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Abstract

Boundaries affect the measured values of transport coefficients in all drift tube experiments,
to a greater or lesser extent, and nowhere is this more apparent than in the experiment first
devised by Cavalleri (1969) and subsequently adapted by Crompton and coworkers in the
1970s. The phenomenon of ‘diffusion cooling’ is particularly striking and arises essentially
from a penetration of the ‘boundary layer’ (of thickness of the order of the mean free path
for energy exchange) throughout a significant portion of the gas chamber. Although this is
something of an obstacle to extracting the classical diffusion coefficient from experimental data,
it is of great interest in its own right from a theoretical point of view, and the Crompton et
al. experiments motivated several theoretical treatments which successfully explained diffusion
cooling, albeit for zero applied field and on the basis of the ‘two-term’ spherical harmonic
representation of the velocity distribution function. The present paper puts these theories in
the context of the modern, generalised eigenvalue theory, which may be used as a basis for
describing all swarm experiments. In addition, the earlier zero-field studies are generalised to
the extent that an a.c. heating field is included, as was the case for the original Cavalleri
experimental set-up. This field is found to enhance diffusion cooling effects for a simple model
cross section.

1. Introduction

The influence of boundaries upon charged particle transport properties remains
a challenging and interesting theoretical problem (Kumar 1991), which the author
embarked upon over two decades ago with the encouragement of Professor R.
W. Crompton, who at the time was conducting a series of experiments, using
the Cavalleri chamber (Cavalleri 1969; Huxley and Crompton 1974), aimed at
determining the thermal value of the diffusion coefficient of electrons in noble
gases. In this experiment, electrons produced in a cylindrical chamber by
ionising x-rays diffuse freely through the gas to the walls of the container, with
no space-charge effects (see however the important comments by Liley 1993)
where they are absorbed. The number of electrons remaining in the chamber
is monitored as a function of time, with an exponential decay usually being
observed at sufficiently long times, from which a diffusion coefficient may be
inferred (Huxley and Crompton 1974). The experiment as originally devised
by Cavalleri (1969) had an r.f. field applied along the cylindrical axis, but was
employed by Crompton and co-workers at the Australian National University
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with zero applied field (Gibson et al. 1973; Crompton et al. 1975; Rhymes
and Crompton 1975a, 1975b; Rhymes 1976; Crompton et al. 1980; Hegerberg
and Crompton 1980, 1983) . The results sometimes showed significant pressure
dependence, which was correctly attributed to the effect of boundaries, and
associated with the very interesting phenomenon of ‘diffusion cooling’. This
pressure dependence, and the diffusion cooling effect itself, was something of an
obstacle to the experimentalist in the quest to find the true thermal diffusion
coefficient, and could be eliminated in most (but not all) cases by simply raising
the gas pressure, thereby causing the ‘boundary layer’, of thickness of the order
of the mean free path for energy transfer, and therefore inversely proportional to
pressure, to become negligibly small in comparison with the size of the chamber.
What was a something of a nuisance in the experiment, however, proved most
attractive to theoreticians, and several papers dealing exclusively with diffusion
cooling followed. Parker (1965) had previously developed the basic kinetic theory
necessary to describe the free (as distinct from the ambipolar case, studied even
earlier by Biondi (1954)) diffusion cooling effect, by formulating an eigenvalue
equation from the Boltzmann equation in the case of simple model cross sections
and plane-parallel plate geometry. Following the experiments of Crompton et al.,
Leemon and Kumar (1975) reformulated the problem in a more general way for
more realistic geometry and cross sections and developed a reasonably accurate
numerical method of solution of the eigenvalue equation. Robson (1976a, 1976b)
then extended the eigenvalue problem to include inelastic collisions and developed
a variational principle to furnish approximate solutions quickly. Ness (1977)
went one step further and accounted for simultaneous diffusion and attachment
cooling effects. Brandt and Arista (1979) later analysed positron diffusion in finite
geometry, independently of these results. Robson (1980) gave a brief outline of
the influence of an applied r.f. heating field, but the details were never published.
More recently Robson and Prytz (1993) developed a highly accurate numerical
procedure for calculating the eigenvalue spectrum.

