NETS COMPOSED OF PARTS OF CIRCLES FOR THE APPROXIMATE SOLUTION OF FIELD PROBLEMS

By L. Tasny-Tschitassny*

[Manuscript received July 15, 1954]
Summary
The two-dimensional differential equation

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(\sigma \frac{\partial \varphi}{\partial x}\right)+\frac{\partial}{\partial y}\left(\sigma \frac{\partial \varphi}{\partial y}\right)+\tau=0 \tag{1}
\end{equation*}
$$

describes the current flow in a sheet of conductivity σ loaded by a transverse current density (- τ), φ being the electrical potential. It is known that equation (1) can be solved approximately by a procedure in which the two-dimensional continuum is replaced by a net of straight-line bounded meshes, leading to an electrical network of conductances. The author shows that meshes bounded by "curvilinear rectangles" can be equally well dealt with and, on the basis of different conformal transformation functions for the individual meshes, derives the formulae required for a solution, if the mesh boundaries are circle arcs or circle arcs and straight lines. A good fit of the contours of the boundaries and equipotentials and their orthogonal trajectories can be obtained. This reduces the number of meshes without impairing the accuracy. Sharp corners at boundaries can be dealt with in a similar way. Formulae for a good accuracy computation of potential gradients and a method for changing the mesh size abruptly are given. Two examples using nets of only four meshes demonstrate the power of the method, the maximum errors being of the order of a few per cent.

I. Introduction

The problems dealt with in this paper are those governed by the twodimensional differential equation

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(\sigma \frac{\partial \varphi}{\partial x}\right)+\frac{\partial}{\partial y}\left(\sigma \frac{\partial \varphi}{\partial y}\right)+\tau=0 \tag{1}
\end{equation*}
$$

in which φ is an unknown function of position and σ and τ are known functions of positions or functions of φ and its derivatives, or both. An important problem of this type is the electric conduction in a plane sheet. It will be used for all explanations in this paper. Then φ is the electric potential, σ the electric conductivity, and τ the current density of external currents entering the sheet. In electrostatic field problems φ is the electric potential, σ is given by $1 /(4 \pi)$ times the dielectric constant, and τ is the density of the space charge. Equation (1) covers also three-dimensional axially symmetrical arrangements if the distance from the axis (the radius) and the distance in the direction of the axis (the height) are dealt with as if they were Cartesian coordinates and the quantities substituted in equation (1) for σ and τ are the products of the radius and the actual values of σ and τ.

[^0]The approximate numerical solution of (1) by a system of simultaneous linear equations that can be considered the network equations of a system of conductances (and are amenable to relaxation methods) can be described in the following way:

Step 1.-Select a sufficient number of points within and on the boundaries for which the values of φ are to be found. Let these points be called nodes.

Step 2.-Find a linear relation

$$
\begin{equation*}
F\left(\varphi_{N}, \varphi_{R}, \varphi_{S}, \varphi_{T}, \ldots\right)=\mathbf{R}_{N} \tag{2}
\end{equation*}
$$

between the value φ_{N} of φ at a node N and the values $\varphi_{R}, \varphi_{S}, \varphi_{T}, \ldots$ at neighbouring nodes R, S, T, \ldots which when complied with for $\mathbf{R}_{N}=0$ secures that φ is an approximate solution of equation (1). Equation (2) takes the form of Kirchhoff's first rule with φ_{N}, φ_{R}, etc. denoting potentials. For an arrangement of the nodes as the corners of regular triangles, squares, and hexagons all conductances involved are equal, as Southwell (1946) has shown. The values of the conductances for an arrangement in which the nodes are the corners of irregular triangles can be found by formulae derived by the author (1949) and MacNeal (1953).

Step 3.-Solve the system of linear equations resulting from applying equation (2) to all nodes. A very convenient way of finding an approximate solution is Southwell's relaxation method (Motz and Worthy 1945 ; Southwell 1946 ; Tasny-Tschiassny 1949). The so-called residuals \mathbf{R}_{N} are computed for an arbitrarily selected set of values φ. A significant residual \mathbf{R}_{N}, usually the largest residual, is either liquidated or adjusted to a suitable value by changing the value of φ_{N} by a certain amount. By this the residuals $\mathbf{R}_{R}, \mathbf{R}_{S}, \mathbf{R}_{T}$, . . at the neighbouring nodes are altered too, but, in general, the changes are smaller than the change of the residual \mathbf{R}_{N}. Then another important residual is dealt with in the same way. The procedures converge fairly quickly and are continued until negligible values of all residuals are obtained. Instead of solving the system of linear equations numerically, analogues representing actual networks of conductances can be employed.

