ants were sampled at three paired sites of two habitats (pastures and conservation ‘remnants’) in each of the climatic zones (herein referred to as ‘zones’) using pitfall traps. Remnants represented original open forests, while pastures were a mix of grassland vegetation and cleared woodland. We tested the effects of habitat type, region (representing different climatic zones) and environmental variables on assemblages using distance-based similarity measures (Permanova and Permdisp) and canonical analysis of principal coordinates. Assemblage composition differed between habitats and zones, but we found no interaction effects. Assemblage dispersion (between-site heterogeneity) differed between habitats but not among zones. Pasture habitats supported more homogeneous assemblages than remnant habitats. Our findings suggest that habitat type, and structure, homogenise assemblages in pastures, thus overriding the effects of local climate apparent in remnants. As remnants are isolated within the biologically homogeneous pastures, movement of unique species between remnants in response to climate changes may be limited, thus landscape connectivity is likely to be important in reducing species loss.

Additional keywords: biotic homogenisation, climate change, conservation, grazing, habitat fragmentation.


References

Abensperg-Traun, M., Smith, G. T., Arnold, G. W., and Steven, D. W. (1996). The effects of habitat fragmentation and livestock-grazing on animal communities in remnants of gimlet Eucalyptus salubris woodland in the Western Australian wheatbelt. I. Arthropods. Journal of Applied Ecology 33, 1281–1301.
The effects of habitat fragmentation and livestock-grazing on animal communities in remnants of gimlet Eucalyptus salubris woodland in the Western Australian wheatbelt. I. Arthropods.Crossref | GoogleScholarGoogle Scholar |

Andersen, A. N. (1986). Patterns of ant community organization in mesic southeastern Australia. Australian Journal of Ecology 11, 87–97.
Patterns of ant community organization in mesic southeastern Australia.Crossref | GoogleScholarGoogle Scholar |

Andersen, A. N. (1990). The use of ant communities to evaluate change in Australian terrestrial ecosystems: a review and a recipe. Proceedings of the Ecological Society of Australia 16, 347–357.

Andersen, A. N., Hoffmann, B. J., Muller, W. J., and Griffiths, A. D. (2002). Using ants as bioindicators in land management: simplifying assessment of ant community responses. Journal of Applied Ecology 39, 8–17.
Using ants as bioindicators in land management: simplifying assessment of ant community responses.Crossref | GoogleScholarGoogle Scholar |

Anderson, M. J., Gorley, R. N., and Clarke, K. R. (2008). ‘Permanova+ for PRIMER: Guide to Software and Statistical Methods.’ (PRIMER-E: Plymouth, UK.)

Andrew, N. R., and Hughes, L. (2005). Diversity and assemblage structure of phytophagous Hemiptera along a latitudinal gradient: predicting the potential impacts of climate change. Global Ecology and Biogeography 14, 249–262.
Diversity and assemblage structure of phytophagous Hemiptera along a latitudinal gradient: predicting the potential impacts of climate change.Crossref | GoogleScholarGoogle Scholar |

Andrew, N. R., Rodgerson, L., and Dunlop, M. (2003). Variation in invertebrate–bryophyte community structure at different spatial scales along altitudinal gradients. Journal of Biogeography 30, 731–746.
Variation in invertebrate–bryophyte community structure at different spatial scales along altitudinal gradients.Crossref | GoogleScholarGoogle Scholar |

Bairstow, K. A., Clarke, K. L., Mcgeoch, M. A., and Andrew, N. R. (2010). Leaf miner and plant galler species richness on Acacia: relative importance of plant traits and climate. Oecologia 163, 437–448.
Leaf miner and plant galler species richness on Acacia: relative importance of plant traits and climate.Crossref | GoogleScholarGoogle Scholar |

Barton, P. S., Manning, A. D., Gibb, H., Lindenmayer, D. B., and Cunningham, S. A. (2009). Conserving ground-dwelling beetles in an endangered woodland community: multi-scale habitat effects on assemblage diversity. Biological Conservation 142, 1701–1709.
Conserving ground-dwelling beetles in an endangered woodland community: multi-scale habitat effects on assemblage diversity.Crossref | GoogleScholarGoogle Scholar |