The qualitative explanation in terms of the energy-dependence of cross sections
and thermal contact between the swarm and the gas has been well-documented
(Rhymes and Crompton 1975b; Robson 1976) and we merely repeat a few of the
most essential ingredients here: At low pressures, the mean free path for energy
exchange between electrons and the gas is comparable with the dimensions of
the cell, the thermal contact between electrons and gas is weak, and electrons
will therefore be lost to the walls before they have had a chance to thermalise.
(One could even say that the electrons are in better contact with the walls
than with the gas at low pressures; the situation is not unlike the Knudsen
regime in rarified neutral gases.) Furthermore, if the collision cross section varies
less rapidly with energy than

√
ε, then even simple mean free path arguments

indicate that the gas is more transparent to diffusion of higher energy electrons,
which are therefore lost preferentially to the walls, resulting in a lowering of
the overall mean energy (and therefore temperature) of the remaining electrons.
The effective diffusion coefficient is also lowered. On the other hand, if the
cross section rises more rapidly with energy than

√
ε, lower energy electrons

are lost at a relatively greater rate, and there is actually a ‘diffusion heating’
effect. However, the effective diffusion coefficient is in all cases lower than the
thermal value, which it approaches asymptotically as the pressure increases, and
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the boundary layer recedes from the bulk of the swarm. Note that thermal
contact between the electrons and noble gases may also be enhanced (and the
diffusion cooling effect correspondingly reduced) in an experiment through the
addition of trace amounts of a molecular gas (Rhymes and Crompton 1975b).
It is interesting to compare this boundary-associated phenomenon with the
boundary-free cooling/heating effects induced by preferential loss of electrons in
the bulk of the gas by an energy-dependent attachment cross section, observed
in later experiments by Crompton et al. (1980) and Hegerberg and Crompton
(1983). The combined effects of boundary and bulk phenomena, as represented by
diffusion and attachment cooling respectively, pose a most interesting theoretical
problem (Ness 1977).

The author’s interest in boundary effects was rekindled in recent years, again
largely through the influence of Professor Crompton, at the Second Japan–Australia
Workshop on Gaseous Electronics and Its Applications (Crompton and Hayashi
1990). In what follows, the earlier analyses of the 1970s are put in the context
of general eigenvalue theory given at this workshop (Robson 1991a; Kondo
and Tagashira 1993) and the effect of an applied a.c. field is discussed, with
calculations for two simple models.

2. Transport Coefficients as Eigenvalues

(2a) Some General Theoretical Observations

In the last two decades or so, there have been tremendous advances in the
theory and calculation of drift velocities and diffusion coefficients for idealised,
boundary–free models of swarm experiments, but as far as inclusion of electrode
and wall effects and analysis of real drift chamber experiments is concerned, some
progress has been made (England and Skullerud 1993) but much remains to be
done (Kumar 1991); in particular, whenever boundary or initial condition-induced
large-gradient circumstances are encountered in experiment, the corresponding
theoretical picture remains somewhat clouded. Measured transport properties
may then be significantly influenced by the size and shape of the gas chamber
and will almost assuredly not be comparable with classical transport coefficients,
which are usually defined and calculated theoretically in connection with the
idealised, infinite-medium, weak-gradient situation. The theory of the Cavalleri
experiment is something of an exception to this observation, insofar as large
gradients can be readily accommodated, although it has to be emphasised that
the boundary condition incorporated in all the solutions of the Boltzmann
equation mentioned in the Introduction, and persevered with in this paper, is
something of an approximation to reality, corresponding to zero ‘extrapolation
length’. Furthermore, in the Cavalleri experiment, as well as in many other cases
where bulk properties of the swarm are measured, the large-gradient effect can
often be eliminated in practice by the simple expedient of increasing the gas
pressure, as explained in the Introduction. The boundary layer recedes from
the bulk of the swarm, where the measurements are made, the experiment then
approximates idealised circumstances, and it is justifiable to label the quantity
thus determined as a classically-defined transport coefficient. On the other hand,
if the principal quantity measured is either at the bounding electrode or is in
any case always within the boundary layer, no matter how small, there seems no
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way of escaping the large-gradient effects, and the quantity measured may not
be classifiable in terms of standard transport coefficients. The Townsend–Huxley
experiment appears to fall into this category, but the author is happy to leave
further discussion of this difficult problem to the companion paper by England
and Skullerud (1997, present issue p. 553), and proceed with the relatively simple
analysis of the Cavalleri cell.

