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Summary 

The experimentally determined values of the high and low temperature electrical 
and thermal conductivities of pure sodium, copper, silver, and gold are such that the 
ratios of these quantities for each of these metals do not agree with the values expected 
from the Bloch free electron theory, except for the high temperature Wiedemann-Franz 
ratio. Reasonable agreement can be achieved by assuming (i) that the conduction 
~lectrons can interact directly with transverse lattice vibrations, and (ii) that the Fermi 
surface departs significantly from spherical shape in all these metals, and touches the 
boundary of the Brillouin zone in the case of copper, silver, and gold. 

I. INTRODUCTION 

The thermal conductivity of a pure metal at low temperatures, assuming 
energy transport by quasi-free electrons (electron energy E a function of the 
wave number k only) interacting with lattice vibrations having a Debye spectrum, 
has been calculated by the author (Klemens 1954b) by solving numerically the 
:appropriate transport equation. The conductivity thus obtained is about 
11 per cent. larger than the value previously obtained by Sondheimer (1950), 
:and its accuracy was estimated to be better than 0·5 per cent. This does not 
substantially alter the well-known discrepancy between the predictions of the 
theory and the observed thermal conductivity. In this paper the discrepancy 
will be re-examined and modifications of the quasi-free electron model which 
offer an explanation Will be considered. 

In all theoretical expressions for the thermal and electrical conductivitie s 
of pure metals there enter two constants, always in the same combination, 
which are difficult to calculate but can be combined and treated as an empirical 
>constant. They are the effective number of free electrons and the electron
llhonon interaction constant C. When comparing experimental results with 
theoretical predictions, the empirical constant is eliminated by forming the 
ratio of two conductivities. Of the four quantities used, namely, the electrical 
:and thermal conductivities at high and at low temperatures, the high temperature 
,electrical and thermal conductivities are related by the Wiedemann-Franz law, 
'So that only two independent ratios can be formed. The Wiedemann-Franz 
law holds at high temperatures irrespective of particular assumptions about the 
band structure and the electron-phonon interaction, and it is therefore not a 
sufficient test of the Bloch theory. It is in fact well obeyed at high temperatures 
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for all metals, except where there is an appreciable lattice component of thermal 
conduction. 

By the quasi-free electron theory if W is the thermal resistance and T 1 

and T2 are two temperatures such that T 1<O<T2 then, according to Klemens 
(1954b), 

::~~:~=64.0N2J3(T1jO)2, ................ (1) 

where 0 is the Debye temperature and N the number of free electrons per atom. 
Also the electrical resistance at high arM at low temperatures is related by 

R(T1) r T 1s 2 
R(T2) =497 .6T204, .................. ( ) 

and, since R(T2) LW(T2)T2, where L=(rcKje)2j3=2 ·45 X10-8 Wnjdeg2, the 
high temperature conductivities can be eliminated from (1) and (2) giving 

W~~1)=:9~·?6N2J3~2 RJ~~), ............ (3) 

where T1 and T 1'<O. This equation could, of course, be derived without 
reference to the high temperature conductivities. 

It has previously been assumed by various authors (see Sondheimer 1952) 
that N is the effective number of free electrons per atom, defined in terms of the 
current induced in the band by an electric field, and that it can be treated as an 
adjustable parameter. However, it arises in (1) from a term q2j2k~ in the 
transport equation at high temperatures, q being the maximum wave number 
of the phonons and k~ the Fermi wave number. For a spherical Fermi surface 
qjk~ OCNl/3, where N is the number of free electrons per atom in the conduction 
band, quite independently of the dependence of E on k. For a monovalent 
metal we must therefore take N =1. 