Bestelmeyer, B. T., and Wiens, J. A. (2001). Ant biodiversity in semiarid landscape mosaics: the consequences of grazing vs. natural heterogeneity. Ecological Applications 11, 1123–1140.
Ant biodiversity in semiarid landscape mosaics: the consequences of grazing vs. natural heterogeneity.Crossref | GoogleScholarGoogle Scholar |

Bisevac, L., and Majer, J. D. (1999). Comparative study of ant communities of rehabilitated mineral sand mines and heathland, Western Australia. Restoration Ecology 7, 117–126.
Comparative study of ant communities of rehabilitated mineral sand mines and heathland, Western Australia.Crossref | GoogleScholarGoogle Scholar |

BOM (2010) Australian Government Bureau of Meteorology. Available at www.bom.gov.au/climate/data [accessed 10 November 2010]

Botes, A., McGeoch, M. A., Robertson, H. G., van Niekerk, A., Davids, H. P., and Chown, S. L. (2006). Ants, altitude and change in the northern Cape Floristic Region. Journal of Biogeography 33, 71–90.
Ants, altitude and change in the northern Cape Floristic Region.Crossref | GoogleScholarGoogle Scholar |

Bromham, L., Cardillo, M., Bennett, A. F., and Elgar, M. A. (1999). Effects of stock grazing on the ground invertebrate fauna of woodland remnants. Australian Journal of Ecology 24, 199–207.
Effects of stock grazing on the ground invertebrate fauna of woodland remnants.Crossref | GoogleScholarGoogle Scholar |

Burbidge, A. H., Leicester, K., McDavitt, S., and Majer, J. D. (1992). Ants as indicators of disturbance at Yanchep National Park, Western Australia. Journal of the Royal Society of Western Australia 75, 89–95.

Carr, M. (1996). ‘PRIMER User Manual: Plymouth Routines in Multivariate Ecological Research.’ (Plymouth Marine Laboratory: Plymouth, UK.)

Chen, I. C., Hill, J. K., Shiu, H. J., Holloway, J. D., Benedick, S., Chey, V. K., Barlow, H. S., and Thomas, C. D. (2011). Asymmetric boundary shifts of tropical montane Lepidoptera over four decades of climate warming. Global Ecology and Biogeography 20, 34–45.
Asymmetric boundary shifts of tropical montane Lepidoptera over four decades of climate warming.Crossref | GoogleScholarGoogle Scholar |

Clarke, K. R., and Gorley, R. N. (2006). ‘PRIMER v6 User Manual/Tutorial.’ (PRIMER-E: Plymouth, UK.)

Colwell, R. K. (2006). EstimateS: statistical estimation of species richness and shared species from samples. Version 8. [Accessed 19 December 2010].

Colwell, R. K., and Coddington, J. A. (1994). Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 345, 101–118.
Estimating terrestrial biodiversity through extrapolation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M%2Fmt1GltA%3D%3D&md5=18b75ae66ea02e2f05f162505c205682CAS |

Davies, Z. G., Wilson, R. J., Coles, S., and Thomas, C. D. (2006). Changing habitat associations of a thermally constrained species, the silver-spotted skipper butterfly, in response to climate warming. Journal of Animal Ecology 75, 247–256.
Changing habitat associations of a thermally constrained species, the silver-spotted skipper butterfly, in response to climate warming.Crossref | GoogleScholarGoogle Scholar |

Debuse, V. J., King, J., and House, A. P. N. (2007). Effect of fragmentation, habitat loss and within-patch habitat characteristics on ant assemblages in semi-arid woodlands of eastern Australia. Landscape Ecology 22, 731–745.
Effect of fragmentation, habitat loss and within-patch habitat characteristics on ant assemblages in semi-arid woodlands of eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Derraik, J. G. B., Closs, G. P., Dickinson, K. J. M., Sirvid, P., Barratt, B. I. P., and Patrick, B. H. (2002). Arthropod morphospecies versus taxonomic species: a case study with Araneae, Coleoptera, and Lepidoptera. Conservation Biology 16, 1015–1023.
Arthropod morphospecies versus taxonomic species: a case study with Araneae, Coleoptera, and Lepidoptera.Crossref | GoogleScholarGoogle Scholar |