The boundaries require special artifices in the case of regular nets, because nodes need not necessarily lie on boundaries everywhere. If irregular nets are used, nodes can always be placed on the boundaries and no special problems arise. The errors in the values of φ, i.e. the differences between the values of φ, that comply with the system of linear equations (2) for $\mathbf{R}_{N}=0$ and the values of φ that comply with the differential equation (1), are greater for irregular than for regular nets. For this reason and because the number of straight lines simulating a sharply curved part of the boundary must be large, the number of nodes must also be large. This increases the labour in solving the simultaneous equations.

In the present paper we introduce the use of those curvilinear nets in which the mesh contours are parts of circles or parts of circles and straight lines. Basing our derivations on the conformal transformation of a curvilinear into a rectilinear mesh, in Section II methods are developed by which the interior of a "curvilinear rectangle" can be approximated by lumped conductances connected between its corners. This approximation permits the use of different
transformation functions for the different meshes of a curvilinear net as long as these functions supply the same curve for the common boundary of adjacent meshes. If a suitable net is laid out and the interior of all meshes replaced by the conductances mentioned, an electrical network results in which the statement of Kirchhoff's first rule supplies the required equation (2).

The error occurring when using the described nets appropriately is much smaller than the error involved in nets with straight contours. The additional labour spent in laying out a curvilinear net may be often compensated for by the smaller number of nodes required for the same accuracy. Since it can always be arranged that nodes are on the boundaries, as in a net formed of irregular triangles, no special artifices are required for the boundaries. Contours used in engineering are often composed of parts of circles and straight lines; hence the shape of the boundary can generally be exactly adhered to. In certain types of problems, for instance, the problem of finding the maximum value of the voltage gradient occurring in a material, this is an advantage, because the maximum voltage gradient occurs usually at the boundaries.

II. The Replacement of the Interior of a " Curvilinear Rectangle" by Lumped Conductances

Let

$$
\begin{equation*}
w=u+\mathrm{j} v=w(z)=w(x+\mathrm{j} y) \tag{3}
\end{equation*}
$$

be an analytical function. Then u and v comply with the Cauchy-Riemann differential equations

$$
\left.\begin{array}{l}
\frac{\partial u}{\partial a}=\frac{\partial v}{\partial y} \tag{4}\\
\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
\end{array}\right\}
$$

Fig. 1.-Rectilinear rectangle in the w-plane.

Fig. 2.-Curvilinear rectangle in the z-plane.

A rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ in the w-plane (Fig. 1) with the mid points $E^{\prime}, F^{\prime}, G^{\prime}, H^{\prime}$ of its sides, its centre J^{\prime}, and the mid points $K^{\prime}, L^{\prime}, M^{\prime}$, and N^{\prime} between J^{\prime} and $E^{\prime}, F^{\prime}, G^{\prime}$, and H^{\prime} respectively is the result of a transformation by $w(z)$ of a "curvilinear rectangle " $A B C D$ in the z-plane (Fig. 2) marked correspondingly without primes. Let x and y be the variables appearing in equation (1) and let the curvilinear rectangle $A B C D$ (Fig. 2) be a mesh of a curvilinear net with the
nodes A, B, C, and D. To replace the interior of this mesh by a network of conductances we proceed in the following way. First we express the difference in potential $\left(\varphi_{A}-\varphi_{B}\right)$ between the points A and B as an integral taken along the contour $B E A$, i.e. along the contour defined by $u=u_{1}$.

$$
\begin{equation*}
\varphi_{A}-\varphi_{B}=\int_{B}^{A} \frac{\partial \varphi}{\partial v} \mathrm{~d} v \tag{5}
\end{equation*}
$$