II. THERMAL OONDUCTIVITIES AT HIGH AND AT Low TEMPERATURES 

The thermal conductivities of pure sodium and copper have been measured 
by Berman and MacDonald (1951, 1952) and that of pure gold and silver by 
White (1953a, 1953b), who also repeated the measurements on copper (White 
1953c). Subtracting the residual resistance, they obtained the ideal thermal 
resistance, which at low temperatures is indeed approximately proportional to 
T2. The values of W(T1)jT~ so obtained, together with W(T2 ), the thermal 
resistance at room temperatures, are given in Table 1. Taking for 0 the value 
OR' which is derived by fitting the ideal electrical resistance to (2), and putting 
N =1, the ratio W(T1)jT~W(T2) was calculated from (1) and compared with the 
corresponding ratio of the measured values. As seen in the table, these two 
ratios are not equal, so that (1) is not satisfied. 

It has not. been made clear whether this discrepancy arises from a failure 
of the theory in respect of W(T 1) or of W(T 2)' or because of a wrong choice of 
the O-value. The last two effects are not independent, for a failure of the theory 
to give the correct expression for W(T 2)-and hence for R(T 2)-would affect the 
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value of 6R • The theoretical expressions for W(T 2) and R(T 2) may not be 
correct because the Bloch theory neglects the following effects which should be 
considered at high temperatures even for the quasi-free electron model: 

(i) .A lowering of the effective :vibration frequencies due to the dispersion 
of the lattice waves, and due to each high frequency wave being neither purely 
longitudinal nor purely transverse. 

(ii) The occurrence of Umklapp-processes. These are processes which 
conserve energy but change the total wave-vector by an inverse lattice vector. 
On the quasi-free electron model these processes cannot occur at low temper
atures, but must occur at high temperatures. Since they are not considered in 

TABLE I 

Metal Sodium Copper 
I 

Silver Gold 
--. 
W(Tl)/T~ (W-l em deg-1) 3·8 X 10-4 2·55 X 10-5 6·4XIO-S I·3xIO-4 

W(Ta) (W-l cmdeg) · . 0·73 0·26 0·24 0·64 
R(Tl)/T~ (0 cmdeg-S) · . 5·31 x 10-16 2·64 XIO-16 I·II X 10-16 3·9xIO-16 

OR (OK) .. · . .. 202 330 220 170 
On (OK) .. · . .. 150 315 215 170 
°L(OK) .. .. .. 260 505 340* 270* 
0(8) (OK) .. .. .. II7 136 105 80 
--. 
Ratio of calculated to 

observed values of 
W(Tl)/T~W(T2) 

·using 6R · . .. · . 3·0 6·0 5·0 5·8 
6L .. .. .. 1·8 2·6 2·1 2·3 

--. 
(OL/6R)' .. .. · . 2·8 5·4 5·8 6'3 
(OL/6(3))2 · . · . · . 5·0 13·7 10·5 II·4 
(6D/6(B.)2 · . .. " 1·7 5·4 4·2 4·5 

• Taking the same ratio of 6L /6D as for copper. 

the Bloch theory, they form an additional source of resistance, also proportional 
to T at high temperatures. The magnitude of this resistance, which is difficult 
to calculate accurately, is sensitive to the shape of the zone boundary and to its 
position relative to the Fermi surface. However, it can never greatly exceed the 
Bloch reSistance, and would only be about 30 per cent. of the Bloch resistance 
for N =1 and a spherical BrillQuin zone. 

(iii) .A possible variation at high frequencies of the electron-phonon inter
action parameter 0, assumed in the Bloch theory to be constant for all interaction 
processes. Such a variation would follow from Nordheim's assumption of a 
rigid ion, in contrast to Bloch's deformable ion, and would also occur in inter
mediate cases. But even for a deformable ion a decrease of 0 with increasing 
phonon frequency would be obtained if proper account were taken of the partial 
interference of electron wave-functions in calculating the transition matrix. 
This point is discussed by Bethe (see Sommerfeld and Bethe 1933, p. 517). 
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While (i) and (il) would cause the high temperature resistance to increase 
over the value given by the Bloch theory, (iii) would cause a decrease. 

In view of these uncertainties, equation (1) is not a good test of the validity 
of the theory of thermal conduction at low temperatures. 

