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Abstract

In a homogeneous pionic gas system, a chemical nonequilibrium process is understood to have
an effect in the expansion processes that are realized immediately after heavy ion collisions.
The chemical relaxation time is calculated by incorporating the π+π ↔ π+π+π+π reaction,
which is given in the second order of perturbation in the σ model. The π+π ↔ π+π+π+π
reaction is assumed to be less frequent than the π+ π ↔ π+ π scattering that is expected to
establish the local equilibrium, and the hydrodynamical equation is solved for various initial
conditions. It is shown that the relaxation time is of the order of 100 fm and does not have
a significant effect on the expansion process, which implies that the pion number freezeout
takes place at an early stage of the expansion.

1. Introduction

It is widely believed that quantum chromodynamics (QCD) is the underlying
theory of the strong interaction and that QCD exhibits a confinement–deconfinement
phase transition at high temperature (≈200 MeV) [1]. Since understanding the
properties of this phase transition is crucial for hadron physics, many efforts have
been made both experimentally and theoretically [2]. In particular, a heavy ion
reaction is expected to be a useful method to establish high temperatures with
free quarks and gluons and to investigate the process of hadronization.

Heavy ion collisions are considered to undergo several steps:

(1) Two highly Lorentz contracted nuclei collide with each other.
(2) They pass through each other and a hot system is formed in between,

where quarks and gluons are excited [3].
(3) Frequent collisions and reactions among the excited elements lead to local

equilibrium. Therefore this state can be treated by hydrodynamics [4, 5].
(4) As the system expands, cooling and a subsequent phase transition process

proceeds [2].
(5) A lot of pions (and other light hadrons) are created under the process

of the phase transition [6].
(6) When the phase transition terminates, there exists a hadronic gas which

can also be treated by hydrodynamics. Since the system is hot, the
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collisions and reactions between the hadrons are frequent and the total
number of hadrons is not conserved.

(7) As the cooling proceeds, reactions which change the total number of
hadrons become unlikely. At this stage, the multiplicity of pion (and
other light hadrons) is fixed (freezeout of number) [7].

(8) When the expansion proceeds further and the mean distance between
pions is equivalent to the average variation of macroscopic quantity such
as temperature, energy density and pressure, the hydrodynamical picture
is not a good one any longer. Instead, the system can be considered to
be composed of free pions without any interaction. This stage is called
the freezeout of temperature.

Therefore, the multiplicity of pions is determined at stage 7, not at the time
when the phase transition terminates. Also, the energy distribution of pions
is given by the thermal distribution at stage 8. In other words, the hadronic
final state of heavy ion collisions does not directly reflect the property of the
confinement–deconfinement phase transition.

Due to this feature, it has been proposed to use an electromagnetic and weak
probe, which is free from the hadronic final state interaction, to investigate the
hadronic property of the phase transition. However, if we can understand the
process of the final state, we can extract the information on the phase transition
by hadronic probes. In particular, pion multiplicity can be used to obtain the
pion number and the entropy immediately after the phase transition: if one
knows the elementary chemical process to change the pion multiplicity such as
π + π ↔ π + π + π + π, one can see how the pion multiplicity varies through
the cooling process. From the information on the pion multiplicity obtained in
heavy ion reaction one can then track the process backward to the time when
the phase transition is over.

Whether the chemical reaction largely affects the cooling process or not depends
on the balance between the cooling by expansion and the speed of the chemical
reaction. If the typical time scale of the chemical reaction is longer than that
of expansion, the freezeout of pion multiplicity takes place at an early stage
of the expansion and one can identify the final pion multiplicity with the pion
multiplicity immediately after the phase transition in the first approximation.
In this case we can estimate the entropy density immediately after the phase
transition s by

s = 4n, n : observed pion multiplicity , (1)

which is obtained for massless classical particle systems with the particle numbers
conserved [8]. If the former is shorter than the latter, the chemical reaction
remains dominant through the expansion. In this case, the final multiplicity
is quite different from the initial one at the end of the phase transition, and
Eq. (1) cannot be used to obtain the entropy density. Instead, one must track
the irreversible process backward, estimate the pion multiplicity at the end of
the phase transition and then use Eq. (1).

In this paper, we aim to obtain the speed of the chemical reaction
π + π ↔ π + π + π + π based on the σ model. In this model, the interaction in
the leading order of perturbation just gives π + π ↔ π + π scattering, which is
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expected to establish local equilibrium in a pionic gas. In the second order of
perturbation, the π+π ↔ π+π+π+π reaction is derived. If the latter reaction
is less frequent than the former, we can resort to the hydrodynamical equation
to track the change of pion number multiplicity. In Section 2 an evaluation
of the frequency of these two reactions is made and the criterion to establish
local equilibrium is given. Then, we present the hydrodynamical equation in
the classical approximation. In Section 3 the hydrodynamical equation is solved
numerically in a homogeneous pion gas for various initial temperatures and
chemical potentials. The typical time scale of the chemical reaction (relaxation
time) is obtained and compared to the expansion rate. The last section is devoted
to a summary and discussing open problems.

