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Abstract

It is shown that in terms of the fractal space–time theory the gravitoelectric potential is
responsible for the quantisation of the planetary and binary galaxy motions. On a cosmic
scale a homogeneous gravitomagnetic field allows not only an ordering of the Universe, but a
‘global’ redshift quantisation of galaxies as well.

1. Introduction

In a previous paper (Der Sarkissian 1984) it was suggested that a cosmic version
of ordinary quantum mechanics may be responsible for the observed physical
properties of galaxies [this intriguing possibility has emerged because recession
velocities for single and double galaxies appear to be quantised (Tifft and Cocke
1984)]. In this earlier work the kinetic energy is quantised by using a plausible
form for the well-established kinetic-energy operator. Both physical quantities
are closely related and both may be considered observable for an equivalent point
galaxy. The redshift just happens to be easier to measure directly at this time.
The kinetic energy is measured indirectly at this time, but the possibility of
direct measurement does not appear to be ruled out.

An alternative form of cosmic quantum mechanics was suggested independently
by Cocke (1983). This model differs by requiring a two component spinor
formalism. Ordinary quantum mechanics has no need for such complexity at the
nonrelativistic level. The need for spinors presumably arises as an appropriate
relativistic generalisation. The model quantises the redshift by inventing a
‘redshift’ operator ∼Ẑ , assumed to be proportional to the linear momentum
operator for an equivalent point galaxy.

The work of DerSarkissian (1984) predicts that ∆v = vm+1−vm (the velocity
spacing between adjacent quantum states of recession) is proportional to m−1/2

for large m. In Cocke’s (1983) paper the eigenvalue problem for the kinetic-energy
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operator is essentially equivalent to the eigenvalue problem for the operator Ẑ 2.
The resulting eigenvalues are (zm)2, proportional to m. The large m behaviour
of ∆v is, therefore, also proportional to m−1/2. However, the model then invokes
the ‘redshift combination principle’ which does not flow from the spinor formalism
for equivalent point galaxies, but is a subsidiary assumption designed to exclude
certain redshift states and to achieve the result ∆v = constant.

A new and unitary way of studying the cosmic phenomena may be achieved by
using fractal space–time theory. The idea that the space–time of microphysics is
fractal, rather than flat and Minkowskian as assumed up to now, was suggested
over ten years ago (Nottale and Schneider 1984). This proposal was itself based on
earlier results (Feynman and Hibbs 1965; Allen 1983; see in particular Schweber
1986) concerning the geometrical structure of quantum paths. These studies
have shown that the typical trajectories of quantum mechanical particles are
continuous but nondifferentiable, and can be characterised by a fractal dimension
which jumps from D = 1 at large length-scales to D = 2 at small length-scales,
the transition occurring on about the de Broglie scale (see Nottale 1989).

Now, such a fractal dimension D = 2 plays a particular role in physics. It is well
known that this is the fractal dimension of Brownian motion (Mandelbrot 1982), i.e.
from the mathematical viewpoint, of a Markov–Wiener process. This observation
leads us to recall a related attempt at understanding quantum behaviour, namely
Nelson’s (1985) stochastic quantum mechanics. In this approach, it is assumed
that any particle is subjected to an underlying Brownian motion of unknown
origin, which is described by two (forward and backward) Wiener processes:
when combined they yield the complex nature of the wave function Ψ and they
transform Newton’s equation of dynamics into the Schrödinger equation. A
generalisation of Newton’s equation in terms of the Ψ function is (Nottale 1985)

∇U = 2i Dm
δ

dt
(∆ ln Ψ) . (1)

Nottale (1985) generalised Schrödinger’s equation to

D2∆Ψ + i D
∂Ψ
∂t
− U

2m
Ψ = 0 . (2)

In these relations

δ

dt
=

∂

∂t
+ V.∇− i D∆ (3)

will play the role of a new kind of ‘quantum-covariant derivative’ with the complex
speed V:

V = −2i D∇ ln Ψ , (4)

U being the generalised potential and D a diffusion coefficient, depending on
the fractal dimension. Thus, the fundamentals of the fractal space–time theory
are established (Nottale 1985).
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Both conceptual (complex nature of the wave function, probabilistic nature
of quantum theory, principle of correspondence, quantum–classical transition,
divergence of masses and charges, nature of Planck scale, nature and quantisation
of the electric charge, origin of mass discretisation of elementary particles, nature
of the cosmological constant, etc.) and quantised results (mass–charge relations,
electroweak scale, electron scale, elementary fermion mass spectrum, etc.) are
obtained using this theory (Nottale 1996).