III. THERMAL AND ELECTRICAL CONDUCTIVITIES AT Low 
TEMPERATURES 

The uncertainties of the theory at high temperatures can be avoided by 
comparing the thermal and electrical conductivities at low temperatures, using 
equation (3). One can confidently expect the phonon spectrum at low fre
quencies to be of the form given by the simple elastic theory, so that, according 
to the Bloch theory, the 6-value in (3) should be 6L , related to the velocity of 
longitudinal low frequency waves and calculated by Blackman (1951) for some 
metals, including sodium and copper. 

'Substituting the observed values of WIT2 and RIT5 into (3) and calculating 
a value for 6 from it, denoted by 6(3}) we find that 6(3) is too low in all cases 
(see Table 1). The discrepancy (6L/6(3»)2 is somewhat less for sodium than for 
the noble metals. 

It should be noted that the discrepancy in (1) would have been reduced 
if 6L had been used instead of 6R ; but this could have been done only at the 
expense of introducing a discrepancy (6L I6R )4 in (2) (Blackman 1951). Attempts 
to resolve this discrepancy, by Klemens (1952) in terms of dispersion of the 
lattice waves, and by Bhatia (1952) in terms of Umklapp-processes, are both 
in error;* A full consideration of these effects would lead to an increase in 
the high temperature resistance, as pointed out above, so that the discrepancy 
in (2) would be increased even further. 

There are thus discrepancies between theory and experiment which can be 
explained neither in terms of deviations of the phonon spectrum from the Debye 
model, nor by reasonable adjustment of the 6-values. One is therefore led to 
conclude that they arise as result of deviations of the electronic band structure 
from the quasi-free electron model. 

IV. MODIFICATIONS OF THE QUASI-FREE ELECTRON MODEL 

It has been seen that the observed ratio of the electrical to the thermal 
resistance at low temperatures is greater than expected from the Bloch theory. 
The following explanation is offered. 

It is well known that the processes responsible for .electrical resistance are 
such as to move an electron in momentum space from a point on the Fermi 
surface to a point on the opposite side of it. At high temperatures this is done 
in large steps, each phonon interaction changing the direction of the electron 
by about 1·5 radians. At low temperatures the angular change at each inter
action is only of order T16, so that the processes producing the electrical resistance 

* Klemens takes the density of normal modes to be proportional to w2dw, w being the phonon 
frequency, but this is correct only in the absence of dispersion. Bhatia correctly deduces that 
the O-value at high temperatures is lowered because of Umklapp-processes, but does not consider 
that these processes increas.e R(T2), and hence increase the O-value deduced from (2). 
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can be regarded as a small-step diffusion process, in which an electron wanders 
to the opposite side of the Fermi surface. The calculation of the resistance 
becomes a random walk problem on the Fermi surface. The electrical resistance 
is inversely proportional to the square of the distance to be covered and pro
portional to the number of steps per unit time and to the square of the average 
length of each step. It would therefore be expected that the electrical resistance 
of a metal havi:qg a non-spherical Fermi surface would differ from that derived 
on the Bloch theory, where a spherical Fermi surface is assumed. 

On the other hand, the thermal resistance at low temperatures is due to a 
movement of electrons from a point just above the Fermi surface to one just 
below it, or vice versa; that is, a change of energy of order KT without an 
appreciable change of direction. Since in such processes the electron does not 
change its location on the Fermi surface but only its" height" above or below it, 
changes in the shape of the Fermi surface will not affect the thermal resistance, 
except by changing the effective number of free electrons, which does not enter 
the present considerations. 

The possible deformations of the Fermi surface from spherical shape satisfy 
the following requirements: (i) the enclosed volume is kept constant, (ti) the 
deformation has the polyhedral symmetry of the Brillouin zone, and (iii) along 
the axes of symmetry the deformation is outward. Such a deformation will 
alter the electrical resistance relative to the thermal resistance at low temper
atures. This effect will be even more pronounced, and increase the electrical 
resistance, if the Fermi surface touches the zone boundary, for then an electron, 
diffusing on the Fermi surface, can reach an opposite point not only by the usual 
way but also by drifting to the nearest point of contact and reappearing on the 
opposite side of the zone. The distance to be covered is thus approximately 
halved on the average, and there will be an additional resistance, about four 
times the ordinary resistance, due to movement via the points of contact, so 
that the total resistance is increased by a factor of about 5. 