(2b) Eigenvalue Theory

Over thirty years ago Parker (1965) identified the thermal diffusion coefficient
in terms of the limit of an eigenvalue of a certain differential equation, for the
particular case of electron transport in a finite medium, but it is only fairly
recently that the eigenvalue nature of swarm transport properties in general
has been recognised (see the reviews by Kumar 1991 and Robson 1991a) and
calculations made accordingly (Date et al. 1992, 1993; Kondo and Tagashira
1993). The generalised eigenvalue theory enables us to:

(i) Present a unified theoretical picture of swarm experiments, illustrating
how they may be all characterised by the one, common feature, namely the
fundamental ‘dispersion’ relation, which in particular contains information
about all the classically defined ‘hydrodynamic’ transport properties;

(ii) Clarify and standardise key definitions, in order to eliminate the confusion
often surrounding the labelling of transport coefficients, as highlighted
by Brennan and Ness (1992)—see also Robson (1991b);

(iii) Provide a framework for theoretical calculation of properties actually
measured in real experiments, be they in large or weak density gradient
situations.

The Cavalleri arrangement has already been discussed in this context for
one-dimensional, infinite parallel-plate geometry (Robson 1991a), and this can be
readily extended to the cylindrical geometry actually used in experiment. The
generalised eigenvalue theory subsumes the special eigenvalue problem formulated
originally by Parker (1965) and in more sophisticated forms by others (Leemon
and Kumar 1975; Robson 1976a, 1976b). Note that all the latter theories
were based on the ‘two-term’ spherical harmonic representation of the electron
velocity distribution function, whereas the generalised approach avoids any such
assumption, and provides a medium for correspondingly more accurate and
satisfying computation.

The fundamental eigenvalue problem for zero field can be written as

(ω + ik · c+ J)Ψ = 0 , (1)

where c is the velocity of a swarm particle (electron, positron, muon or ion) of
mass m, and J is the Boltzmann collision operator, accounting for elastic, inelastic,
superelastic, attaching, ionising, etc. interactions between swarm particles and
neutral gas molecules. In what follows, properties of the latter are designated by
subscripts ‘0’. The number density of charged particles n is assumed to be so small
in comparison with n0, the neutral gas number density, that space-charge effects
and mutual interaction between charged particles are negligible, an assumption
that Liley (1993) has critically examined for the Cavalleri experiment. Eventually
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we shall specialise to electron swarms and give the specific form of J , but for
the present this is not necessary. The quantities measured in any zero-field
experiment can be characterised in terms of the eigenvalues of (1), which can
generally be shown to depend upon k2 only:

ω = Ω(µ)(k2) , (2)

and the corresponding eigenfunctions Ψ(µ)(c|k) of equation (1), where µ = 0, 1, 2, . . .
is an index ordering the allowed ‘velocity modes’. Values of the ‘wave number’ k are
determined by the boundary conditions associated with the particular experimental
arrangement. For a finite medium, the spatial modes are characterised by a
discrete set of wave numbers, while for an unbounded medium k is continuous.
In any case, the classical hydrodynamic diffusion coefficient is defined in terms
of the fundamental ‘dispersion relation’,

ω = Ω(0)(k2) , (3)

as

D = − 1
2 (∂2Ω(0)/∂k2)k=0 , (4)

while the net reactive production rate is

νI = Ω(0)(0) . (5)

If k is sufficiently small in magnitude (gradients are weak), then the rhs of (3)
can be expanded in a Taylor series:

ω = Ω(0) = νI −Deffk
2 , (6)

where

Deff = D +Q(4)k2 +Q(6)k6 + . . . (7)

can be thought of as an ‘effective’ diffusion coefficient, differing from the classical
quantity (4) unless k is vanishingly small. The quantities Q(2n) , with n = 2, 3, . . .,
are higher order derivatives of Ω(0). Since Deff is k-dependent, it must therefore
depend upon the size and shape of the container, i.e. upon the particular
experimental arrangement. (Note that D does not depend upon either geometry
or the type of experiment.) The velocity distribution function in the asymptotic
long-time limit is given by

f(r, c, t) = exp(−t/τ (0))
∫
dkP (k)Ψ(0)(c|k)eik·r , (8)

where

τ (0) = −1/Ω(0) (9)
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is the fundamental time constant, Ω(0) is evaluated at the lowest value of k
satisfying (12) below, and P (k) is a function which selects the allowed values of
k according to the boundary conditions imposed on f .

