
TWISTED MAGNETIC FIELDS IN OONDUOTING FLUIDS 

By J. W. DUNGEY* and R. E. LOUGHHEADt· 

[Manuscript received September 3, 1953] 

Summary 
The formation of loops in the lines of force of a twisted magnetic field confined 

within a cylinder of radius R, first suggested by AIrven (1950a), is discussed by the method of normal modes. The model first becomes unstable with respect to modes which do not lead to the formation of loops. Ignoring this, the condition obtained for loop formation is that the pitch of the twisted field be less than 'TtR. 
The velocity of Alfven waves in this model is also discussed. 

I. INTRODUCTION 
There are several reasons why the study of twisted magnetic fields should 

be relevant to solar physics. For example, some prominences show filaments 
which give the impression of being twisted. Alfven (1950a) drew attention 
to the formation of loops in a string when it is twisted beyond a certain limit, 
and pointed out that this will also happen to a magnetic field. While Alfven 
was concerned with the origin of the terrestrial and solar magnetic fields, this 
phenomenon might also be important in prominences and perhaps in the genera­
tion of sunspots, although it is not involved in Alfven's (1950b) own theory of 
sunspots. 

Alfven (1950a) discussed the model in which a tube of force of radius R 
containing a uniform magnetic field is given a uniform twist. By consideration 
of the magnetic energy he showed that the condition for loop formation is approximately 

R>('V5-1)p, .................... (1) 
where 27tp is the pitch of the twist. Lundquist (1951) investigated the stability 
of the general twisted field, which is represented in cylindrical coordinates by 
the two components Htf( and Hz, these being arbitrary functions of r. He found 
the field to be unstable if 

f Htp2rdr>2 f Hz2rdr, 

which for Alfven's model becomes 
R>2p. . ........•.........•.• (2) 

However, this result is obtained by considering the stability with respect to a 
specific type of displacement which, as Lundquist points out, is not the most 
critical. In the present paper the stability of Alfven's model is discussed by 
the method of normal modes. 
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II. THE NORMAL MODES 

We first formulate the basic magneto-hydrodynamic equations in the case 
of a general twisted field 

H=(O, Hrp(r), HAr», ................. (3) 

contained wholly within a cylindrical tube of force of radius R. From a con­
sideration of small oscillations of frequency 6> in the conducting medium, we 
obtain the criterion for stability by putting 6> =0. It can be shown that the 
stability does not depend on the density or compressibility of the conducting 
fluid, which is thus taken to have uniform mass density !L and to be incom­
pressible. As usual, the electrical conductivity is taken to be infinite. A small 
material velocity v then causes a small change h in the magnetic field H 
determined by 

ah 
ar=(H. grad)v-(v. grad)H. . ............ (4) 

The effect of the magnetic force on the motion is represented to the first order by 

4n:!L~: =-grad tJ;+(H :grad)h+(h. grad)H, .....•. (5) 

where tJ;/4n: is the variation in "total pressure ", that is, gas pressure plus 
magnetic pressure (=H2/8n:). 

When 6>*0 equations (4) and (5) may be solved with the aid of the relation 

div v--,-O ........................ (6) 

By seeking solutions proportional to 

exp i(6)t+kz+1rUp), .................. (7) 
and writing 

m 
K =kHz+ -Hrp, .................... (8) 

r 

we obtain from (4), (5), and (6) the following equations: 

i6>hr =iKvT , •••• : ••••••••••••••••••••••••••• (9) 

(10) 

(11) 

4n:(Li6>vcp= -imtJ;/r+iKhrp+(a!rp + ~rp)kr' ( 13) 

4 · ·k·I• +. ··Kh aHzh n:(Ll6>Vz = -1 'l' 1 z+ ar r' (14) 

( 15) 
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After some elimination, we then find 

(41tILCU2_K2)(~ +~)+ 2m~Hq>'Or=iCU(k2+ ~}h .... (16) 

... ~ . . . . . . . . . . .. (17) 

From these equations the necessary boundary conditions for the components 
'Or and IJi at r R readily follow; for it is evident from the form of equation (16), 
and is in any case physically obvious, that 'Or must be continuous across the 
boundary r R. .Also, the discontinuous change 81Ji in IJi across the boundary 
is related to the value of 'Or at r=R through the term involving oHrp/or in (17), 
which yields 

'Or =icu . H~281Ji. ( 18) 

In .Alfven's model, where Hz is constant and Hrp takes the form 

Hrp=Ar, .......................... (19) 

appropriate to a uniformly twisted field, 

is a constant for r <R and vanishes for r > R. Eliminating 'Or between equations 
( 16) and (17) we obtain the modified Bessel equation 

where 

k'2~k2S1 4K2A2} (21) - t - (41tILCU2_K2)2· .........•.. 

