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Abstract

We propose an absorptive measurement scheme via coupled quantum dots based on studies of the
quantum dynamics of coherently coupled dots. The system is described through a Markov master equation
that is related to a measurable quantity, the current. We analyse the measurement configuration and
calculate the correlations and noise spectra beyond the adiabatic approximation.

1. Introduction

In traditional condensed matter physics, quantum measurement issues rarely arise as one is
typically making measurements on ensembles of systems for which spatial and other
inhomogeneities dominate. Recent experiments in mesoscopic electronics have begun to
probe fundamental issues in quantum measurement (Buks ef al. 1998; Sprinzak et al.
1999) and there is a large and growing literature on theoretical models of such experi-
ments (Wiseman et al. 2000; Elattari and Gurvitz 2000). However, recently it has become
possible to make repeated measurements on a single quantum system. In such a context
the measurement induced fluctuations can dominate the dynamics of the device and one
must take into account the conditional dynamics in which the state at any time is
conditioned by the results of the previous measurement. This is especially true of a class of
measurements called welcher weg or ‘which path’ experiments where an attempt is made
to determine which of two or more paths a particle has taken inside a quantum inter-
ferometor (Buks et al. 1998; Aleiner et al. 1997). Experiments of this kind have become
possible due to the special features of mesoscopic electronic devices. Such devices are
comparable or smaller than certain characteristic lengths, namely (1) the de Broglie
wavelength, (2) the mean free path, and (3) the phase-relaxation length (Datta 1995). The
classical laws describing electronic components break down and quantum effects begin to
dominate. Devices of this size exist in a domain where the classical and quantum realms
meet and so are termed mesoscopic. In this paper we are primarily concerned with quan-
tum transport in coupled quantum dots.

Coupled quantum dots have a wide range of applications and potential. Some of these
applications include generation of terahertz radiation (Luryi 1991), electron pumping
(Blick et al. 1996), temperature modulator in the phonon environment (Fujisawa and
Tarucha 1997), and devices for studying dephasing mechanisms in high precision meas-
urements (Gurvitz 1997). In certain configurations, quantum dots can be used to employ
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in Zero, One and Two Dimensions held at the University of New South Wales, Sydney, in November 1999.

© CSIRO 2000 10.1071/PH00034  0004-9506/00/040463$05.00



464 G. J. Milburn et al.

classical Boolean logic, i.e. create classical logic gates (Lent and Tougaw 1993;
Bandyopadhyay et al. 1994; Openev and Bychkov 1998). For example, an AND/OR logic
gate can be composed of a pair of tunnel-coupled quantum dots where the vacancy and
occupation of the dot by a single electron represented a bit 0 and 1 respectively (Nomoto et
al. 1996). Quantum dots may also be the basis for quantum computation schemes. Imple-
mentation of a quantum gate in solid state devices involves a quantum bit (qubit) to exist
in any state of a quantum two-level system such that it is entangled with another qubit.
Entanglement can be achieved between electrons in two separate quantum dots if the dots
are coupled coherently.

In mesoscopic electron transport, shot noise is dominant (Milburn and Sun 1998). The
Pauli exclusion principle and Coulomb blockade can induce strong correlations between
carriers resulting in current noise suppression. In studying the characteristics of correl-
ations in quantum dots we use a quantum stochastic treatment to show how the observed
classical stochastic process is conditioned on the quantum stochastic process involving
tunnelling of electrons.

(1)

)

(1)

O~

i)

1
g

(1)

i) &

Fig. 1. Two single quantum dots coherently coupled in parallel. The inset is a schematic representation of
the coupled dots.
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In this paper we consider a possible quantum measurement system that could be
realised using two coherently coupled quantum dots. Each dot is also coupled to a separate
external lead giving a four terminal configuration. The source/drain system for each quan-
tum dot is modelled as a fermionic heat bath.

We use a similar quantum stochastic description to that which we used previously (Sun
and Milburn 1999) in describing noise in double quantum dots and measurements of quan-
tum coherence using a single electron transistor.

