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Abstract

It is shown that the diffusion coefficients parallel to the electric field in an ion swarm
experiment are greater than the perpendicular diffusion coefficients at low values of E/N , the
ratio of the electric field strength to the gas number density, but that at high E/N the two
are approximately equal or the inequality is reversed. For electron swarms the inequalities
are the reverse of those for ion swarms, unless there is a significant Ramsauer minimum in
the momentum-transfer cross section. A second point is that for many ion–atom systems
the zero-field mobility is not close to its polarisation limit even when the gas temperature
is 4.35 K. It is also shown that the unusual mobilities observed for Ar+ ions in He gas at
4.35 K are not due to quantum-mechanical (resonant scattering) effects as postulated by
the experimenters. Finally, it is shown that it is possible to compute gaseous ion transport
coefficients for molecular ions from a knowledge of the fundamental interaction potentials
rather than from assumed models for the cross sections.

1. Diffusion Coefficients

As the scientific ‘grandson’ of J. Townsend and the scientific ‘son’ of L. G. H.
Huxley, Robert W. Crompton was almost predestined to be intimately involved
with the changes in our understanding of electron transport through gases that
occurred in the early 1970s (Crompton 1972; Crompton and Huxley 1974). It was
realised then that the diffusion coefficients parallel (DL) and perpendicular (DT )
to the electric field are different, except in the limit of low values of E/N , the
ratio of the electric field strength to the gas number density. The question that
arises is what are the relative magnitudes of the two diffusion coefficients. This
question has been difficult to answer experimentally because the two diffusion
coefficients cannot be measured using the same apparatus or technique.

For electron swarms, the relationship between DL and DT was established by
theoretical means many years ago (Parker and Lowke 1969; Lowke and Parker
1969; Skullerud 1969). Consider first the situation where the collision frequency is
increasing with increasing energy. An electron diffusing against the electric field
‘will lose energy, and thus acquire a lower velocity, a lower collision frequency
and an increased instantaneous drift velocity, which after some time ... will
have reduced the distance which the electron lagged behind the average electron

∗ Dedicated to Professor Robert W. Crompton on the occasion of his seventieth birthday.

10.1071/PH96067         0004-9506/97/030671$05.00



672 L. A. Viehland

position’ (Skullerud 1969). An electron diffusing with the field will gain energy,
acquire a higher velocity and collision frequency, a lower instantaneous drift
velocity, and will eventually reduce the distance it led the average electron position.
No similar effects will occur in perpendicular directions, so ‘the longitudinal
spread of a group of electrons will ... be diminished compared with the lateral
spread’ (Skullerud 1969). This means that DT will be greater than DL when
the collision frequency is increasing with energy. Similar arguments show that
DT will be less than DL when it is decreasing with increasing energy.

Fig. 8-3-5 in McDaniel et al . (1993) is an adaptation of the experimental
data of Hunter and Christophorou (1984) that directly compares the ratios of
DL and DT to the mobility. This figure clearly shows that for electrons in
hydrogen DT > DL at low values of E/N , while the inequality is reversed at
high E/N . Similar results can be seen by careful examination of the results of
Kucukarpaci et al . (1981), Kucukarpaci and Lucas (1981), Wedding et al . (1985),
and others. The following seems to be a valid generalisation of the experimental
results for electron swarms in situations where there is no significant Ramsauer
minimum: DT = DL in the limit E/N = 0, DT > DL at low but non-zero
values of E/N , and DT ≈ DL or DT < DL at high E/N . This generalisation is
consistent with what is known about the momentum-transfer collision frequencies
for electron–neutral systems and with the theoretical arguments given above for
how the energy dependence of the collision frequency produces spatial variations
in the ion distribution function.