Diamond, J. M. (1975). The island dilemma: lessons of modern biogeographic studies for the design of natural reserves. Biological Conservation 7, 129–146.
The island dilemma: lessons of modern biogeographic studies for the design of natural reserves.Crossref | GoogleScholarGoogle Scholar |

Didham, R. K., Ghazoul, J., Stork, N. E., and Davis, A. J. (1996). Insects in fragmented forests: a functional approach. Trends in Ecology & Evolution 11, 255–260.
Insects in fragmented forests: a functional approach.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itFCmug%3D%3D&md5=6e16413aff456e0da72a2533791c9dd7CAS |

Donald, P. F., and Evans, A. D. (2006). Habitat connectivity and matrix restoration: the wider implications of agric-environment schemes. Journal of Applied Ecology 43, 209–218.
Habitat connectivity and matrix restoration: the wider implications of agric-environment schemes.Crossref | GoogleScholarGoogle Scholar |

Dormann, C. F. (2007). Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Global Ecology and Biogeography 16, 129–138.
Effects of incorporating spatial autocorrelation into the analysis of species distribution data.Crossref | GoogleScholarGoogle Scholar |

Dunn, R. R., Agosti, D., Andersen, A. N., Arnan, X., Bruhl, C. A., Cerda, X., Ellison, A. M., Fisher, B. L., Fitzpatrick, M. C., Gibb, H., Gotelli, N. J., Gove, A. D., Guenard, B., Janda, M., Kaspari, M. E., Laurent, E. J., Lessard, J. P., Longino, J. T., Majer, J. D., Menke, S. B., McGlynn, T. P., Parr, C. L., Philpott, S. M., Pfeiffer, M., Retana, J., Suarez, A. V., Vasconcelos, H. L., Weiser, M. D., and Sanders, N. J. (2009). Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecology Letters 12, 324–333.
Climatic drivers of hemispheric asymmetry in global patterns of ant species richness.Crossref | GoogleScholarGoogle Scholar |

Fleishman, E., Fay, J. P., and Murphy, D. D. (2000). Upsides and downsides: contrasting topographic gradients in species richness and associated scenarios for climate change. Journal of Biogeography 27, 1209–1219.
Upsides and downsides: contrasting topographic gradients in species richness and associated scenarios for climate change.Crossref | GoogleScholarGoogle Scholar |

Floren, A., and Linsenmair, E. (2001). The influence of anthropogenic disturbances on the structure of arboreal arthropod communities. Plant Ecology 153, 153–167.
The influence of anthropogenic disturbances on the structure of arboreal arthropod communities.Crossref | GoogleScholarGoogle Scholar |

Foley, J. A., Defries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., and Snyder, P. K. (2005). Global consequences of land use. Science 309, 570–574.
Global consequences of land use.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsFChtrs%3D&md5=1a7d058984cd8539caebe9c32716abd1CAS |

Gibb, H., and Parr, C. L. (2010). How does habitat complexity affect ant foraging success? A test using functional measures on three continents. Oecologia 164, 1061–1073.
How does habitat complexity affect ant foraging success? A test using functional measures on three continents.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cbntVWqsA%3D%3D&md5=2edab0303046f82016dd95fa3d7a48d7CAS |

Greenslade, P. J. M., and Greenslade, P. (1984). Invertebrates and environmental assessment. Environmental Planning 3, 13–15.

Hughes, L. (2000). Climatic signatures in ecology – Reply. Trends in Ecology & Evolution 15, 287.
Climatic signatures in ecology – Reply.Crossref | GoogleScholarGoogle Scholar |

Keith, D. (2004). ‘Ocean Shores to Desert Dunes: The Native Vegetation of New South Wales and the ACT.’ (Department of Environment and Conservation: Sydney.)