2. Elementary Chemical Reaction in the σ Model and the
Hydrodynamical Equation

We take the σ model to describe the π + π ↔ π + π + π + π reaction. The
interaction part of the Lagrangian is given by

Lint = − λ
4!

(σ2 + π2 − f2
π)2 , (2)

where π = π1τ1 + π2τ2 + π3τ3 and fπ is the pion decay constant. After shifting
the σ field as σ → σ + fπ, one obtains −λ/4!(π2 + 2fπσ + σ2)2 as the potential
term. This term gives π+π ↔ π+π scattering as depicted in Fig. 1a. Summing
all four diagrams in Fig. 1a at threshold pi = (m, 0, 0, 0) (i = 1, 2, 3, 4) gives

−λ+

(
λ

3

)2
fπ

2

m2
σ

+

(
λ

3

)2
fπ

2

mσ
2 +

(
λ

3

)2
fπ

2

mσ
2 − (2m)2 , (3)

where mσ (m) is the σ (π) meson mass. Since mσ
2 = λfπ

2/3, we get

−λ
3

+
λ

3

1

1− (2m/mσ)2 (4)

as an effective 4π coupling constant. For mσ ≈ 600 MeV, m/mσ ≈ 1
4 and the

effective coupling constant is λ/9. For simplicity, we hereafter replace the sum
of Fig. 1a by just one direct 4π coupling with its coupling constant λ/9.

The π+π ↔ π+π+π+π reaction is given in the second order of perturbation
(Fig. 1b). In second order, another diagram is possible for the π+π ↔ π+π+π+π
process (Fig. 1c). This diagram, however, is not taken into account because the
denominator of the propagator p2 −m2 is of the order of (3m)2 −m2 and the
contribution of Fig. 1c is O(1/10) of Fig. 1b. All the possible diagrams of type
Fig. 1b are shown in Fig. 1d . For simplicity, we replace Fig. 1d by Fig. 1e,
which means the effect of interference is not properly taken into account.

In the next section, the hydrodynamical equation is solved assuming a local
equilibrium that is expected to be established by the π + π ↔ π + π scattering.
Since π+π ↔ π+π+π+π drives the system away from equilibrium, π+π ↔ π+π
scattering must be frequent enough so that the disturbed nonequilibrium state
can swiftly return to the equilibrium state.
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Fig. 1. Elementary processes under consideration: (a) π + π ↔ π + π scattering. (b)
π + π ↔ π + π + π + π process. (c) The other possible π + π ↔ π + π + π + π process in the
second order of perturbation in the σ model. This diagram is neglected. (d) All the possible
detailed diagrams of type (b). (e) Approximated diagram for (d) used in the numerical
calculation. All the 4π vertices in (b), (c), (d), (e) are the effective coupling obtained from
the sum of diagrams in (a).
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Once local equilibrium is established, the local temperature T (x) as well as
the local chemical potential µ(x) is defined. The π + π ↔ π + π actually means
π0 + π0 ↔ π+ + π− and πi + πj ↔ πi + πj (i, j = +,−, 0). The first one gives
the equilibrium condition 2µ0(x) = µ+(x) + µ−(x). Since charge conservation
means µ+(x) = µ−(x) in the neutral pionic gas, we get µ+(x) = µ−(x) = µ0(x)
or nπ

+

(x) = nπ
−

(x) = nπ
0

(x). This means that all the equations are identical
for π0, π+ and π−.

In other words, all the calculation is carried out in the same way as in
λφ4 theory, except for a numerical factor stemming from the isospin degrees of
freedom, because the essential part of the σ model is only the (λ/4!)π4 term.

As we have mentioned before, the π + π ↔ π + π scattering should be more
frequent than the π + π ↔ π + π + π + π reaction. The frequency of the
π + π ↔ π + π (Fig. 1a) and π + π ↔ π + π + π + π (Fig. 1e) process, denoted
by Iπ+π↔π+π and Iπ+π↔π+π+π+π and defined by

Iπ+π↔π+π ≡
∫

dp1

(2π)3

dp2

(2π)3

dp3

(2π)3

dp4

(2π)3

(
λ

9

)2

(2π)4δ(p1 + p2 − p3 − p4) , (5)