The system we consider is shown schematically in Fig. 1. A potential barrier separates
two dots through which the electrons can tunnel coherently. Each dot is coupled to its own
source and drain, which represent Fermi heat baths in local thermodynamic equilibrium.
An overall bias potential maintains a differential chemical potential between the source
and the drain. We regard dot-1 as the measurement apparatus and dot-2 as the measured
system (we could equally have taken these the other way around). The Hamiltonian
describing the coupled dots is given by

=3 a3 e Y el s+ 3 el
k I k I
—|—8ch cl—I—szc;cz
—I—Z (Akclak + AZaLcl)—I—Z (Bkclbk + BZchl)
k k
+Z (Sls;rcz + Sl*c;sl)—l—(ﬂt;rcz + Tl*c;tl)
P
—|—hQ (CJ{CQ + C;Cl) s (1)

where a;, by are Fermi field operators (i.e they obey the usual anti-commutation relations)
for the source and drain reservoirs of dot-1 respectively, and similarly sy, #; are Fermi field
operators for the source and drain reservoirs of dot-2. The free energies of each dot are €/,
&, respectively, and n = 1, 2 labels each dot. The coupling constants 4y, By, Sy, T}, depend
on the detailed band structure that forms the barriers and the bias conditions. We will
assume that the coupling is sufficiently weak that the resulting broadening of the bound
states of each dot is small compared to the energy gap between the bound state and the top
of the Fermi surface in the source and the drain for each dot.

We now assume that each reservoir (source and drain) for each dot is in local thermo-
dynamic equilibrium and that further the bound states of each dot are below the Fermi
surface in the source and above the Fermi surface in the drain. This is an effective ‘zero
temperature’ limit. The density operator of the whole system in the interaction picture then
obeys the equation of motion dR/dt=—(i/h)[H, R] and can be solved using the same
technique as in Sun and Milburn (1999). As a result the quantum master equation for the
coupled quantum dots is

2
= —iQ[cJ{cz + clc;, R)+ Z(’YLHD[CL]R 2
n=1

+ YrnPlen] R), 3)

dR
dt
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where we have defined the superoperator 2[4]R = ARAT — (ATAR + RAT4)/2 and Y Yrn
are the incoherent tunnelling rates from the Fermi reservoirs into and out of each dot.

In an experiment the measured quantities are classical currents and voltages in the
leads of the device containing the dot. We need to relate these classical stochastic pro-
cesses to the quantum dynamics on the dot as given by the master equation. This
connection is given by Milburn (2000). The emission of an electron from the source lead
into the dot causes an electron to be drawn into this reservoir to maintain local thermo-
dynamic equilibrium. This results in a current spike in the source. This is an entirely
classical stochastic process which in the limit of a very fast response in the source circuit
may be approximated by a point process dN(f) (Gardiner 1983). The random variable
edN(?) is the increment in the charge in the source between ¢ and ¢ + dt. It was shown by
Milburn (2000, see present issue p. 477) that this point process is conditioned by anti-
normal ordered Fermi field operators in the source reservoir. When an electron is emitted
from the dot in the drain, it must be instantaneously removed (absorbed) by the external
circuit to maintain local thermodynamic equilibrium in the drain. As for the source, in the
limit of fast response of the drain circuit we can approximate this by a classical point
process dNp(f), where edNp(f) is the change in charge in the drain between ¢ and ¢ + dt.
This point process is conditioned on normally ordered Fermi field operators in the drain
reservoir. The Ramo—Shockley theorem (Ramo 1939; Shockley 1938) can be used to find
the current increment that flows in the external circuit when a charge increment occurs in
the source and drain lead due to tunnelling into and out of the dot. In the case of a
symmetric device the instantaneous current in the external circuit containing dot-n is
related to the charge increments by

in(U)dl = % (dNsn(t) + dNpn (1)) - )

It then follows (Milburn 2000) that the average current in the external circuit containing
dot-n is determined by quantum averages on the dot itself,

(&

B(in(t) = 5 (Yon(ench) + Yrn(chen)) - )

2. Measurement Configuration

We will first describe a simpler configuration to illustrate how this system can function as
a quantum limited measurement. In the measurement configuration we assume that dot-1
is the measurement apparatus, while dot-2 is the system to be measured. The objective of
the measurement is to determine the occupation of dot-2. To this end assume that the bias
on the second dot is changed so that it is no longer coupled to external currents. We will
further assume that electrons leave the apparatus dot (dot-1) much faster than the tunnel-
ling rate between the two dots. In this case we adiabatically eliminate the dynamics of the
apparatus dot by assuming that it remains close to a steady state at all times. This enables
us to give a single master equation for the measured dot which has the characteristic form
of an open measured system.