Then, since IJi remains finite at the origin, the variation of the total pressure 
inside the tube of force is given by 

IJi =oUm(k'r)el(ootHHmtp), ............•. (22) 

where Im(k'r) is the modified Bessel function (Jeffreys 1950) of the first kind of 
order m and at is an arbitrary ,constant. 

Outside the tube of force, k' =k, and then the solution of (20), vanishing 
at infinity, is 

1Ji=~Km(kr)ei(oot+kz+mq», •••.•.••.•••.• (23) 

where Km(kr) is the'modified Bessel function of the second kind of order m and ~ 
is 'an arbitrary constant. Generalizing to allow for different densities ILl for 
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r<R and (J.2 for r>R and substituting from (22) and (23) we find that the 
boundary requirements at r=R are satisfied if 

47t(J.2W2Km(Y) -A 2y ~~(Y)' 

.................... (24) 
where m=k'R and y=kR. 

Before proceeding to the case w =0 it is of interest to apply the above 
general formulae to the propagation of Alfven waves along a uniform untwisted 
tube of force (A =0). 

III. ALFVEN WAVES IN A UNIFORM UNTWISTED TUBE OF FORCE 

In this case the velocity of torsional waves in an infinite conducting fluid 
of density (J.I follows from the fundamental equations (9)-( 15) by putting 

Vr=O. . ....................... (25) 

Then y;=0 and 47t(J.IW2-K2=0. Hence for the velocity of torsional waves we 
obtain 

where Va is Alfven's velocity 
Hz 

Va= V 47t(J.I· •••.•.•......••..... (26) 

If, however, we drop the condition (25) and seek instead solutions which 
satisfy the general boundary condition (24) we find that the solution for r<R 
is now 

Substitution in (24) yields 

{
I _l(y)dlm(y) }-! 

(J.2 m dy 
Vm=±Va 1--. dK () , 

(J.I Km -ley) d; y 
........ (27) 

where y =kR and V m is the velocity of waves parallel to the z-axis for any given 
mode m. Equation (27) shows the reduction of wave velocity due to the inertia 
of the surrounding fluid. Simple consideration of the expansions of the Bessel 
functions for large and small y shows that 

as kR becomes very large or very small. This conclusion is true for all m except 
m =0, which is exceptional in that V m -+ ± Va for small kR. The variation of 
wave velocity with kR is illustrated in Figure 1 for the case m =1, with (J.I =(J.2' 
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IV. THE CRITICAL CASE (.0) =0 
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When (.0) =0, equation (4) requires v =0, so that the fundamental equation (5) 
must now be supplemented by the relation 

div h=O, .................... (28) 

which, when (.0)#0, is a consequence of (4). We thus obtain the equations 

oljJ -iKh 2Hrp h Or - r--r-' rp, 

imljJ =iKh + (OHrp + Hrp)h 
r rp Or r r' 

which, if Hrp=Ar, reduce to the forms 

K(~ +~)-2~Ahr+i(k2+ ~)IjJ= ~!hr ........ (29) 

and 

... (30) 

With .Alfven's model, the right-hand sides of (29) and (30) vanish for 
r <R, and we can obtain by elimination Bessel's equation giving the solution 

(31) 
where 

The discontinuous change in IjJ at r=R can be deduced from the derivatives 
on the right-hand sides of (29) and (30) by noting that, for r>R, K=A=O 
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and hence ~=O. Equation (29) implies the continuity of kr/K at r=R, and 
then equation (30) shows that 

~=-i. R. A2.~ . ............ (33) 

This is the boundary condition at r=R and, with the aid of (30), may be written 
in the form 

provided that K2 *4A 2• 

The latter condition may be further restricted; for if K2 >4A 2, k' is real 
and then 

r dIm(k'r) 
Im(k'r) . dr >1 m I· .............. (35) 

However, with K2>4A2, the right-hand side of (34) is less than 1 m 1 and hence 
there are no solutions with K2>4A2. 

The possibility of a solution with K2 =4A 2 requires separate investigation. 
From (30) it follows that mA/K must be negative and ~ proportional to rl m I. 

Then equation (29) yields . 

. ~I m 1 k2r) 
2Kkr= -l~(-r-+I m 1 +1 ,~, 

which requires 
iKkrN>O 

at r=R and thus contradicts the boundary condition (34). Hence no such 
solution exists. 

