Pacific Conservation Biology 22 (1), 61-71

Supplementary material

Assessment of the network of protected areas for birds in Taiwan with regard to functional and phylogenetic diversity

Hungyen Chen^{A,C}, Satoshi Nagai^A and Hirohisa Kishino^B

^ANational Research Institute of Fisheries Science, Fisheries Research Agency, Kanagawa 236-8648, Japan.

^BGraduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.

^cCorresponding author. Email: chen@lbm.ab.a.u-tokyo.ac.jp

Table S1. Functional traits used to estimate functional diversity of bird species assemblage.

Trait type	Trait
Body measurement	Body length, bill length, bill length/body length, tail length, tail length/body length
Status of migratory	Non-migratory, passage, vagrant, winter-migratory, summer-migratory
Main foraging substrate(s)	Ground, leaf, trunk, branch, water, air
Main foraging method	Gleaning, pouncing, snatching, striking, digging
Feeding habit(s)	Omnivorous, fruit-eating, grain-eating, insectivorous, fish-eating, carnivorous
Main dietary component(s)	Grains, fruits, aquatic animals and plants, rats, insects, fishes, molluscs, shellfishes,
	birds, small animals, amphibians
Main habitat(s)	Grassland, forest, waters, air, mud

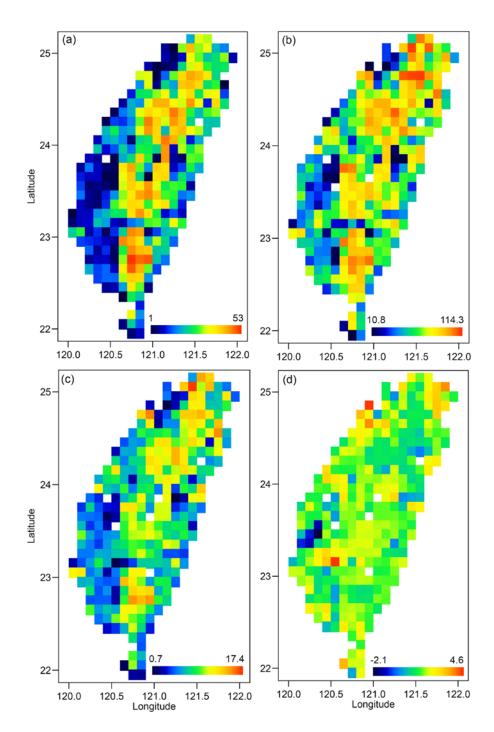


Fig. S1. Spatial distributions of bird biodiversity for cells including only the protected species in Taiwan. (a) Species richness. (b) Functional diversity. (c) Phylogenetic diversity. (d) Phylogenetic clumpedness. Each 0.1×0.1 latitude—longitude cell is colored based on the index value; the red cells represent the largest values, whereas the blue cells represent the smallest values.

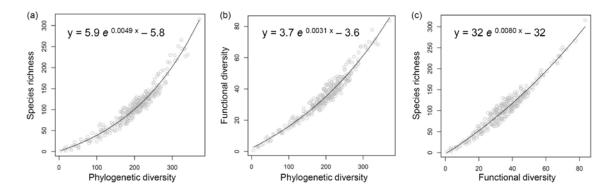


Fig. S2. Exponential correlations among the biodiversity metrics. (a) Phylogenetic diversity versus species richness. (b) Phylogenetic diversity versus functional diversity. (c) Functional diversity versus species richness.