The total number of swarm particles remaining in the container of volume V
at any time t is given by

ntotal(t) =
∫
dc

∫
drf(r, c, t) ∼ e−t/τ(0)

(10)

and measurement of this quantity, as in the Cavalleri experiment, thus determines
τ (0) and hence the effective, geometry-dependent diffusion coefficient (6). Of
course, for vanishingly small k (large container) and/or small Q(2n) (high pressure),

Deff → D . (11)

Note that a perturbation procedure was employed by Parker (1965), and discussed
further by Leemon and Kumar (1975) specifically for the Cavalleri cell. This type
of expansion is equivalent to the density gradient expansion procedure (Kumar
et al. 1980) by now standard in the kinetic theory of swarms.

For the present suppose that on the boundary surface S, the even part of the
velocity distribution function vanishes, i.e.

f (e)(r, c, t) = 1
2 [f(r, c, t) + f(r,−c, t)] = 0 (12)

for r ∈ S, since then the number density

n(r, t) =
∫
dcf (e)(r, c, t) (13)

also vanishes on S. However, current to the walls, related to the odd part of f , is
non-zero. Equation (12) is only an approximation to reality, with some drawbacks
which are unphysical in principle, but which in practice can be ignored. The
allowed values of k are then found by substituting (8) into (12) and using the
symmetry condition

Ψ(−c|k) = Ψ(c| − k) (14)

which follows from (1). If the container is a cylinder of radius a and height h, it
can thus be shown that the allowed values of the components of k perpendicular
and parallel to the cylindrical axis are

k⊥ = ξ0/h , (15)

k‖ = π/a , (16)

respectively, for the lowest order spatial mode, where ξ0 is the smallest zero of
the Bessel function J0(x). The number density and the even part of the velocity
distribution function are given by
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n(r, t) ∼ e−t/τ(0)
J0(k⊥ρ)sin(k‖z) (17)

for cylindrical coordinates (ρ, z, θ) and

f (e)(r, c, t) ∼ n(r, t)Ψ(e)(c|k) (18)

respectively, where the even part of the lowest order eigenfunction is defined by

Ψ(e)(c|k) = 1
2{Ψ

(0)(c|k) + Ψ(0)(−c|k)} . (19)

Finally, the quantity

3
2kBTeff =

∫
dc 1

2mc
2Ψ(e)(c|k)

/∫
dcΨ(e)(c|k) (20)

is a measure of the energy of the swarm particles. This is clearly dependent
upon k and therefore also upon geometry in general.

(2c) Electron Diffusion, Two-term Approximate Theory

So far the theory as outlined above is applicable to swarm particles of any mass,
but now we specialise to electron swarms, for which m/m0 ¿ 1, where m0 denotes
the mass of a neutral gas molecule, and certain simplifying approximations are
possible. If collisions between electrons and the gas molecules are predominantly
elastic, the distribution of electron velocities is very nearly isotropic in general and
the ‘two-term’ approximation for both distribution function and eigenfunction,

Ψ(c|k) ≈ Ψ0(c|k) + Ψ1(c|k) · c/c , (21)

holds quite well. In this case, the even part of the eigenfunction is just the first
term in the expansion, i.e.

Ψ(e) = Ψ0 . (22)

Substitution of (21) into (1), followed by appropriate integration over angles
of velocity, together with some algebraic manipulation, leads to the following
eqaution for Ψ0: (

ω + k2 c

3n0Q
− L

)
Ψ0 = 0 , (23)

where Q is the momentum-transfer cross section and L is a linear operator,
whose explicit form in the absence of inelastic processes is given by

LΨ =
1
c2
∂c

{
1
3n0c

3Q

[
3kBT0

m0

∂cΨ +
3m
m0

cΨ
]}

, (24)

where T0 denotes the gas temperature and kB is Boltzmann’s constant. Using
energy
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ε = 1
2mc

2 (25)

as the independent variable instead of speed c, there follows

2
m

m0

d

dε

{
n0ε

2Q

(
Ψ0 + kBT0

d

dε
Ψ0

)}
+
[(

mε

2

) 1
2

Deff −
ε

3n0Q

]
k2Ψ0 = 0 , (26)

where ω has been written as in (6) in terms of Deff , which now assumes the role
of eigenvalue. For simplicity, we have assumed no ionisation or attachment and
have set νI = 0.