When K2 < 4A 2 it is convenient to define 

X2=k2(~22 -1), (36) 

and then the solution for r <R takes the more familiar form 

(37) 

which is now an oscillatory function of r. Since x can be made large by making 
K small solutions of the form (37) must exist. It is sufficiently general to 
consider only positive values of k, Hz, and A provided that both positive and 
negative values of m are allowed. If 

p=Hz/A, .................... (38) 

then 21tp is the pitch of the uniformly twisted field. With this notation the 
inequality K2<4A2 may be written 

and this eliminates the modes with m>2. 
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v. THE CONDITIONS OF STABILITY 

The critical values of A for stability are obtained from the solutions 
with 6)=0. 
Let 

(39) 

and 

(40) 

then the boundary condition (34) is expressed by the relation 

(41 ) 

The following properties of the function If m(x) are subsequently required 

and 

when x=O, 

when X;>O, 

If m(x) has poles at the zeros of J m(x). 

} ........ (42) 

For given values of m, k, and p equation (41) determines a set of values of R, 
the smallest of which will be called Ro. 

To determine the ranges of values of A for which imaginary eigenvalues 
of 6) can occur we refer back to equation (20), which has solutions of the form 

\jJ =ocJ m(x'r)ei(wt+kz+mcp), ( 43) 
where 

'2-k2~ 4K2A2 } 
X - (47t(l.6)2-K2)2-1 . (44) 

When K2>4A2 a small imaginary value of 6) will still leave x' real and the 
value of If m(x'R) given by (24) will vary only ·slightly. .An eigenvalue of 6) is 
therefore determined by x'Rl'I::ixRo and since, when 6) is imaginary, 1 x' 1 <I x I, 
the condition for instability is expressed by the inequality 

R>Ro • .•••••.•••.•.••••••••• (45) 

It is evident that instability will occur for m < 0 when 1 kp +m 1 is small 
enough since then x is large and Ro small. This type of instability is not relevant 
to loop formation. If kp +m =0, the resultant motion has the same symmetry 
as the twisted field. Only the mode m = -1 can be observed with a string; 
the string as a whole takes a helical form. It will be seen that this occurs before 
loop formation, so that a complete study would require an investigation of the 

• new equilibrium configuration of the field, but this seems to be rather intractable. 
It may also be noted that this t,ype of instability will not always occur for more 
general models; it is facilitated when the pitch of the twist is independent of r. 

The only modes for which the axial line of force moves are those with 
m = ±1; this is easily seen by substituting the solution (43) into equation (17), 
which then shows that 'liT =0 at r =0 unless m = ±1. The other modes are 
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therefore irrelevant to a discussion of loop formation. If the field is unstable 
with respect to m= -1 only, the tube of force as a whole takes up a helical 
configuration, but does not form loops. The type of motion required in forming 
loops occurs only when the field is simultaneously unstable with respect to both 
the modes m = ±1. This is therefore the best criterion for loop formation 
obtainable from the present restricted analysis. 
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Fig. 2 

The values of kRo obtained from (41) are plotted against kp in Figure 2 
for m = ±1 and O. It is clear from this diagram that, for any given kp, the 
corresponding value of kRo when m ==1 exceeds the value when m = -1. Hence 
it follows from (45) that when the field is unstable with respect to m =1 it is 
always unstable with respect to m= -1, so that the condition for loop formation 
can be taken as the condition for instability with respect to m =1. For small 
values of kp this condition is 

R>2p, ...................... (46) 
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which follows from the relation Ro~2p implied by e,quation (41) when m= ±1 
and kp is small. The criterion (46) is the same as that obtained by Lundquist 
(1951) (cf. equation (2)), and this is not altogether surprising, since the system 
is unstable with respect to many modes and Lundquist's disturbance may be a 
combination of these. 

The graph also shows that loop formation cannot occur with kp > 1; this 
simply means that no more loops can be formed than there are twists. If there 
is more physical limitation on k, such that k must be an integral multiple of 
2rt/L say, the critical value ofp for loop formation will be decreased; if, however, 
rtR<,L, the decrease will be only slight. 

VI. CONCLUSIONS 

We may summarize the above results as follows: 
In the normal modes the disturbance varies as exp i(cut+kz+m~). 
The velocity of .Aliven waves in a uniform untwisted tube of force is reduced 

by the motion in the surrounding material by a factor which approximates 
to (1 +!L2/!Ll)-i for both long and short wavelengths (see Fig; 1). 

A twisted tube of pitch 2rtp is unstable with respect to a given mode whim 
I kp +m I is small enough; it is always stable when I kp +m I > 2. The formation 
of loops requires simultaneous instability with respect to two modes with m = +1 
and -1 and with the same value of k. This requires p<tR. 
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