The master equation for the combined density operator of the system and apparatus, R,
is

dR

P —iQ[cJ{cz —|—clc;,R] —|—'YL1'D[CJHR—|—'Y31'D[61]R. (6)
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We now assume that y; |, Y1 >> Q and make the ansatz for R(¢)

R(t) & poo(t) @ [0)1 0]+ pr1 (1) @ 1)1 (1
+p10(8) ®[1)1 (0] + pos (1) ®10): (1], O]

where |n); is a particle number eigenstate for dot-1. Note that p,,, is an operator acting in
the Hilbert space of the measured system (dot-2). The reduced system density operator
describing the measured system, p(7), is obtained by taking the practical trace over dot-1,
the apparatus. Thus we have p(¢) = poo(#) + p1(¢). Our objective is to obtain a master
equation for p(7) alone.

Substitution of the ansatz equation (7) into the master equation gives a set of equations
for the operators p,,,,,(f). Taking care to maintain operator ordering we find

% = —iQ(C;plo—p0162)—2"{L1P00+2'YR1p11, (®)
% = —iQ(capor1 —proch)+2Y01 poo—2VR1p11, ©)
% = —iQ(czpoo—p11¢2)—(YL1+YR1) P10, (10)
% = —iQ(c} pr1—pooel) = (Y14 Yr1) por - (1D

Note that the quantity of interest pog+ p;; does not decay at all, but that the off-
diagonal operators do decay. We then assume then that the off-diagonal operators rapidly
achieve a steady state which are adiabatically followed by the diagonal operators. After a
little algebra one finds for the reduced system density operator p that

d Q?
d_f = £l (QC;pnCz —+ QCzpoocg - Poocgcz - Cgczpoo - Czcgpn - p1162€;) . (12)

If we now assume that yp; >>1v;;, a self-consistent check reveals that #(p;;) =~ 0,
indicating that in this limit there is very little probability of finding an electron on dot-1.
This means we can set p;; > 0 and p =~ pyy. We thus finally obtain the master equation
for the measured system alone,

dp Q°
i TD[Cz]P, (13)

where Y=y, + Ygi-
In this form we see that the effect of the measurement is to cause a decay of excitation

in the measured system. This is in contrast to the measurement model using a single elec-
tron transistor discussed by Wiseman et al. (2000) where the effect of the measurement
does not change the occupancy of the measured dot, but does induce the phase decay of
any coherence between the measured dot and other parts of the system.
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In the case considered here the measurement also destroys coherence between the
measured dot and any other system with which it may have become correlated. To see this,
suppose for example that dot-2 was initially entangled with another quantum dot, dot-3,

|\';>23 = 0(|1>2 ® |0>3 +B|0>2 ® |1>3' (14)

The degree of correlation between dots 2 and 3 is measured by (cch) which initially is
equal to (XB*. In the presence of the measurement, however, one finds that

(cacl)(t) = e ¥/ (15)

and any initial entanglement decays exponentially.

It is interesting to ask what happens to the measured current through the apparatus dot
in the adiabatic approximation. After all, this should carry the signal if this system can be
constructed as a measurement at all. The adiabatic approximation assumes that the tunnel-
ling rates into and out of the apparatus dot are very large, so most of the time the current
will be dominated by events originating in the leads of dot-1 and contain no reference to
the measured system at all. The average instantaneous current through the apparatus dot
(dot-1) is

i(t) = 5(E(dNs1 (1)) + E(dNp: (1))). (16)
The connection between quantum and classical stochastic processes in the leads discussed
above implies that

it)dt = e(Yri(cler) + Yra{eiel)). 17

Using the ansatz equation (7), and recalling that we have also assumed that vz, >> v, , it is
easy to show that
di(t
d(t) = e(Q*(che2) — Vi )- (18)

The first term is the signal. It is thus apparent that this scheme is a absorptive measure-
ment of the number of electrons in the measured dot. The absorptive nature is embodied in
the effective master equation equation (13) for the measured system alone. This should be
contrasted with the case considered by Wiseman et al. (2000) based on a single electron
transistor which measured the electron number in the measured dot, without absorption.
The phase dependence in the case considered here ultimately results from the phase
dependent coupling between the two dots and could be varied if a means could be found to
change the phase of the coupling constant in the Hamiltonian describing the coherent
tunnelling between the two dots.