If $\partial \varphi / \partial v$ is expressed by Taylor's expansion about the point E and the integration carried out we obtain

$$
\begin{equation*}
\varphi_{A}-\varphi_{B}=\left(\frac{\partial \varphi}{\partial v}\right)_{E} \cdot \Delta v+O\left(\Delta v^{3}\right) \tag{6}
\end{equation*}
$$

where the subscript E denotes the value at the point E and Δv is given by

$$
\begin{equation*}
\Delta v=v_{2}-v_{1} . \tag{7}
\end{equation*}
$$

The term $O\left(\Delta v^{3}\right)$ contains $\left(\partial^{3} \varphi / \partial v^{3}\right)_{E}$ and higher derivatives of φ.
In the approximation by lumped conductances the current passing within the conducting sheet through the line $E K J L F$ is to be made equal to the current collected at the point B. The current $I_{E J}$ through the line $E K J$ is given by

$$
\begin{equation*}
I_{E J}=\int_{E}^{J} \sigma\left(\frac{\partial \varphi}{\partial y} \mathrm{~d} x-\frac{\partial \varphi}{\partial x} \mathrm{~d} y\right) . \tag{8}
\end{equation*}
$$

If $\partial \varphi / \partial x$ and $\partial \varphi / \partial y$ are expressed in terms of $\partial \varphi / \partial u, \partial \varphi / \partial v, \partial u / \partial x, \partial v / \partial x$, $\partial u / \partial y$, and $\partial v / \partial y$, and equations (4) are used, expressions for the total differentials $\mathrm{d} u$ and $\mathrm{d} v$ result. The formula

$$
\begin{equation*}
I_{E J}=\int_{E}^{J} \sigma\left(\frac{\partial \varphi}{\partial v} \mathrm{~d} u-\frac{\partial \varphi}{\partial u} \mathrm{~d} v\right) \tag{9}
\end{equation*}
$$

is obtained. For the contour $E K J \mathrm{~d} v$ is zero and the second term in the bracket vanishes. With the aid of various expansions according to Taylor's theorem this integral can be approximated on the basis of $\sigma_{K},(\partial \varphi / \partial v)_{E}$, and $\left(\partial^{2} \varphi / \partial u \partial v\right)_{J}$, where the subscripts denote the values at the appropriate points. If, further, $\left(\partial^{2} \varphi / \partial u \partial v\right)_{J}$ is approximated by

$$
\begin{equation*}
\left(\frac{\partial^{2} \varphi}{\partial u \partial v}\right)_{J}=\frac{\varphi_{B}+\varphi_{D}-\varphi_{A}-\varphi_{C}}{\Delta u \Delta v}+O\left(\Delta v^{2}\right)+O\left(\Delta u^{2}\right) \tag{10}
\end{equation*}
$$

and the resulting expression for $I_{E J}$ divided by equation (6) we obtain

$$
\begin{equation*}
\frac{I_{E J}}{\varphi_{A}-\varphi_{B}}=\sigma_{K} \frac{\Delta u}{2 \Delta v}\left[1+\frac{1}{4} \frac{\varphi_{B}+\varphi_{D}-\varphi_{A}-\varphi_{C}}{\varphi_{A}-\varphi_{B}}+O\left(\Delta u^{2}\right)+O\left(\Delta v^{2}\right)\right] . \tag{11}
\end{equation*}
$$

The terms $O\left(\Delta u^{2}\right)$ and $O\left(\Delta v^{2}\right)$ contain expressions in σ and φ obtained by at least three differentiations, with respect to u or v. The term $\frac{1}{4}\left(\varphi_{B}+\varphi_{D}-\varphi_{A}-\varphi_{C}\right) /\left(\varphi_{A}-\varphi_{B}\right)$ is $O(\Delta u)$, as can be seen from equations (6) and (10).