In this paper, by extending the fractal space–time theory to a cosmic scale,
it is shown that a gravitoelectric potential allows the quantisation of planetary
and binary galaxy motions, and a homogeneous gravitomagnetic field allows an
ordering of the Universe and ‘global’ redshift quantisation of galaxies.

2. Solar System Quantisation

Let us consider a two-body system of comparable masses interacting by means
of a gravitoelectric potential (Peng 1993):

U(r) =
Gm1 m2

r
, (5)

where G is Newton’s constant, m1, m2 are the masses of the two bodies and r is
the distance between them. Since the gravitoelectric potential (5) depends only
on the relative coordinate, one can use the results of Titeica (1984) to separate
the centre of mass motion. Acting this way in the centre of mass system, the
Hamiltonian takes the form

E =
p2

2µ
− GMµ

r
, (6)

where p is the relative momentum, µ = m1 m2/(m1+m2) the reduced mass and
M = m1+m2 the total mass.

In light of the fractal space–time and taking into account the Hamiltonian
(6) and the operators correspondence p̂→ 2i µD∇ (Nottale 1996), the double
Wiener function Ψ attached to the system considered will satisfy the equation[

− 2µD2∇2 − GMµ

r

]
Ψ(r) = EΨ(r) . (7)

[The same result (7) is obtained using equation (2) and the correspondences
Ê→ 2i µD ∂/∂t (Nottale 1996), m → µ, respectively.]

Since the gravitoelectric potential is a central potential, this equation, due to
Titeica’s (1984) method, admits the eigenvalues

En = − 1
2

GMµ

a0

1
n2 , (8)

with a0 a fundamental length

a0 =
4D2

GM
, (9)
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and the eigenfunctions

Ψnlm(r, θ, ϕ) =
(

1
4πn

)1/2( 2
na0

)3/2[2l + 1
2

(n− l − 1)!(l − |m|)!
[(n+ l)!]3(l + |m|)!

]

× Pml (cosθ) eimϕ e−r/na0

(
2r
na0

)l
L2l+1
n+l

(
2r
na0

)
, (10)

where Pm
l are the Legendre polynomials, L2l+1

n+l are the generalised Laguerre
polynomials, and n, l , m are the principal quantum number, the orbital quantum
number and the magnetic quantum number respectively (Titeica 1984).

The average distance in terms of two quantum numbers n and l , anl, is given
by the relation (Titeica 1984)

anl = [ 3
2n

2 − 1
2 l(l + 1)]a0 . (11)

The condition for the model given to fit the Solar System experimental data
implies a choice between two diffusion coefficients: one corresponding to the inner
planets (Mercury, Venus, Earth and Mars) having the value D1 ∼ 0 ·43×1015

m2 s−1 and the second for the outer planets (Jupiter, Saturn, Uranus, Neptune
and Pluto) having the value D2 ∼ 2 ·24×1015 m2 s−1. Consequently, from the
relation

ai =
4D2

i

GM
, i = 1, 2 , (12)

deduced from (9) in the limit m2 = MS À m1, with M S the mass of the Sun,
for the inner planets’ system there is a fundamental length a1 ∼ 0 ·038 a.u. and
for the outer planets’ system a2 ∼ 1 ·028 a.u.

The Sun–planet distance is derived by substituting in (11) l = n − 1, which
could correspond to circular orbits. It results in

an = (n2 + 1
2n)ai, i = 1, 2 . (13)

Equation (13) has already been given by Nottale (1996b).
In Table 1 we compare experimental data [the large semi-axis of planetary orbits

(Anuarul Astronomic 1996)] with data calculated using relation (13). Distances
for the inner planetary system are obtained from relation (13) with i = 1 and n
= 3, 4, 5, 6. For n = 1, 2 the model predicts the existence of two intra-Mercury
planets.

The region between Mars and Jupiter is where the two systems overlap. The
emptiness of the orbits n = 7 and n = 10 is easily understood, since they coincide
with resonances 1 : 4 and 2 : 3 with Jupiter, where small time-scale dynamic
chaos is expected to occur (Wisdom 1987). Values for n = 8, 9 may belong to
some asteroids [besides 97% of all asteroids have a large semi-axis value ranging
between a = 2 ·17 a.u. and a = 3 ·64 a.u., with an average of 〈a〉 = 2 ·75 a.u.,
corresponding to the Ceres asteroid (Anuarul Astronomic 1996)].



Implications of the Gravitoelectromagnetic Field 13

Table 1. Planetary motion quantisation

Planet n ai Di an aexp Observations
(a.u.) (m2 s−1) (a.u.) (a.u.)