3. Beyond the Adiabatic Approximation

The previous approximation scheme indicated in what sense we can regard one dot as a
measuring apparatus for the other. In our simplified analysis, with only a single bound
state on the measured dot, the measured signal is rather small. If there were very many
electrons on the measured dot, the relation between the measured current and the occu-
pation on the dot would still hold (so long as the electrons in dot-2 did not enter some
strongly correlated many body state). Eventually, however every electron on the dot would
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tunnel onto the apparatus dot where it would be immediately dumped in the output current
forming the signal. This is analogous to the destructive counting of photons in an optical
cavity. Eventually the cavity, like the dot, is left in the vacuum, or zero-particle state.

To go further we need to introduce a continuous source of electrons for the measured
system, dot-2. We now assume that this dot is connected to leads and biased reservoirs.
However, these reservoirs are independent of those driving the measurement apparatus. In
that case the fact that this system is functioning as a measurement should induce correl-
ations between the currents in dot-1 and dot-2. The density operator for the total system,
apparatus + dot, obeys the equation of motion (3) and therefore results in a system of six-
teen coupled differential equations. On a physical basis many of these matrix elements can
be eliminated. For simplicity, we assume the system begins in a pure state and the number
of differential equations can therefore be reduced to five.

The steady state current was calculated analytically and is given by

(n 1
Z(oo) = 5 {YLn’YRn |:(YLn + YRn) (YLm + YRm) + (YLm + YRm)Z

+292 [’YLn’YRm + QYLn YRn + YL m 'YRn]} s (19)

where D= [(Y.) + Yr1)(YL2 T Yr2) + 4Q2 X (Y1 + Y2 + Yr1 + Vro) and

m:{n—i—l,ifn:l
n—1,if n=2.

The two-time correlation function of the current through the apparatus dot (dot-1) D) is

G(o) = (i0(1), iVt +1)) (20)

t—o0 ’
Substitution of equation (4) into (12) gives the first term as

62

(it + 7)) 0 At = T {ANE()ANE(t +7) + dNp () dNG (t +7)

+dN¢ (t)dNg(t +1) + dNe(t)dNe(t+ 1)), .., (21)

where the superscript (1) has been dropped. This can be reduced to
T#0

<i(1)(t)i(1)(t +r)> = %iMB(T) + <i(1)(t)i(1)(t + r)>

t— oo

(22)

t— oo
Applying the theory of open quantum systems (Wiseman and Milburn 1993) gives

E (ng)(t 4+ )ng)(t)) = Y(Ll)Y(Ll)Tr {cch{e“ c{poo cl} dt?, (23)

E (ng>(t+r AN ) MORVE Tr{clcl clpwcl}dtz (24)
E (dNél)(t +71) dN ) Tr {clcle clpoo cl} dt?, (25)
(awé ') =

E dNé1 t+1) dN J(RYR Tr{clcle €1 oo C }dt (26)
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p(T) with the initial condition p(0) :cnpooc,:f. The time-dependent

i
n
density operator was determined by solving the system of five differential equations

representing the master equation with the corresponding initial condition. The noise power

Lt
where e“c,p..c

spectrum S(w) for each dot was then determined by the Fourier transform of the corres-

time correlation function. The deviation from shot-noise is a measure of

electron—electron correlations between the source and drain events. We can determine the

ponding two

extent to which such correlations are important by calculating the Fano factor, which is the

power spectrum normalised to shot noise

@7

The Fano factor F(w) was numerically calculated and plotted against the frequency ®

normalised by the rate v, (1). A third parameter was varied to produce a three-dimensional

plot.

Typical noise spectra for the upper-dot in the coupled dot system are depicted in Figs 2
and 3 and are briefly analysed as follows. The spectrum exhibits distinct dips or valleys.
The valleys are a direct result of the correlations, more precisely anticorrelations, between

electron occupation of the bound state at different times. These anticorrelations reduce the

randomness of electron transport through the device and therefore decrease the noise to a

greater extent than already observed for the single quantum well (Sun and Milburn 1998).

For large o the spectrum approaches 0.5. This is due to the assumed form of the current

obtained by the Ramo—Shockley theorem. For 2 — 0 , the analytical expressions of the
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Fig. 2. Effect of the coupling rate on the current noise spectrum of coupled dots: the current Fano factor
F(w) versus the normalised frequency w/y,() and the normalised coupling rate Q/y/!), when the other

parameters are fixed: v, = 1.0, v = 0.1, vV = 0.1 and y§2 = 1.0.