Expressions similar to equation (11) can be obtained for $I_{F J} /\left(\varphi_{C}-\varphi_{B}\right)$, $I_{G J} /\left(\varphi_{D}-\varphi_{C}\right)$, and $I_{H J} /\left(\varphi_{D}-\varphi_{A}\right)$. Closer scrutinizing, i.e. computing $\left(I_{E J}+I_{F J}\right)$, $\left(I_{F J}+I_{G J}\right),\left(I_{G J}+I_{H J}\right)$, and ($\left.I_{H J}+I_{E J}\right)$, results in two alternative networks of conductances replacing the interior of the curvilinear rectangle $A B C D$. The first alternative (see Fig. 3) neglects errors $O(\Delta u)$ and $O(\Delta v)$. This means that

Fig. 3.-Approximate representation of a mesh with a relative error of the order of Δu and Δv.

$$
\begin{aligned}
& Y_{A B}=Y_{C D}=\frac{1}{2} \sigma_{J}\left|\frac{\Delta u}{\Delta v}\right|, \\
& Y_{D A}=Y_{B C}=\frac{1}{2} \sigma_{J}\left|\frac{\Delta v}{\Delta u}\right|
\end{aligned}
$$

terms like $\frac{1}{4}\left(\varphi_{B}+\varphi_{D}-\varphi_{A}-\varphi_{C}\right) /\left(\varphi_{A}-\varphi_{B}\right)$ in equation (11) are neglected and that $\sigma_{K}, \sigma_{L}, \sigma_{M}$, and σ_{N} can be replaced by σ_{J}. Figure 3 gives the details of the network. In the second alternative (Fig. 4) the error is $O\left(\Delta u^{2}\right)$ plus $O\left(\Delta v^{2}\right)$. Terms like $\frac{1}{4}\left(\varphi_{B}+\varphi_{D}-\varphi_{A}-\varphi_{C}\right) /\left(\varphi_{A}-\varphi_{B}\right)$ in equation (11) are retained, but it is

Fig. 4.-Approximate representation of a mesh with a relative error of the order of Δu^{2} and Δv^{2}.

$$
\begin{aligned}
& Y_{A B}=\frac{1}{2} \sigma_{K}\left|\frac{\Delta u}{\Delta v}\right|-Y_{A C} ; \quad Y_{C D}=\frac{1}{2} \sigma_{M}\left|\frac{\Delta u}{\Delta v}\right|-Y_{A C} ; \\
& Y_{B C}=\frac{1}{2} \sigma_{L}\left|\frac{\Delta v}{\Delta u}\right|-Y_{A C} ; \quad Y_{D A}=\frac{1}{2} \sigma_{N}\left|\frac{\Delta v}{\Delta u}\right|-Y_{A C} ; \\
& Y_{A C}=Y_{B D}=\frac{1}{8} \sigma_{J}\left(\left|\frac{\Delta u}{\Delta v}\right|+\left|\frac{\Delta v}{\Delta u}\right|\right) .
\end{aligned}
$$

admissible to replace the multiplying factors $\sigma_{K}, \sigma_{L}, \sigma_{M}$, and σ_{N} by σ_{J} as far as these terms are concerned. In practice one will usually replace $\sigma_{K}, \sigma_{L}, \sigma_{M}$, and σ_{N} by σ_{J} throughout or by values pertaining to one of the corners of the curvilinear square $A B C D$, because the variation of σ with position will not be rapid.

For $\sigma=$ constant the error vanishes if the lines of constant φ in the w-plane are straight, because then all derivatives of φ with respect to u and v higher than the first vanish and these higher derivatives are multiplying factors in the terms $O\left(\Delta u^{2}\right)$ and $O\left(\Delta v^{2}\right)$ of equations (10) and (11). In particular this is the case if two opposite sides of the curvilinear rectangle $A B C D$ coincide with lines of constant potential.

The method described requires that a loading of the curvilinear rectangle $B F J E$ by external currents is lumped as an external current applied at the node B. Similarly the loadings of the rectangles $F C G J, J G D H$, and $E J H A$ are concentrated at the nodes C, D, and A respectively. The magnitudes of the concentrated currents can be computed approximately as the products of the areas of the rectangles concerned and mean values of the specific loading $(-\tau)$.

III. Nets in which the Mesh Contours are Parts of Circles and Straight Lines

The results of Section II show that there is no objection to employing different analytical functions for different meshes of the net as long as adjacent contours coincide. In this section it will be shown how curvilinear rectangles bounded by parts of circles or straight lines can be conveniently dealt with.