Equation (26) forms the starting point for earlier analyses (Parker 1965; Leemon
and Kumar 1975; Robson and Prytz 1993); a slightly modified form is required
for gas mixtures and inelastic processes (Robson 1976a, 1976b). These papers
should be consulted for details on solution procedures and results in particular
cases. Notice that Teff as defined by equation (20) now assumes the role of a
geometry-dependent effective temperature of the electrons, differing in general
from the free-space, equilibrium value T0.

Possibly a more satisfactory treatment, which avoids the limitations inherent
in the two-term approximation (21), would be to solve equation (1) directly, using
a ‘multi-term’ expansion in spherical harmonics. Such an approach would seem
highly desirable, especially if inelastic processes were significant. It is clear that
the general eigenvalue equation, therefore offers both conceptual and practical
advantages over earlier two-term formulations. However, we persevere with the
two-term approximation and move on to the case of an oscillatory applied field.

3. Eigenvalue Problem for an A.C. Field

(3a) Setting up the Eigenvalue Equation

There is no general eigenvalue theory for charged particle transport in alternating
fields,

E = E0 cos(2πνt) , (27)

and therefore it is necessary to start from scratch and develop a theory to suit
each case. The following summarises the steps taken for an electron swarm:
Firstly , we assume that the applied frequency lies in the range

νm ¿ ν ¿ νε , (28)

where νm and νε = (2m/m0)νm are the collision frequencies for momentum and
energy transfer respectively. We also assume that the macroscopic time scale is
much larger than the relaxation time for momentum–transfer:

ω ¿ νm . (29)

Secondly , if collisions are predominantly elastic, the electron distribution function
may be well represented by the first two terms of a spherical harmonic expansion
(cf. equation 21). For conditions under which (28) holds, the energy distribution
of the electrons (as represented by the first term in this expansion) is only weakly
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modulated during one cycle of the field, and can be taken to be effectively
constant for averaging purposes. Finally , the Boltzmann equation is decomposed
into its scalar and vector parts by appropriate angular integrations and averaged
over one period of the oscillating field.

It is thus found that the (cycle-averaged) number density is again given by
(17), with relaxation time defined according to (6) and (9), the effective diffusion
coefficient being the eigenvalue of

2m
m0

d

dε

{
n0ε

2QΨ0 +
[
n0ε

2QkBT0 +
m0

6m
(eErms)2 ε

n0Q

]
dΨ0

dε

}

+
[(

mε

2

) 1
2

Deff −
ε

3n0Q

]
k2Ψ0 = 0 , (30)

where Erms = E0/
√

2 and k2 is the sum of the squares of (15) and (16). [Cavalleri
(1969) argued that the actual height h of the cylinder should be corrected to
account for boundary effects, but any discussion along those lines would take us
beyond the scope of this work.] Equation (30) appears not greatly different from
the zero-field counterpart (26), but in reality it is much more difficult to solve.
Before discussing the solution, we observe that only one diffusion coefficient
appears in the equation, instead of the expected two distinct quantities, parallel
and lateral to the field directions respectively (Huxley and Crompton 1974). This
is because time-averaged diffusion in an a.c. field is isotropic when (28) holds
and the coefficient found is in fact the lateral diffusion coefficient.

(3b) Calculation of Deff

It is convenient to first of all introduce dimensionless quantities. Let Q0 be a
constant characterising the magnitude of the cross section and define:

u =
ε

kBT0

, (31)

q =
Q

Q0

, (32)

λ =
1

n0Q0

, (33)

λε = λ

(
m0

2m

) 1
2

. (34)

Then equation (30) can be written as

d

du

{
qu2

[
Ψ0 +

(
1 +

(E?)2

q2u

)
dΨ0

du

]}
+ κ2

(
θu

1
2 − u

q

)
Ψ0 = 0 , (35)

where
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E? =
eErmsλ√

3kBT0

, (36)

κ =
λε√
3k

, (37)

θ =
3Deff

vλ
, (38)

v =
√

2kBT0/m . (39)