Absorptive Quantum Measurements 471

Fano factor for i)(¢) and i?)(f) reduce to that of a single quantum dot as expected in this
limit.

The effects of the coupling Q2 were examined by keeping all other parameters constant,
as shown in Fig. 2.

For the case Q >>7, there is increased noise suppression corresponding to ® = 2€).
The reason for this is that when the coherent coupling dominates, it causes electrons, after
entering a dot, to coherently tunnel into the other dot at the rate 2. There will be a high
probability that the electron will return to the original dot at the same rate as it left, since
the coupling is much larger than any of the emission rates. Thus the electron will
periodically cycle through each dot at a frequency 2€) suppressing any other electrons
trying to enter either dot at this frequency. Thus for large coupling, the noise suppression
at 0 =2Q is expected. The spectrum changes as the coupling is decreased and becomes
comparable to that of the rates y;,, and Vg, The coupling no longer dominates so that the
probability of the electron periodically coherently tunnelling is approximately the same as
the probability of the electron leaving a dot into one of the drains. This causes the
spectrum to include more complicated features, such as the minimum of the dips being
shifted from @ =2Q. This is illustrated explicitly at Q =2 , where the dip does not occur
exactly at twice the coupling. Of course as  — 0 , the characteristics of the spectrum
approach that of a single dot, i.e. an increase of noise approaching that of full shot noise at
low frequencies.

o
g
T~
g

Current Fano-kactor

Fig. 3. Effect of the collection rate of Y2 on the current noise spectrum of the upper dot: the current Fano
factor F(w) versus the normalised frequency w/y ) and the collection rate {2 /v, when the other
parameters are fixed: y,(V) = 1.0, v/ = 0.1, v{D =0.1 and Q = 5.0.
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To understand the characteristics of the spectrum, with variation of the rates, a
particular case was chosen as an example. Fig. 3 shows the frequency dependence of the
current Fano factor on the emission rate of the drain of dot-2, the measured system, Yz,,
with the other rates and coupling fixed (2 = 5y; ).

For all values of the rate Y, and frequency, the noise is suppressed due to correlations
caused by the Pauli exclusion principle. As Yg;=0.1 is much smaller than y;; =1, the
current i) is governed by yg; and is therefore dominated by a Poisson process at low
frequencies. For Yp, small, the system is reduced to the case in Sun and Milburn (1998).
The system is dominated by Yg, and random for the same reason. This is the origin of the
peaks at Yp, = 0. An interesting feature to note is that the transition involves a point at
which the spectrum characteristics are flat with an amplitude F(®w) = 0.5 . This particular
feature is observed when the lower dot is symmetric, i.e. when y;®) = yp,, which is similar
behaviour to that exhibited by a symmetric single dot.

Since the dots are coupled it can be expected that the current through the dots should
be correlated. That is, not only can the time of arrival of electrons in each of the upper and
lower collectors be separately correlated, but the time of arrival of electrons between each
drain can be correlated. This is why the system can be treated as a measurement at all. In a
similar manner as the two-time correlation function, the cross-correlation function repre-
senting the correlation between iD(f) and i2)(f) can be introduced:

Ci(1) = <i(1)(t), i+ r)>

t—o0

— i > ;)
({Owi+n)) -l 28)
This function is a measure of the relationship between i!) at time 7 and i® at a later time
¢ + 7. Similarly, the correlation between i{?)(¢) and i{1)(s + 1) can be considered:

Cale) = (i), +1)) 29)

t— oo ’
Both the cross-correlation functions have a corresponding spectrum called the cross-
correlation spectrum given by

R () =2 /Ow C(T)(e"F + 7% )dr (30)

As the cross-correlation spectrum is a measure of the fluctuations between the two
currents it can have both positive and negative values. The Fano factor for the cross-
correlation spectrum is given by

2e1/is)il2)
To find the cross-correlation spectra R, (®) and Fano factor F,(®), a similar method to
find the noise spectrum was used. The cross-correlation spectra also exhibit peaks and
valleys in their characteristics, but they do not represent an increase or decrease in the
noise. A peak (a value greater than zero) represents a correlation between the fluctuations
of the two currents where as a valley (a value less than zero) represents an anti-correlation.
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Fig. 4. Normalised cross-correlation spectrum Rj(w) corresponding to D)@ (t + 1)) versus the
normalised frequency w/yf? and the normalised coupling rate Q/yf!), when the other parameters are
fixed: (V) = 1.0, 7% = 0.1, vy =0.1 and v{? = 1.0.