Iπ+π↔π+π+π+π ≡
∫

dp1

(2π)3

dp2

(2π)3

dp3

(2π)3

dp4

(2π)3

dp5

(2π)3

dp6

(2π)3

× |6M |2(f(p5)f(p6)− f(p1)f(p2)f(p3)f(p4))

× (2π)4δ(p1 + p2 + p3 + p4 − p5 − p6) , (6)

f(p) = exp{−β(
√

p2 +m2 − µ)}

β =
1

T
, T : temperature, µ : chemical potential

M : the matrix element of the diagram in Fig. 1b

=

(
λ

9

)2
1

m2 − (p1 + p2 − p5)2 , (7)

are calculated essentially numerically. To get a rough estimate for Iπ+π↔π+π

and I, we took mβ ≈ 1 and µ/m ≈ 1 and found that λ ¿ 1000 is required
for Iπ+π↔π+π À I. Since λ ≈ 100 is taken for the ordinary σ-model, the local
equilibrium is established in the present case.∗

Under local equilibrium, relativistic hydrodynamical equation [9] is given as

∗ Since π+ π ↔ π+ π is O(λ2) and π+ π ↔ π+ π+ π+ π is O(λ4), it may seem that λ¿ 1
is required for local equilibrium. However, numerical factors coming from the phase space
integral such as 1/(2π)3 for each external line and e−4β in Eq. (6) suppress the frequency of
the π + π ↔ π + π + π + π process. Thus λ ≈ 100 satisfies the criterion for local equilibrium
even if λ is bigger than 1.
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∂µN
iµ = 2I , (8)

∂µT
iµν = 0 , (9)

for each species of pion, where N iµ(i = +,−, 0) is the pion number current
and T i

µν
is the energy–momentum tensor for π+, π− and π0 respectively. As

mentioned above, these fundamental equations take the same form for all species
of pions. Hence, we hereafter suppress the indices i = +,−, 0. Eq. (8) describes
the change of the total pion number and is called the rate equation, whose
right-hand side 2I gives the rate of particle production and annihilation. The
factor of 2 comes from the fact that two pions are created for one elementary
reaction in Fig. 1b. Eq. (9) is the energy–momentum conservation identity.

The Nµ and Tµν are expressed in terms of the pion distribution function f :

Nµ =

∫
dp

(2π)3

pµ

p0 f , (10)

Tµν =

∫
dp

(2π)3

pµpν

p0 f . (11)

3. Numerical Solution for the Hydrodynamical Equation and Chemical Relaxation
Time in a Homogeneous Pionic Gas

In this section we consider homogeneous pionic gases to obtain the typical
time scale of the chemical reaction π + π ↔ π + π. In a homogeneous gas, the
hydrodynamical equations Eqs. (8) and (9) are drastically simplified to [4]

dn

dt
= 2I , (12)

dε

dt
= 0 , (13)

where n = N0(ε = T 00) is the pion density (energy density). To express Nµ and
Tµν in terms of the local temperature T (x) and local chemical potential µ(x),
we need to have the explicit form of the distribution function f . In this paper
we take classical distribution

f(p, x, t) = exp{−β(x, t)(
√

p2 +m2 − µ(x, t))} . (14)

Since we investigate a homogeneous pionic gas, there is no x dependence in
any macroscopic quantity, and T and µ are functions of time t alone. Then, we
get

n(t) =
1

2π2 e
µ/TTm2K2m/T , (15)

ε(t) =
1

2π2 e
µ/Tm2{3T 2K2(m/T ) + TmK1(m/T )} . (16)
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Combining Eqs (12) and (13) with Eqs (15) and (16), one gets a set of
differential equations for T (t) and µ(t). The energy conservation law Eq. (13)
means ε(t) = ε(t = 0) giving the equation to determine µ(t) from T (t) and initial
conditions T0 = T (0), µ0 = µ(0):

µ =
µ0

T0

T + T ln

{(
T0

T

)2
3K2(m/T0) +m/T0K1(m/T0)

3K2(m/T ) +m/TK1(m/T )

}
, (17)

with the abbreviation µ = µ(t), T = T (t). Also from dε/dt = 0, we can express
dµ/dt in terms of T (t), µ(t), dT/dt, T0 and µ0:

µ̇ =

(
µ

T
−A

)
Ṫ , (18)

A ≡ 12K2(m/T ) + 5m/TK1(m/T ) + (m2/T 2)K0(m/T )

3K2(m/T ) + (m/T )K1(m/T )
, (19)

where µ̇ (Ṫ ) means dµ/dt (dT/dt). By eliminating µ and µ̇ and redefining all
the quantities to be dimensionless, i.e. T/m→ T ≡ 1/β, µ/m→ µ, λ4mt→ t, we
can rewrite the hydrodynamical equation as

{(3−A)K2(β) + βK1(β)}Ṫ = 2I/λ4 . (20)

Since I is proportional to λ4 [see Eq. (6)], the λ4 term in the redefinition of t
makes the equation independent of λ.