There is an additional mechanism that comes into play for ion swarms: the
average ion energy is no longer isotropic in the lab frame. Equivalently, the ion
temperatures parallel and perpendicular to the electric field direction, TL and TT ,
differ substantially. Theoretical calculations for atomic ions in atomic neutrals,
many of which are accessible by electronic means (Viehland and Kirkpatrick
1995), have shown that TT = TL in the limit E/N = 0, TT < TL at low but
non-zero values of E/N , and TT > TL at high E/N . The anisotropy in energy
has a much larger effect on ion diffusion than does the spatial variations due to
small energy dependences of the collision frequencies. Therefore, for ion swarms,
DT = DL in the limit E/N = 0, DT < DL at low but non-zero values of E/N ,
and DT ≈ DL or DT > DL at high E/N . Monte Carlo simulations (Tan et al .
1993) also have given this result. Note that these inequalities are exactly the
reverse of those for electron swarms.

Experimental verification of the theoretical prediction for ion swarms has been
hard to achieve, primarily due to the limited measurements of DT at high E/N .
However, verification is available for K+ in Ar (Fig. 5-2-4 of Mason and McDaniel
1988) and for Li+ in Ar at 295 K (using the data compiled by Viehland and
Mason 1995). It is also significant that the data for the other alkali ion–rare
gas systems show the same qualitative trend, even though they do not extend
to high enough E/N to verify the reversal of the inequality. Theoretical and
experimental tests of the relationship between DT and DL when molecular ions
or neutrals are involved remain to be performed.

2. Temperature Dependence of Zero-field Mobilities

Robert Crompton and others (Haddad and Elford 1980; Hegerberg et al . 1980)
showed that the temperature dependence of thermal electrons is not as simple as
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expected from consideration of asymptotic limits, e.g. that the momentum-transfer
collision frequency is constant at low energy. The generality of this idea has
not been appreciated by experimenters, some of whom have been ‘surprised’
recently by the fact that the mobilities of some gaseous ions are not close to
their polarisation values when E/N is almost zero and the gas temperature is
80 K, or even 4 K.

The general aspects of the temperature dependence of zero-field mobilities are
thoroughly covered in Section 6.1.D of Mason and McDaniel (1988), but their
choice of dimensionless variables for most of the graphs may have obscured the
fact that the polarisation limit is not reached until very low temperature. The
zero-field mobilities shown in Fig. 1 were calculated for Li+ ions in He gas at
various temperatures from the model potential of Koutselos et al . (1990), using
the Gram–Charlier techniques described previously (Viehland 1994). Obviously,
the low-field mobility for an ion–neutral system does not approach the polarisation
(Langevin) limit until extremely low gas temperatures are reached! Similar results
for many other ion–neutral combinations and for other interaction potentials
are available upon request from the author (preferably by electronic mail from
viehland@ions.slu.edu).

Fig. 1. Standard mobility K0, in cm2 V−1 s−1, for Li+ ions in helium gas at various
temperatures T , in K, in the limit of low electric field strengths. The points were calculated
in the manner described in the text. The polarisation limit of the mobility (19 ·17 cm2 V−1

s−1) is indicated by the horizontal line.
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3. Mobility of Ar+ Ions in He at 4 ·35 K

Recent experiments at Tokyo Metropolitan University (Kojima et al . 1992;
Sanderson et al . 1993, 1994, 1995; Saito et al . 1994) have found unusual
mobilities of positive ions in helium gas at 4.35 K. Specifically, for val-
ues of E/N below about 10 Td (1 Td = 10−21 V m2) the mobilities of
open-shell atomic ions and diatomic ions did not approach constant low-field
values, much less the polarisation values discussed in Section 2. Instead,
the mobilities dropped abruptly with decreasing E/N . Many possible exper-
imental errors were considered and rejected, and an argument was advanced
that the unusual behaviour might be caused by quantum-mechanical (reso-
nant scattering) effects. The calculations summarised here and discussed in
detail by Viehland and Hurly (1996) test this argument for Ar+ ions in
helium.

When all of the Ar+ ions are in the 2P3/2 ground state, collisions with helium
atoms are equally likely to be governed by the X 2Σ+

1/2 and the A1
2Π3/2 states

of the molecular ion. The phrase ‘ground molecular state’ in the remainder of
this section will refer to this situation, where the cross sections for these two
molecular states are averaged.