Figs 4 and 5 show the dependence of the cross-correlation spectra on the coupling € and
the emission rate y-2 respectively.

From Fig. 4 one can see that when the coupling is set to zero, the cross-correlation
spectrum is flat at R, () =0 . This is as expected since there should be no correlations
between the currents. An increase in Q has the same effect on both the cross-correlation
spectra as it did on the noise spectrum (Fig. 4). The cross-correlation spectrum R,()
corresponding to (i{®)(£)i(1)(¢ + 1)) has very similar characteristics.

At about =5 the two currents are highly anti-correlated for @ = 2Q and again this is
due to electrons being periodically transferred between the two dots at the tunnelling
frequency. A suppression of any other electrons entering either dot at a frequency ® = 2Q
will occur and therefore an anti-correlation between the currents at a frequency twice the
coupling is observed. As Q approaches zero the spectrum begins to flatten since the
currents become less dependent on each other.

The effect of the emission rates on R;(®), i.e. the spectrum corresponding to
Ci(v)= M(0)i@(t + 1)), was examined, and a special case is chosen for discussion. Fig. 5
shows the effect of the emission rate y;, on the spectrum R;(®) with coupling Q and other
rates fixed. This has very similar characteristics to that just discussed.

The anticorrelations at ® = 2€2 remain in Fig. 5 for the reasons previously given. In this
case Yr1, Yr1> and Yp, are all equal to 1. When 7y, is small it dominates and current
fluctuation is significant. Therefore the cross-correlation is high at low frequencies. The
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Fig. 5. Normalised cross-correlation spectrum R;(®) corresponding to (i{(1)id(t+1)) versus the
normalised frequency w/y,() and the emission rate y®/y 1, when the other parameters are fixed:
v =1.0,74Y =1.0,7? =1.0and Q = 5.0.

increase of Yy, causes the probability of occupation of the both dots to approach one.
Therefore an electron leaving the upper dot creates a vacancy for electrons to enter from
the lower dot. This in turn leaves a vacancy in the lower dot which is quickly filled by low
frequency electrons if y;, is large. Thus small correlations can occur for low frequencies.

A more interesting type of correlation function called the symmetrised cross-
correlation function can also be used to analyse the system. It is defined as

1
= M i@ 2y (D 31
cm =3 [({0.@e+v)  + (@) ], (31)
with the corresponding spectrum defined as
Ri(0) = 2 / Co() (07 + =% )dn (32)
0

-1 R R

= 5 () + Rao(w)]. (33)

This type of correlation function and spectrum allows the relationship between the two
currents to be considered as being dependent on each current at any time. It effectively
transforms the cross-correlation functions so that they are symmetrical. The spectra
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observed are very similar to the cross-correlation spectra and the same arguments used to
explain the characteristics apply here as well. The importance of the summarised spectrum
is that it is very sensitive to the entanglement between two coherently coupled qubits (Loss
and Sukhorukov 1999).

The symmetrised cross-correlation function can be used to test and/or verify the nature
of the two correlated quantities: quantum or classical? In the present case the two quan-
tities are the currents of two dots, and the results show they are indeed classical in nature,
ie.

|Cs (7)]
T1C(7) + O (7)]

<1

4. Conclusion

Coupled quantum dots are becoming important because of possible applications in
quantum information processing and other areas. In this paper we have proposed a new
application: an absorptive electron number measurement scheme. A model to describe
coherent and incoherent transport in a quantum dot (Sun and Milburn 1999) is extended to
a system of two single dots coherently coupled in parallel. One of the dots functions as a
measurement apparatus and the other is the target to be measured. Applying the quantum
theory of open systems identifies a relation between the experimentally measurable quan-
tity, the current through the apparatus dot, and the quantum stochastic processes inside the
dots. The analysis shows the measurement is absorptive in nature unlike the measurements
based on single electron transistors (Wiseman et al. 2000). We have demonstrated that the
proposed measurement process can be fully described by master equations applied to the
whole system. This model has enabled the dynamics of coupled quantum dot systems to
be specified within the Markov and weak coupling limits. Numerical results provide
visualised pictures of the influence of relevant parameters on the spectra. These can be
used to predict the experimental results if the parameters are known, or to obtain the rele-
vant unknown parameters from the measurement results. For example, from the valley of
the noise spectrum one can extract the coupling rate between two quantum dots.
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