1 0 ·057 —
2 0 ·190 —

Mercury 3 0 ·038 0 ·43×1015 0 ·399 0 ·387 Inner
Venus 4 0 ·684 0 ·723 planetary
Earth 5 1 ·045 1 ·000 system
Mars 6 1 ·482 1 ·523

7 1 ·995 —
8 2 ·584 — Resonances
9 3 ·249 — and asteroid

10 3 ·990 — chains

1 1 ·542 —
Jupiter 2 5 ·140 5 ·202
Saturn 3 10 ·796 9 ·536 Outer
Uranus 4 1 ·028 2 ·24×1015 18 ·210 19 ·210 planetary
Neptune 5 28 ·275 30 ·138 system
Pluto 6 40 ·099 39 ·390

The distances for the outer planetary system are computed with relation (13)
taking i = 2 and n = 2, 3, 4, 5, 6. The average distance of the inner Solar
System (〈a1〉 ∼ 1 ·567 a.u.) is in very good agreement with n = 1 for the outer
system. Note also the agreement of Neptune and especially Pluto with the outer
relation (recall that they did not fit the original Titus–Bode law).

The very same structure of the Solar System is revealed by its planetary
experimental mass distribution. Thus the following may be concluded (see Fig. 1):

Fig. 1. Experimental mass distribution in the Solar System.
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(i) Curve (a) gives the mass distribution in the inner planetary system.
The distribution maximum is obtained for r ∼ 1 a.u. which is the Earth orbit.
The astronomical data indicate an increase of mass distribution from Mercury
(mMe ∼ 3 ·3×1023 kg) towards Earth (mE ∼ 59 ·7×1023 kg), the maximum being
focused on it, and a decrease of this distribution towards the asteroids chain.

(ii) Curve (b) gives the mass distribution in the outer planetary system. The
maximum of the distribution is obtained for r ∼ 5 a.u., and corresponds to the
Jupiter orbit. The astronomic data show an increase of the mass distribution
from the asteroid chain towards Jupiter (M J ∼ 18 ·9×1026 kg), the maximum
being focused on this planet, and a decrease of this distribution towards Pluto.

It can be noticed that the experimental curves in Fig. 1 may be described by
the radial function r2 R2

20 (r) (Titeica 1984).
Since the third Kepler law is verified, it follows that the specific kinetic

momentum (L/m1 = rv) is given by relation

(rv)n =
√
n2 + 1

2n (2Di), i = 1, 2 . (14)

In Table 2 we compare the specific kinetic moment calculated with relation (14)
with the experimental data (Anuarul Astronomic 1996).

Table 2. Quantisation of the specific kinetic moment

Planet n 2Di (rv)n×1015 (rv)exp×1015

(m2 s−1) (m2 s−1) (m2 s−1)

Mercury 3 2D1 = 0 ·86×1015 2 ·78 2 ·76
Venus 4 3 ·64 3 ·78
Earth 5 4 ·50 4 ·45
Mars 6 5 ·37 5 ·49

Jupiter 2 2D2 = 4 ·48×1015 10 ·01 10 ·15
Saturn 3 14 ·51 13 ·75
Uranus 4 19 ·00 19 ·55
Neptune 5 23 ·49 24 ·55
Pluto 6 27 ·97 27 ·91

The fact that 98% of the total specific kinetic moment of the Solar System is
assigned to the planets and only 2% to the Sun, explains the ‘export’ of solar
kinetic moment by slowing down the central core spin of the solar vortex (Popescu
1980). Thus, one gets a result postulated by all contemporary cosmological
theories: The values of the diffusion coefficients, D1 and D2, must not be
postulated. Thus, D1 ∼ (1/2 ·3)(rv)Mercury and D2 ∼ (1/2 ·2)(rv)Jupiter.

3. Quantisation of Galaxy Pairs

Let us apply the same quantisation procedure previously used to study galaxy
pairs. We find that the pair energy εn = En [see relations (8) and (9)] is quantised
as

εn = − 1
2µ

(
GM

2Dn

)2

, (15)
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and that the relative velocity in binary galaxies must take only preferential values
given by

vn =
GM

2Dn
=
v0

n
, v0 =

GM

2D
, (16)

as in the hydrogen atom in the old quantum mechanics. Equation (16) has been
given by Nottale (1996).