When a fraction x of the Ar+ ions is in the twofold degenerate 2P1/2 excited
state and a fraction 1−x is in the fourfold degenerate 2P3/2 ground state, the
weighting is (1−x )/2, (1−x )/2 and x for the X 2Σ+

1/2, A1
2Π3/2 and A2

2Π1/2

states, respectively. When the energy is sufficiently high that the ions have
a statistical distribution, x = 1

3 and the weighting is 1
3 for each of the three

molecular states. The phrase ‘statistical molecular state’ in the remainder of this
section will refer to this situation, where the cross sections for all three molecular
states are averaged.

In an earlier paper (Viehland et al . 1991), it was shown that the ab
initio interaction potentials available in 1991 for the HeAr+ ion are inca-
pable of reproducing the experimental transport data for Ar+ ions in helium
gas. A more accurate set of potential-energy curves for this system then
was derived by combining spectroscopic potentials and the accurately known
ion-induced dipole potential that describes the interactions at large separa-
tions. No new ab initio potentials have been reported since 1991. How-
ever, Carrington et al . (1995) have recently determined a set of interaction
potentials by least-squares fits of seven potential parameters to microwave
transition frequencies, ultraviolet spectroscopy data, and g factors. The new
(MALI) interaction potentials are expected to be much better than the pre-
vious ones, particularly at the large separations that are most important in
swarm experiments at 4.35 K. Consequently, we used them in our calcula-
tions.

Using the program described previously (Hurly et al . 1992), we computed the
quantum-mechanical phase shifts for each of the three MALI potentials up to
angular momentum quantum numbers high enough that they gave an uncertainty
in the cross sections of less than one part in a million. The phase shifts were used
with the general expressions of Meeks et al . (1994) to obtain the transport cross
sections Q(l)(E) as a function of relative kinetic energy E, for 1 ≤ l ≤ 6. The
transport cross sections were also calculated by classical-mechanical techniques,
using the program QVALUES (Viehland 1982, 1984).
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Fig. 2 compares the classical- and quantum-mechanical values of the momentum-
transfer cross section Qm = Q(1)(E), for the ground molecular state with those
for the statistical molecular state. The quantum- and classical-mechanical values
are in excellent agreement at E = 0.001 hartree (1 hartree = 27 ·21 eV = 1 a.u.)
and above. The complicated structure exhibited by the quantum-mechanical cross
sections at low E is a result of orbiting resonances.

Fig. 2. Quantum-mechanical values of the momentum-transfer cross sections Qm, for the
statistical molecular state (dashed curve) and the ground molecular state (solid curve) of HeAr+

ion, as a function of the relative kinetic energy E between the particles. Classical-mechanical
values are shown as squares, with the two molecular states being virtually indistinguishable.
The vertical line represents thermal energy at 4 ·35 K (1 ·38×10−5 hartree); it is only
coincidentally near a resonant peak of the quantum-mechanical cross sections.

Note from Fig. 2 that the cross section for the ground molecular state is
substantially larger than that for the statistical molecular state near and just
above the thermal energy at 4.35 K. Since in first approximation the mobility at
low E/N is inversely proportional to the energy average of Qm, we expect the
mobility of ground state Ar+ ions in helium at 4.35 K to be smaller than when the
ions are in a mixture of states. Moreover, we expect this difference to be much
more evident when the mobilities are calculated from the quantum-mechanical
cross sections than from the classical-mechanical cross sections, since the latter
are virtually indistinguishable for the two molecular states. Both of these features
are shown by our calculations.
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Calculating the mobility and other transport coefficients that describe the
motion of Ar+ ions through helium gas from the transport cross sections requires
solving the Boltzmann equation. We have used a recent technique (Viehland
1994) that is based on a Gram–Charlier series. The calculations were iterated
until convergence was reached to a predetermined level of accuracy, including 0.1%
for the ion mobility. We calculated the transport coefficients at numerous gas
temperatures and E/N values. The entire set of calculated transport coefficients
is lengthy, so it has been added to the database that can be accessed electronically
(Viehland and Kirkpatrick 1995).

Fig. 3. Reduced mobility K 0, in cm2 V−1 s−1, of Ar+ ions in He gas at 4 ·35 K, as a function
of the reduced field strength E/N , in Td. The upper and lower curves (alternately, sets of
squares) are the quantum-mechanical (alternately, classical-mechanical) values calculated for
the statistical molecular state and the ground molecular state respectively. The triangles with
2% error bars are the experimental results of Saito et al . (1994).