Fig. 5.-Curvilinear rectangle composed of arcs of circles.
(a) The Field Produced by One Source and One Sink

In a system of Cartesian coordinates ξ, η (Fig. 5) that does not usually coincide with the system of coordinates x, y used in equation (1), let the point $M_{1}(m, 0)$ be a sink and the point $M_{2}(-m, 0)$, not shown in the diagram, be a
source of current, both of the same intensity. The ξ-axis will be called the source axis, the η-axis the sourceless axis, and the origin P_{0} the geometric centre. If the intensity of source and sink is appropriately chosen, the analytical function

$$
\begin{equation*}
w=\ln \frac{\zeta-m}{\zeta+m} \tag{12}
\end{equation*}
$$

of $\zeta=\xi+\mathrm{j} \eta$ supplies in its real part

$$
\begin{equation*}
u=\frac{1}{2} \ln \frac{(\xi-m)^{2}+\eta^{2}}{(\xi+m)^{2}+\eta^{2}} \tag{13}
\end{equation*}
$$

the family of equipotentials (u is the parameter of the family), and in its imaginary part

$$
\begin{equation*}
v=\tan ^{-1} \frac{\eta}{\xi-m}-\tan ^{-1} \frac{\eta}{\xi+m} \tag{14}
\end{equation*}
$$

the family of flow functions (v is the parameter of the family) peculiar to this arrangement. By appropriate manipulations on equations (13) and (14) or by straight-out verification it can be shown that a circle with centre $\left(b_{1}, 0\right)$ and radius r_{1} where

$$
\begin{equation*}
r_{1}^{2}=b_{1}^{2}-m^{2} \tag{15}
\end{equation*}
$$

is an equipotential for a value of the potential

$$
\begin{equation*}
u_{1}=\sinh ^{-1}\left(\frac{m}{r_{1}}\right) \tag{16}
\end{equation*}
$$

(and similarly for other subscripts) and that a circle with centre (O, B_{1}) and radius R_{1} where

$$
\begin{equation*}
R_{1}^{2}=B_{1}^{2}+m^{2} \tag{17}
\end{equation*}
$$

is a flow line for the value of the flow function

$$
\begin{equation*}
v_{1}=\sin ^{-1}\left(\frac{m}{R_{1}}\right) \tag{18}
\end{equation*}
$$

(and similarly for other subscripts). If the quantity m, henceforth called the parameter, is given and two pairs of values u_{1}, u_{2} and v_{1}, v_{2} are selected, four circles result from equations (15)-(18) and determine a curvilinear rectangle $A B C D$ (Fig. 5). This rectangle can be replaced by a network of conductances (see Figs. 3 and 4). The quantities Δu and Δv are the absolute values of the differences $\left(u_{1}-u_{2}\right)$ and ($v_{1}-v_{2}$) respectively.

Equations (15) and (17) on the one hand and equations (16) and (18) on the other become identical, if fictitious quantities

$$
\left.\begin{array}{rl}
U & =\mathrm{j} v, \tag{19}\\
M & =\mathrm{j} m
\end{array}\right\}
$$

are introduced and in writing down the equations either capital letters or small letters are used. This symmetry with small letters referring to the u-circles and capital letters referring to the v-circles is useful.

(b) Basic Relations for a Curvilinear Rectangle

In Figure 5 besides the axes of coordinates ξ and η with the origin (the geometric centre) P_{0} the axes of coordinates x and y, referring to equation (1) are shown. The coordinates added in parentheses to the individual points refer to the frame (x, y). In the curvilinear rectangle $A B C D p_{1}, p_{2}$ are the centres of the u-circles $u=u_{1}, u=u_{2}$, and P_{1}, P_{2} the centres of the v-circles $v=v_{1}, v=v_{2}$. The points n_{12} and N_{12} are the mid points between the respective circle centres. From Pythagoras's theorem applied to the triangles $P_{2} p_{2} D$ and $P_{2} p_{2} P_{0}$ we obtain

$$
\begin{equation*}
\overline{P_{2} D^{2}}=\overline{P_{2} P_{0}^{2}}+\left(q_{12}+\frac{d_{12}}{2}\right)^{2}-r_{2}^{2} \tag{20}
\end{equation*}
$$

where d_{12} is the distance between the centres of the two u-circles and q_{12} the distance between n_{12} and P_{0}. Similarly we obtain

$$
\begin{equation*}
\overline{P_{2} A^{2}}=\overline{P_{2} P_{0}^{2}}+\left(q_{12}-\frac{d_{12}}{2}\right)^{2}-r_{1}^{2} \tag{21}
\end{equation*}
$$