Table 3. Speed quantisation of galaxy pairs

Double (m1 and m2)×1010 v n nDM×1067

galaxy (M¯) (km s−1) (J s)

NGC-3958 12 ·0
NGC-3963 9 ·0 72 ·03 ∼1 8 ·00

NGC-4294 1 ·4
NGC-4299 8 ·8 34 ·98 ∼2 7 ·77

NGC-4085 1 ·3
NGC-4088 6 ·0 25 ·04 ∼3 8 ·34

NGC-3504 1 ·0
NGC-3512 5 ·0 20 ·58 ∼4 9 ·10

NGC-6542 2 ·7
NGC-6528 1 ·7 15 ·09 ∼5 8 ·38

The condition for the proposed model to fit the experimental data implies
that D ∼ 0 ·1925× 1027 m2 s−1. We give in Table 3 the speed quantisation for
some typical pairs of galaxies (Van Moersel 1983; Dickel and Rood 1983). We
note the following:

(a) Such a theoretical result seems to provide an explanation for Tifft’s (1984)
effect of redshift quantisation in binary galaxies. Indeed it has been claimed by
Tifft that the velocity differences in isolated galaxy pairs was not distributed at
random, but showed preferential values near 72, 36 and 24 km s−1, i.e. (72/n)
with n = 1, 2, 3, ... . This result, in particular the 72 km s−1 periodicity was
confirmed by several authors (Schneider and Salpeter 1992; Cocke 1992).

(b) A cosmological Planck constant, h̄g ∼ 8 × 1067 J s, exists. This value is
close to the one given by DerSarkissian (1984) (h̄g ∼ 7×1067 J s), but differs from
another value given by Cocke (1983) (h̄ ∼ 2×1067 J s).

(c) The ground state energy of a typical pair can be calculated using the
relation (15) with m1 = m2 ∼ 1041 kg (the mass of the Milky Way). One gets
εn ∼ 1049 J. Under these conditions the excited state lifetime can be estimated
from the relation εn t = h̄g/2. If εn is the energy difference between the
ground state and the first excited state, then t ∼ 2 × 1011 yr. Therefore, if a
double galaxy is formed in an excited state, it remains in that state for its
entire existence. The ‘quantum excitation’ (ω = εn/h̄g ∼ 8×10−18 Hz) is initially
monochromatic gravitational radiation. It must somehow be converted to a
spectrum of electromagnetic radiation, which is emitted during the lifetime of the
double galaxy. The conversion mechanism may be related to the gravitational
collapse in the galactic nuclei of the pair. Since h̄g is so large, it is plausible
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to expect radio wave emission to dominate. These thoughts lead to two further
possibilities which have not been considered yet:

(c1) Some radioactive quasars may be disguised double galaxies in highly excited
quantum states and at an early stage of evolution. Preliminary evidence suggests
there may be localised radio sources inside some quasars, but better telescope
resolution may be required to test the idea. A rough estimate of the quasar’s
average power output in this model is of an acceptable order of magnitude,
providing the mass of a typical component is taken as m1 = m2 ∼ 1043 kg and
the average time of existence is τ ∼ 109 yr, i.e. Pave ≈ (εn−ε1)/τ ∼ 1039 W. This
result fits the experimental data (Ureche 1987).

(c2) Double galaxies may be strong radio sources, compared to single, galaxies
(Ureche 1987). It was shown for a sample of isolated galaxies and isolated doubles,
virtually all of them being spirals, that compact radio sources occurred four times
more frequently in doubles than in singles. There was also a higher occurrence
of strong radio emission from double compared to single, with a greater power
output in doubles associated with the more frequent occurrence of active galactic
nuclei in their components. Although these results are encouraging, they are not
definitive, because of the small sample size and of other possible selection biases.

4. Universe Quantisation

Let us study the motion of a particle with mass m in a homogeneous
gravitomagnetic field with the vector potential (Agop et al. 1997)

Ax = −Bg y, Ay = Az = 0 . (17)

In these conditions, having in view the results given by Agop et al. (1996), the
Hamiltonian becomes

Ĥ =
1

2m
(p̂x + 4mBg y)2 +

p̂2
y

2m
+

p̂2
z

2m
. (18)

By considering fractal space–time, the double Wiener function Ψ associated
with the system, taking into account the procedure in Section 2, will satisfy the
equation

ĤΨ = EΨ . (19)

The operator (18) does not contain explicitly the coordinates x and z . Therefore
the operators p̂x = 2imD ∂/∂x and p̂y = 2imD ∂/∂y (Nottale 1996) commute
with Ĥ, i.e. the x and z components of the generalised impulse are conservative.
It turns out that one can choose Ψ of the form:

Ψ = exp
[

i
2mD

(pxx+ pyy)
]
χ(y) . (20)

Substituting (20) in (19) one gets the equation for the function χ(y):
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χ′′ +
1

2mD2

[
E − p2

z

2m
− m

2
(4Bg)2(y − y0)2]χ = 0 , (21)

with

y0 = − px

4mBg

. (22)

Formally this equation coincides with the Schrödinger equation for a linear
oscillator which oscillates with frequency ωg = 2Bg (Agop et al. 1996) about the
equilibrium position y = y0. Therefore the constant E − p2

z/2m, which plays the
role of the oscillator energy, may take the values (n+ 1

2 )2mDωg where n is an
integer.