King, J. R., Andersen, A. N., and Cutter, A. D. (1998). Ants as bioindicators of habitat disturbance: validation of the functional group model for Australia’s humid tropics. Biodiversity and Conservation 7, 1627–1638.
Ants as bioindicators of habitat disturbance: validation of the functional group model for Australia’s humid tropics.Crossref | GoogleScholarGoogle Scholar |

Kluge, J., Kessler, M., and Dunn, R. R. (2006). What drives elevational patterns of diversity? A test of geometric constraints, climate and species pool effects for pteridophytes on an elevational gradient in Costa Rica. Global Ecology and Biogeography 15, 358–371.
What drives elevational patterns of diversity? A test of geometric constraints, climate and species pool effects for pteridophytes on an elevational gradient in Costa Rica.Crossref | GoogleScholarGoogle Scholar |

Lengyel, S., Gove, A. D., Latimer, A. M., Majer, J. D., and Dunn, R. R. (2009). Ants sow the seeds of global diversification in flowering plants. PLoS ONE 4, e5480.
Ants sow the seeds of global diversification in flowering plants.Crossref | GoogleScholarGoogle Scholar |

Lentini, P., Fischer, J., Gibbons, P., Lindenmayer, D., and Martin, T. (2011). Australia’s stock route network: 2. Representation of fertile landscapes. Ecological Management & Restoration 12, 148–151.
Australia’s stock route network: 2. Representation of fertile landscapes.Crossref | GoogleScholarGoogle Scholar |

Lobry de Bruyn, L. A. (1993). Ant composition and activity in naturally-vegetated and farmland environments on contrasting soils at Kellerberin, Western Australia. Soil Biology & Biochemistry 25, 1043–1056.
Ant composition and activity in naturally-vegetated and farmland environments on contrasting soils at Kellerberin, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Magurran, A. E. (2004). ‘Measuring Biological Diversity.’ (Blackwell Publishing: Oxford.)

Majer, J. D., and Beeston, J. D. (1996). Biodiversity integrity index: an illustration using ants in Western Australia. Conservation Biology 10, 65–73.
Biodiversity integrity index: an illustration using ants in Western Australia.Crossref | GoogleScholarGoogle Scholar |

Majer, J. D., Sartori, M., Stone, R., and Perriman, W. S. (1982). Recolonization by ants and other invertebrates in rehabilitated mineral sand mines near Eneabba, Western Australia. Reclamation and Revegetation Research 1, 63–81.

Oliver, I., and Beattie, A. J. (1993). A possible method for the rapid assessment of biodiversity. Conservation Ecology 7, 562–568.

Oliver, I., and Beattie, A. J. (1996). Designing a cost-effective invertebrate survey: a test of methods for rapid assessment of biodiversity. Ecological Applications 6, 594–607.
Designing a cost-effective invertebrate survey: a test of methods for rapid assessment of biodiversity.Crossref | GoogleScholarGoogle Scholar |

Opdam, P., and Wascher, D. (2004). Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation. Biological Conservation 117, 285–297.
Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation.Crossref | GoogleScholarGoogle Scholar |

Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology Evolution and Systematics 37, 637–669.
Ecological and evolutionary responses to recent climate change.Crossref | GoogleScholarGoogle Scholar |

Parmesan, C., and Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42.
A globally coherent fingerprint of climate change impacts across natural systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXoslM%3D&md5=05cb39cabc357e5c4552566f887f7a8dCAS |

Proches, S., Warren, M., McGeoch, M. A., and Marshall, D. J. (2010). Spatial scaling and transition in pneumatophore athropod communities. Ecography 33, 128–136.
Spatial scaling and transition in pneumatophore athropod communities.Crossref | GoogleScholarGoogle Scholar |

Rahbek, C. (1997). The relationship among area, elevation, and regional species richness in neotropical birds. American Naturalist 149, 875–902.
The relationship among area, elevation, and regional species richness in neotropical birds.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cnit1Ogtg%3D%3D&md5=079d49574fa9f54571cc3689a507e451CAS |

Sala, J. Q., Olcina, A. G., Cuevas, A. P., Cantos, J. O., Amoros, A. R., and Chiva, E. M. (2000). Climatic warming in the Spanish Mediterranean: natural trend or urban effect. Climatic Change 46, 473–483.
Climatic warming in the Spanish Mediterranean: natural trend or urban effect.Crossref | GoogleScholarGoogle Scholar |