Fig. 3 compares the classical- and quantum-mechanical mobilities calculated
for the ground molecular state and the statistical molecular state with the
experimental results (Saito et al . 1994) at 4.35 K and low E/N . The agreement
above 2 Td is within the 2% error bars estimated by the experimenters. Unlike
the measured values, the classical- and quantum-mechanical values we have
calculated do not show a precipitous drop in the mobility as E/N decreases
below 2 Td. The lack of a significant quantum-mechanical influence for this
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system is consistent with the previous findings (Gatland et al . 1977) for Li+

ions in helium. Whether this is true for the other systems studied at Tokyo
Metropolitan University remains to be established.

4. Potential-energy Description of Molecular Ion Transport in Gases

Molecular electron–neutral and ion–neutral systems are often described entirely
in terms of cross sections, the implicit assumption being that it is too complicated
to try to base things on the more fundamental interaction potentials. This section
is a brief description of recent work by Viehland et al . (1996) which reports the
first calculations of transport coefficients for diatomic ions in atomic gases based
on an ab initio interaction potential energy surface.

For a description of the motion of NO+ ions in He, we must start with
knowledge of the ground-state (v = 0, or rigid-rotor) potential energy surface
over wide ranges of the NO+–He separation and as a function of the angle
between the N–O and NO+–He axes. Calculations on the Li+-N2 and Li+-CO
systems by Grice et al . (1992, 1993) demonstrated that it was necessary to use at
least a MP4SDTQ/6-311+G(2df,p) level of theory to obtain values of structural,
thermodynamic and transport properties in close agreement with experiment.
This is a higher level of theory than was used in previous studies (Visser and
Wormer 1985; Robbe et al . 1993). Therefore, we performed new ab initio
calculations of the NO+-He potential energy surface using the GAUSSIAN 92
program at the MP4SDTQ/6-311+G(2df,p) level. Since our potential energy
surface was calculated, a CCSD(T) potential in reasonable agreement with ours
has appeared (Pogrebnya et al . 1995).

From the interaction potential energies we calculated, the appropriate transport
cross sections must be calculated. Classical trajectory methods (Viehland and
Dickinson 1995) have been shown (Liu and Dickinson 1996) to give diffusion
and viscosity cross sections for a similar system, N2-He, that are in agreement
with quantum calculations within 2% for total energies above 2.3×10−4 hartree.
Therefore, we opted to use classical trajectories to calculate the cross sections we
needed. The classical trajectory program we used was based on earlier programs for
neutral diatom–atom collisions (Dickinson and Lee 1985) and for atomic ion–diatom
collisions (Viehland and Dickinson 1995). It was, however, extensively revised to
compute the type of cross section discussed below and to provide for automatic
changes in the tolerance parameter governing the accuracy of a trajectory.

The transport cross sections of interest (Viehland and Dickinson 1995) are
of two types, one completely real and the other entirely imaginary. They are
functions of the pre- and post-collision values of the relative kinetic energy, E
and E′, the pre- and post-collision values of the ion rotational energy, Er and
E′r, the impact parameter, the angle between the pre-collision rotational angular
momentum of the diatomic ion and the pre-collision orbital angular momentum
of the relative motion, and the two angles conjugate to these angular momentum
vectors. The relationships between these variables and the ion–atom separation
and polar angle were given by Smith (1986) in action-angle variables.

In order to obtain accurate cross sections, we repeatedly calculated the momentum-
transfer cross section Qm, using different numbers of impact parameters, angles,
etc. We established at high E and Er that Qm is accurate within a few tenths
of a percent when we sampled ten impact parameters below 7.0 bohr, three
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larger impact parameters, and ten values for each of the three angular variables.
At values of the translational energy below 0.001 hartree, we increased both
the division point and the number of large impact parameters, to ensure that
the contribution of the long-range tail was included. As a check, eleven cross
sections were successfully compared with values calculated using the independent
atom–molecule code of Dickinson and Lee (1985).