Thus, the eigenvalues of the energy have the form

E′ = E − p2
z

2m
= (n+ 1

2 )4mDωg , (23)

and the eigenfunctions have the form

Ψ ∼ exp
[

i
2mD

(px x+ py y)
]

exp
[
− (y − y0)2

2a2
0

]
Hn

[
(y − y0)
a0

]
, (24)

where H n are Hermite polynomials and a is the fundamental length

a0 = (D/ωg) . (25)

The first term in (23) corresponds to motion in the x , y plane. In classical
mechanics this is circular motion around a fix point. The conservative parameter
[the operator associated with this parameter commutes with the Hamiltonian
(18)] x0 = py/4mBg + x corresponds to the classical x coordinate of the circle’s
centre, while the conservative parameter y0 = px/4mBg + y corresponds to the
classical y coordinates of the same circle’s centre. Operators x̂0 and ŷ0 do not
commute, thus the coordinates x 0, y0 cannot have simultaneously determined
values.

Since (23) does not contain px which takes continuous values, the energy levels
are degenerate with continuous multiplicity. The multiplicity, however, becomes
finite if the motion in the x , y plane is bounded by a large but finite area
s = ex ey. The number of discrete values of px in the interval ∆px is equal
to (ex/4πmD) ∆px. All the values of px for which the centre of the orbit is
situated inside s are admissible. From 0 < y0 < ey one can get ∆px = 4mBg ey.
Therefore, the number of states for given n and pz will be Bg s/πD . If the
motion domain is bounded and placed along the z axis (by the length ez), then
the number of possible values in this interval is (Bg V /4π2mD2)∆pz.

In this context, by considering a Universe filled with a cosmic fluid formed of
identical particles with mass m, we predict that, in the presence of a homogeneous
gravitomagnetic field, ‘matter’ will have the tendency to form structures according
to the various modes of the quantised 1D harmonic oscillator, as given by
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|Ψ|2 ≈ exp
[
− (y − y0)2

a2
0

]
H2
n

[
(y − y0)
a0

]
.

The zero mode is a Gaussian with the dispersion σ0 = a0/
√

2; the mode n = 1 is
a binary structure whose peaks are situated at x p = ±a0; the mode n = 2 has
three peaks at x p = 0; ≈±1 ·6 a0; for n = 3 one finds xp ≈ ±0 ·6 a0 and ≈±2 a0.
More generally, the position of the most extreme peak can be approximated by

xmax ≈ (n+ 3
2 )a0/2 . (26)

If we now consider the momentum representation rather than the position
one, predict a velocity distribution that is given by exactly the same functions,
but with a replaced by the characteristic velocity

v0 = ωg a0 = (Dωg) 1
2 . (27)

In this condition the difference between the extreme velocity peaks is of the
order of ≈2v0, ≈3v0, ≈4v0 for the modes n = 1, 2, 3, respectively. Therefore
the linear-like quantisation of the harmonic oscillator case yields a remarkable
explanation of the ‘global’ quantisation in units of 36 km s−1 found by Guthrie
and Napier (1991).

5. Conclusions

In this paper, by extending the fractal space–time theory to a cosmic scale,
the following results are obtained:

(1) It was shown that in the presence of a gravitoelectric potential the planetary
motion is quantised. Thus, one can explain not only the mass distribution in
the Solar System, but also the solar kinetic-moment ‘export’ by slowing down
the central core spin of the solar vortex.

(2) We have given an explanation for Tifft’s effect concerning the redshift
quantisation in binary galaxies.

(3) We have also shown that in the presence of a homogeneous gravitomagnetic
field the various cosmological constituents of the Universe will be situated at
preferential positions and move with preferential velocities, as described by the
various structures implied by the quantisation of the harmonic oscillator. In other
words, we expect the Universe to be locally structured, in position and velocity,
according to the dynamic symmetry group of the 1D harmonic oscillator. In this
way the ‘global’ redshift quantisation at 36 km s−1 is explained as well.
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