Samson, D. A., Rickart, E. A., and Gonzales, P. C. (1997). Ant diversity and abundance along an elevational gradient in the Philippines. Biotropica 29, 349–363.
Ant diversity and abundance along an elevational gradient in the Philippines.Crossref | GoogleScholarGoogle Scholar |

Sanders, N. (2002). Elevational gradients in ant species richness: area, geometry, and Rapoport’s rule. Ecography 25, 25–32.
Elevational gradients in ant species richness: area, geometry, and Rapoport’s rule.Crossref | GoogleScholarGoogle Scholar |

Sanders, N. J., Moss, J., and Wagner, D. (2003). Patterns of ant species richness along elevational gradients in an arid ecosystem. Global Ecology and Biogeography 12, 93–102.
Patterns of ant species richness along elevational gradients in an arid ecosystem.Crossref | GoogleScholarGoogle Scholar |

Sanders, N. J., Lessard, J., Fitzpatrick, M. C., and Dunn, R. R. (2007a). Temperature, but not productivity or geometry, predicts elevational diversity in ants across spatial grains. Global Ecology and Biogeography 16, 640–649.
Temperature, but not productivity or geometry, predicts elevational diversity in ants across spatial grains.Crossref | GoogleScholarGoogle Scholar |

Sanders, N. J., Gotelli, N. J., Wittman, S. E., Ratchford, J. S., Ellison, A. M., and Jules, E. S. (2007b). Assembly rules of ground-foraging ant assemblages are contingent on disturbance, habitat and spatial scales. Journal of Biogeography 34, 1632–1641.
Assembly rules of ground-foraging ant assemblages are contingent on disturbance, habitat and spatial scales.Crossref | GoogleScholarGoogle Scholar |

Shattuck, S. O. (1999). ‘Australian Ants: Their Biology and Identification.’ (CSIRO Publishing: Melbourne.)

Sobrinho, T. G., and Schoereder, J. H. (2007). Edge and shape effects on ant (Hymenoptera: Formicidae) species richness and composition in forest fragments. Biodiversity and Conservation 16, 1459–1470.
Edge and shape effects on ant (Hymenoptera: Formicidae) species richness and composition in forest fragments.Crossref | GoogleScholarGoogle Scholar |

Spiesman, B. J., and Cumming, G. S. (2008). Communities in context: the influences of multiscale environmental variation on local ant community structure. Landscape Ecology 23, 313–325.
Communities in context: the influences of multiscale environmental variation on local ant community structure.Crossref | GoogleScholarGoogle Scholar |

Suggitt, A. J., Gillingham, P. K., Hill, J. K., Huntley, B., Kunin, W. E., Roy, D. B., and Thomas, C. D. (2011). Habitat microclimates drive fine-scale variation in extreme temperatures. Oikos 120, 1–8.
Habitat microclimates drive fine-scale variation in extreme temperatures.Crossref | GoogleScholarGoogle Scholar |

Thomas, C. D., and Lennon, J. J. (1999). Birds extend their ranges northwards. Nature 399, 213.
Birds extend their ranges northwards.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsFyksLk%3D&md5=fc33484f24c9c2d792016bfd901fac5eCAS |

Thomas, C. D., Bodsworth, E. J., Wilson, R. J., Simmons, A. D., Davies, Z. G., Musche, M., and Conradt, L. (2001). Ecological and evolutionary processes at expanding range margins. Nature 411, 577–581.
Ecological and evolutionary processes at expanding range margins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksVSiur0%3D&md5=f36db629e1299e469c1068ce5488ffffCAS |

Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., De Siqueira, M. F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., Van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Peterson, A. T., Phillips, O. L., and Williams, S. E. (2004). Extinction risk from climate change. Nature 427, 145–148.
Extinction risk from climate change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFOgtQ%3D%3D&md5=0d1ac4fd1c0d71411f5ee3723ebb8696CAS |

Yates, M., and Andrew, N. A. (2011). Comparison of ant community composition across different land-use types: assessing morphological traits with more common methods. Australian Journal of Entomology 50, 118–124.
Comparison of ant community composition across different land-use types: assessing morphological traits with more common methods.Crossref | GoogleScholarGoogle Scholar |