Fig. 4. Momentum-transfer cross section Qm as a function of the rotational energy Er
in atomic units. The delta symbols indicate the computed values, while the straight lines
connecting the symbols are used only as a guide for the eye. From top to bottom, the curves
correspond to E values of 0.0001000, 0.0001778, 0.0003162, 0.0005623, 0.0010000, 0.0017780,
0.0031620, 0.0056230 and 0.0100000 hartree.

Fig. 4 shows how Qm varies with Er at low values of E. The accuracy of
Qm when both E and Er are low is clearly not very high, indicating that even
more trajectories should have been sampled in this situation. However, such
inaccuracies should have no importance for the calculations reported below, since
the presence of an electric field will cause the average collision energy to increase
from a value no lower than the thermal energy at 300 K, 9.5×10−4 hartree.

Note from Fig. 4 that at E = 5.623× 10−4 hartree the cross section shows
two peaks, one near Er = 0.001 hartree and a second, larger peak near 0.02
hartree. The small peak shifts to smaller Er and disappears as E decreases, but
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the large peak remains near 0.02 hartree for all E values below about 0.0025
hartree. Unusual behaviour at 0.02 hartree is a general feature of all the transport
cross sections we have examined.

According to the truncation scheme of Viehland and Dickinson (1995), 179
cross sections are needed to determine the first two approximations to the
transport coefficients, but 1056 are needed for the first three. Therefore, we
limited our considerations to second approximation. This is equivalent to the
second approximation in the kinetic theory of transport of atomic ions in atomic
gases; the cross sections we retained correspond to retaining only the Q(1)(E)
and Q(2)(E) cross sections of that theory.

To calculate the transport coefficients from the cross sections we solved a
hierarchy of kinetic equations (Viehland and Dickinson 1995) by a three-dimensional
method of weighted residuals (Finlayson 1972; Robson et al . 1991) in which the
zero-order distribution function is the bi-Maxwellian distribution. A fraction g of
the ions is characterised by a lower kinetic temperature T1, and the remainder
by a higher kinetic temperature T2. This method of weighted residuals converges
rapidly when T1 is approximately the temperature that characterises the average
energy of the ion–neutral interactions under the conditions of the experiment,
and when the values of g and T2 are empirically adjusted to overcome the effects
of partial ion runaway.

The trial and weighting functions we used are modeled after the basis functions
of Curtiss (1981), but they were modified in the manner of Kumar (1980a,
1980b) so as to allow the ions to have kinetic and internal temperatures different
from the gas temperature, and in the manner of Ness and Viehland (1990) to
take into account the use of two ion kinetic temperatures. An important point
about these basis functions is that they are complex, not real quantities, so
the expansion of the ion velocity distribution function in terms of them must
provide for the possibility of both real and imaginary expansion coefficients, in
order to end up calculating real quantities from the real and imaginary cross
sections. Further details in how a truncated set of the expansion coefficients
(and hence approximations to the transport coefficients and the ion distribution
function) can be computed from the cross sections by matrix methods are given
by Viehland and Dickinson (1995).

Table 1 contains the reduced mobilities for NO+ ions in helium gas at 300 K
that we have calculated as a function of E/N below 20 Td. The calculations with
g = 1.00 correspond to the use of a two-temperature approach to the solution
of the Boltzmann equation (Viehland and Mason 1975, 1978), except that here
it is used for diatomic rather than atomic ions. Therefore, columns A1 and B1
should be the same, as should columns A2 and B2. They are, except for small
disagreements that result from round-off and other numerical artifacts.

Columns A1 (or B1) and D1 in Table 1 agree within 0.1%, which exceeds
the accuracy expected for the cross sections used in the computations. Similar
agreement is found between columns A2 (or B2) and D2. These values are therefore
viewed as the ‘correct’ values obtained in the first and second approximations.
However, the C mobilities are significantly different, both in first and second
approximations. Why? The answer lies in the fact that the ion temperature
T1 corresponding to the largest E/N value in Table 1 is 1600 K, corresponding
to an energy of 0.0050 hartree. Therefore, the unusual behaviour of the cross
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Table 1. Reduced mobilities K 0 in cm2 V−1 s−1, calculated as a function of the ratio E/N ,
in Td, of the electric field strength to the gas number density