We have seen that the ratio R(T1)/W(T1) is larger than expected from the 
Bloch theory, the discrepancy being (ElL /El(3»)2 shown in Table 1. This dis
crepancy can be reduced by a factor of about 5 if it is assumed that the Fermi 
surface touches the zone boundary. Even so, for the noble metals, the 
discrepancy is too large to be explained in this way alone. In order to reconcile 
the theory to the observed values of R(T1)/W(T1), it must be further assumed 
that the conduction electrons interact with the transverse waves as well as with 
the longitudinal waves. This would make ElD the appropriate El-value in 
equation (3) and the discrepancy in (3), now (ElD/El(3»)2, is sufficiently reduced, 
as seen from Table 1, to permit an explanation in terms of the Fermi· surface 
touching the zone boundary. 

Peierls (1930a, 1930b, 1932) suggested that the Fermi surface of monovalent 
metals should touch the zone boundary in order to account for the absence of 
observable effects at low temperatures arising from quasi-equilibria between 
electrons and phonons, and, although Klemens (1951) showed that this was not a 
necessary conclusion, it remained a possibility. Smit (1952) pointed out that 
the effects of shear strain on the thermoelectric forces suggest strongly that the 
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Fermi surface touches the zone boundary in the cases of gold and silver. Measure
ments by Mortlock (1953) have made it appear probable that this is also the case 
for copper. The sign of the thermoelectric power of the noble metals, in contrast 
to that of the alkali metals, gives additional support to the hypothesis. 

Bloch's conclusion that the conduction electrons cannot interact directly 
with transverse phonons is based on the assumption of a spherical Fermi surface. 
Since this assumption has here been discarded to explain the low temperature 
conductiVities, it is not unreasonable to assume some interaction between the 
conduction electrons and transverse waves. There is also some evidence for 
such interaction from the study of the lattice component of the thermal con
ductivity of alloys (Klemens 1954a). The magnitude of the lattice component 
depends sensitively upon the degree of interaction between the conduction 
electrons and transverse waves. The lattice component of a pure metal cannot 
be determined directly but can be deduced from the thermal conductivity of 
dilute alloys. Measurements on copper-nickel alloys, as discussed by the author, 
indicate such interaction in the case of copper, and recent measurements of 
silver-palladium alloys (White, personal communication) indicate the same 
for silver. 

Considering now the high temperature resistance (electrical or thermal), 
and remembering that for Fermi surfaces touching the zone boundary the 
contribution from Uinklapp-processes to the resistance is roughly equal to that 
from ordinary processes, and also that dispersion can reduce the frequency of 
the shortest lattice waves by about 1·5 (Klemens 1952) and thus increase the 
resistance by a factor of 2 to 2·5, one can explain the discrepancies in (1) with 
6 =6D ---6R for the noble metals. This would, of course, also explain the dis
crepancies in (2) noted by Blackman (1951). 

With sodium the position is different, since the discrepancy from (3) is 
smaller. It can be explained either by assuming that the Fermi surface touches 
the zone boundary, but that the conduction electrons do not interact with 
transverse waves, or by assuming a Fermi surface, non-spherical but nevertheless 
not touching the zone boundary, and interaction between the electrons and 
transverse phonons. The latter explanation seems more probable, because it 
will also explain the observed value of the high temperature reSistance, and 
because of the normal sign of the thermoelectric power. 

V. CONCLUSIONS 

The experimental value of the ratio R/W for pure metalS at low temperatures 
is too large compared with the predictions of the Bloch theory, and deviations 
from the quasi-free electron model must be assumed to explain this discrepancy. 
Values of the high temperature resistance also indicate that the Bloch theory is 
not valid. It seems that in the four metals considered there is interaction 
between the conduction electrons and transverse lattice waves. In gold, silver, 
and copper the Fermi surface apparently touches the zone boundary, while in 
sodium it does not. 

There is evidence in support of these conclusions from thermoelectric effects 
and from the lattice component of the thermal conductivity. 
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