If we further define

ξ(u) =
∫

du

1 + (E?)2/uq2 (40)

and write

Ψ0 = e−ξ(u)φ(u) , (41)

then (35) takes the Sturm–Liouville form

d

du

(
p(u)

dφ

du

)
+ [θr(u)− s(u)]φ = 0 , (42)

where

p(u) = qu2e−ξ/ξ′ , r(u) = κ2u
1
2 e−ξ , s(u) = κ2ue−ξ/q . (43)

A generalisation of the variational principle established earlier (Robson 1976a,
1976b) for zero field is that the eigenvalues θ are minimum values of the functional

Θ =
∫ ∞

0

[p(φ
′
)2 + sφ2]du

/∫ ∞
0

rφ2du . (44)

Only the lowest eigenvalue θ(0) is required to determine the asymptotic behaviour
of the swarm. Further discussion of the variational method can be found in
Robson (1980).

We now consider two special models:

(i) Constant collision frequency q = u−
1
2 , νm = constant.

Equation (35) can be solved exactly for this model with

θ(0) =
3

4κ2 (
√

1 + 4βκ2 − 1) , (45)

θ(µ) = θ(0) + (2α+ 1)µ/κ2 , (46)

Ψ(µ) = e−ξφ(µ) = exp[−(1 + α)u/β]L
( 1

2 )
µ [(2α+ 1)u/β] , (47)
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where

α = 1
2 (
√

1 + 4βκ2 − 1) , (48)

β = 1 + (E?)2 . (49)

From (38) and (45) it then follows that the effective diffusion coefficient for the
lowest mode (µ = 0) is

Deff =
vλ

4κ2 (
√

1 + 4βκ2 − 1) , (50)

while the lowest order eigenfunction can be written as (reverting now to dimensional
quantities):

Ψ(0)(ε) = e−ε/kBTeff . (51)

The effective electron temeprature is given by

Teff = Te/(1 + α) , (52)

where

Te = βT0 = kBT0 + 1
3m0(eErms/mνm)2 (53)

is the free-space electron temperature. That is

Teff < Te (54)

and the electrons are ‘cooled’ by the walls. Note that for a large container
and/or high gas pressure,

κ→ 0 , (55)

α→ 0 , (56)

and the effective diffusion coefficient (50) becomes

Deff → βvλ/2 = kBTe/mνm = D , (57)

where D is the free-space diffusion coefficient and νm = (v/λ) is the collision
frequency. It follows from (50) and (57) that

Deff < D . (58)

The diffusion cooling phenomenon is clearly illustrated by (54) and (58).
The zero-field limit is regained by setting β = 1 in the above formulas. When

the field is strong β À 1 and even though the large container/high pressure
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condition κ¿ 1 may pertain, the product βκ2 may not be negligible, i.e. α and
the cooling effect may still be appreciable: The field ‘pumps’ the high-energy
tail of the distribution function, the region which suffers the greatest loss to the
walls. This is why diffusion cooling is actually enhanced by application of a field.

(ii) Cross section proportional to speed q = u
1
2 .

Direct substitution in (42) shows that for this model the lowest eigenvalue
and eigenfunction are respectively

θ(0) = 1 , (59)

φ(0) = 1 , (60)

which indicates that the diffusion coefficient and temperature retain their free-space
values regardless of the presence of boundaries. As explained elsewhere (Rhymes
and Crompton 1975b; Robson 1976a, 1976b) for this model electrons diffuse at
the same rate to the walls, independently of their energy: There is no preferential
loss from any energy range to promote any cooling effect, even in the presence
of a field.

Apart from these two simple models, it would seem that any analytic discussion,
even approximate, would be difficult, and therefore further elucidation must await
a full numerical treatment.

4. Concluding Remarks

After exploring the connection between the eigenvalue problem estalished over
thirty years ago by Parker (1965) for diffusion in finite geometry, and the modern
eigenvalue theory covering all swarm experiments, this paper focussed on the
peculiar nature of diffusion of electrons in the Cavalleri cell, both with and
without an applied a.c. field for model elastic collisional cross sections, employing
short arguments and simple mathematics. It was shown for the constant collision
frequency model how a field actually enhances the diffusion cooling phenomenon,
by pumping electrons into the energy regime preferred for loss to the walls.
Clearly much work remains to be done in the a.c. field case, not only for further
model cross sections, but especially for actual gases, including development of
a workable theory to account for inelastic processes. Extension of the Discrete
Ordinate method described elsewhere (Robson and Prytz 1993) is one obvious
avenue to be explored.
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