A1 and A2 indicate the first and second approximations calculated with g = 1.00 and T2 = 5T1,
and B1 and B2 indicate those calculated with g = 1 ·00 and T2 = 1 ·5T1. C1, C2, D1 and D2

are similar to A1, A2, B1 and B2 but with g = 0 ·99

E/N A1 A2 B1 B2 C1 C2 D1 D2

0 ·30 22 ·457 22 ·474 22 ·457 22 ·474
2 ·93 22 ·424 22 ·447 22 ·423 22 ·446 22 ·371 22 ·392
4 ·30 22 ·386 22 ·415 22 ·386 22 ·415 22 ·294 22 ·358
5 ·48 22 ·353 22 ·392 22 ·352 22 ·391 22 ·224 22 ·365
6 ·60 22 ·308 22 ·355 22 ·308 22 ·354 22 ·145 22 ·385 22 ·300 22 ·347
7 ·72 22 ·269 22 ·328 22 ·268 22 ·327 22 ·073 22 ·421 22 ·259 22 ·320
8 ·85 22 ·216 22 ·201 22 ·215 22 ·200 22 ·204 22 ·192

10 ·02 22 ·164 22 ·251 22 ·163 22 ·250 21 ·905 22 ·589 22 ·150 22 ·242
11 ·26 22 ·092 22 ·968 22 ·091 22 ·969 21 ·803 22 ·259 22 ·077 23 ·025
12 ·56 22 ·014 22 ·153 22 ·013 22 ·152 21 ·694 23 ·506 21 ·997 22 ·144
13 ·96 21 ·911 22 ·092 21 ·910 22 ·090 21 ·561 22 ·358 21 ·893 22 ·083
15 ·46 21 ·793 22 ·036 21 ·791 22 ·030 21 ·411 22 ·585 21 ·773 22 ·023
17 ·09 21 ·650 21 ·953 21 ·648 21 ·947 21 ·237 22 ·152 21 ·628 21 ·933

Fig. 5. Reduced mobility K0 in cm2 V−1 s−1, as a function of the ratio E/N , in Td, of
the electric field strength to the gas number density. The squares surrounded by error bars
are the smoothed experimental values with the 7% accuracy estimated by Ellis et al . (1976).
The triangles are the present results in first approximation. The circles and small dots are
the present results in second approximation using T2 equal to 5 T1 and 1 ·5 T1, respectively.
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sections for energies near 0.02 hartree, is probed by having a small fraction of
the ions at 5 T1 but not when they are at only 1.5 T1. The C calculations place
too much emphasis on energies above those relevant for mobilities below 20 Td,
and hence the C mobilities are not further considered in this work.

Fig. 5 shows a comparison of the calculated and measured mobilities. The
agreement is very good, although the error estimates for the experimental values
are large since these data were obtained (Lindinger and Albritton 1975) incidental
to the measurement of ion–molecule reaction rate coefficients. Note that the
first-approximation mobilities appear to be heading toward values at higher E/N
that lie below the experimental values and outside their error bars, but that no
similar tendency is shown by the second-approximation mobilities. However, the
difference between the first and second approximations becomes larger as E/N
increases, indicating that above 20 Td we need to calculate third-approximation
mobilities in order to achieve values converged within about 1%. Such calculations
are not possible with the cross sections that we have computed.

The calculations summarized here were the first in which gaseous ion transport
coefficients were calculated for diatomic ions moving through atomic gases from
an ab initio interaction potential that depends both upon the ion–atom separation
and polar angle. The calculations were computationally intensive, particularly the
classical-trajectory calculations of the transport cross sections from the interaction
potential. For this reason, and because the experimental mobilities have rather
large uncertainties, we stopped at the second approximation of the kinetic theory.
The calculated mobilities converged at E/N values up to 28 Td, while the other
transport properties converged up to 8 Td. The good agreement shown in Fig. 5
between the calculated and measured mobilities below 20 Td indicates that the
NO+–He interaction potential we calculated is at least moderately accurate in
the region probed by these data, i.e. for all polar angles but only for separations
ranging from approximately 2.5 to 3.5 Å.
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