By solving this differential equation, one gets the t dependence of T and from
Eq. (17) µ(t) is also obtained. A typical result of numerical calculation is shown
in Fig. 2 for initial conditions (T0, µ0) = (1 ·5, 1).

Fig. 2. (a) Time dependence of temperature T , (b) chemical potential µ and (c) log |µ| for
initial conditions (T0, µ0) = (1 ·5, 1 ·0). The temperature T , chemical potential µ, and time t
are all dimensionless as defined in the text.

For other initial conditions, relaxation times defined by by µ(trelax) = µ0/e
with λ = 120 are shown in Fig. 3. Here trelax is shorter for denser and hotter
the systems and the shortest one is of the order of 100 fm. This time scale is
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expected to be larger than the typical time scale of expansion. Thus, we have
found that the π + π ↔ π + π + π + π reaction does not play an important role
in an expanding pionic gas system. In other words, the pion number freezes out
at an early stage of the final state of a heavy ion reaction. This implies that the
hadronic probe is a good one to extract information on the phase transition and
that s = 4n is an appropriate one to evaluate the entropy density immediately
after the phase transition.

Fig. 3. Plot of log10 trelax for various initial conditions with λ = 120.

4. Summary and Open Problems

We have investigated the effect of the π+ π ↔ π+ π+ π+ π chemical reaction
in the framework of hydrodynamics. To understand the typical time scale of this
reaction, we calculated the relaxation times in homogeneous pionic gas systems.
It turns out that the relaxation time is of the order of 100 fm at shortest and is
longer than the typical time scale of the expansion of the pionic gas.

Although we found that the π + π ↔ π + π + π + π chemical reaction does
not play an important role within the framework of the σ-model, there are still
numerous problems to solve. The first one is to take into account the effect
of the baryon in the central region, which has been neglected so far. In the
real case, thermally excited NN̄ pairs exist in the central region. Since the
π–N interaction is much larger than the ππ interaction, the processes such as
N + π ↔ N + π + π might be significant even if the number of the excited NN̄
pairs is small. Furthermore, if there is a stopping in heavy ion collisions and
there exists baryon number coming from the colliding nuclei, there would be a
big change of pion multiplicity.

Secondly, to make a reliable quantitative discussion on the role of the
π + π ↔ π + π + π + π reaction, the calculation must be made without classical
approximation incorporating the effect of interference. This is expected to make
the collision less frequent and lead to a larger relaxation time, keeping the essential
statement in the former section. The third problem is to take the medium effect



     

Nonequilibrium Process in the σ Model 11

into account. So far, we have fixed the parameters in the σ-model: the coupling
constant λ and the pion mass m. It is known, however, that these quantities
depend on the temperature and chemical potential. The correction due to this
effect might not be negligible.

Even if some of these effects lead to a smaller relaxation time and make the
effect of the change of the pion number a little more important, we still do
not expect them to change our results qualitatively for the following reason. In
an expanding system, the chemical potential at the end of the phase transition
is taken to be 0, because there is a strong interaction between a quark-gluon
plasma and pions and the pion can change its multiplicity easily. Therefore, at
an early stage of the expansion in which the system is hot enough, the chemical
potential is close to 0 and the system is close to chemical equilibrium. So, the
π + π ↔ π + π + π + π reaction cannot play an important role. As the system
expands, the chemical potential deviates from 0. However, the system is not
hot enough and the relaxation time is too long to make the effect of reaction
significant.

Acknowledgment

The author would like to thank Prof. T. Matsui for fruitful discussions and
also thank members of the nuclear theory group at Kyoto University for their
useful comments.

References

[1] B. Petersson, Nucl. Phys. (Proc. Suppl.) B30 (1993) 66 and references therein.
[2] T. Hatsuda, Nucl. Phys. A544 (1992) 27.
[3] Quark Matter ’84, ‘Lecture Notes in Physics’, Vol. 221 (Ed. K. Kajantie) (Springer, New

York, 1985).
[4] T. Matsui et al., Phys. Rev. D34 (1986) 783.
[5] J. Rafelski and B. Mueller, Phys. Rev. Lett. 48 (1984) 1066.
[6] G. Bertsch et al., Phys. Rev. C37 (1988) 1896.
[7] L. V. Bravinu et al., Phys. Lett. B354 (1995) 196.
[8] L. D. Landau, Izv. Akad. Nauk SSSR 17 (1953) 51.
[9] S. R. de Groot et al. ‘Relativistic Kinetic Theory’ (North Holland, Amsterdam, 1980).