Since $\overline{P_{2} D}=\overline{P_{2} A}$ we obtain from equations (20) and (21)

$$
\begin{equation*}
q_{12}=\frac{r_{2}^{2}-r_{1}^{2}}{2 d_{12}} \tag{22}
\end{equation*}
$$

It follows from the triangle $M_{1} P_{0} P_{2}$ that

$$
\begin{equation*}
\overline{P_{2} M_{1}^{2}}=P_{2} P_{0}^{2}+m^{2} \tag{23}
\end{equation*}
$$

Since $\overline{P_{2} D}=\overline{P_{2} A}=\bar{P}_{2} M_{1}$ and

$$
\left.\begin{array}{l}
b_{1}=q_{12}-\frac{d_{12}}{2} \tag{24}\\
b_{2}=q_{12}+\frac{d_{12}}{2}
\end{array}\right\}
$$

we obtain from equations (20), (21), and (23) the conditions for orthogonality (see equation (15))

$$
\left.\begin{array}{l}
m^{2}=b_{2}^{2}-r_{2}^{2} \tag{25}\\
m^{2}=b_{1}^{2}-r_{1}^{2}
\end{array}\right\}
$$

and

$$
\begin{equation*}
m^{2}=q_{12}^{2}+\left(\frac{d_{12}}{2}\right)^{2}-\frac{r_{2}^{2}+r_{1}^{2}}{2} \tag{26}
\end{equation*}
$$

Equations (22), (24), (25), and (26) refer to the u-circles. It can be easily shown that these equations hold good for the v-circles, if the quantities r_{1}, r_{2}, $q_{12}, d_{12}, b_{1}, b_{2}$, and m are replaced by the corresponding capital letter quantities (see Fig. 5 and equation (19)).

In Section IV it will be discussed in detail how these relations can be utilized to solve the problems connected with the layout of a curvilinear net. At present it should be pointed out only that the frame (ξ, η) and the value of m are unequivocally determined if two u-circles or two v-circles are given.

(c) General Points Regarding the Layout of a Net

It is advisable to work with the same frame (x, y) for the whole net. Figure 6 shows a convenient way of recording in a single figure for the whole net : the centres $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right),\left(x_{4}, y_{4}\right)$ of four contour circles, their radii r_{1}, r_{2}, r_{3}, r_{4}, the geometric centre (x_{0}, y_{0}), and the parameter m of a mesh $A B C D$ and, with the aid of the arrowed lines starting at the value of m, which circles are the v-circles. If a circle degenerates into a straight line (e.g., the line $A F$, Fig. 6), the direction tangent a_{6} of the line and a point (x_{6}, y_{6}) through which it passes are indicated, instead of the position of the centre and the length of the radius which are infinite.

Fig. 6.-Method of recording the characteristic data in a diagram.
If a net consisting entirely of curvilinear rectangles is to be laid out, one tries to follow approximately the direction of the equipotentials and their orthogonal trajectories. If curvilinear meshes are to be employed near the boundaries only, one tries to avoid too abrupt changes of the angle between the directions of the equipotentials and the mesh boundaries. These procedures ensure that the lines of constant φ in the w-plane are only slightly curved (see end of Section II). After forming an idea of the mesh sizes in the individual parts of the field one starts at a boundary and proceeds from mesh to mesh. Thereby problems 1,2 , and 3 , to be dealt with in Section IV (a), are to be solved in succession. Meshes in which simultaneously two v-circles degenerate into straight lines are dealt with in Section IV (b). If the mesh size is to be changed, the method described in Section VI is used. Sharp corners occurring at the boundaries or at the surfaces between dielectrics of different dielectric constants can be included by a procedure described © in Section V.

IV. Detailed Procedures for the Layout of a Net

If the accuracy requirements are not very stringent it will suffice for most of the meshes to rely on the drawing and to measure the required dimensions. For some meshes, or if greater accuracy is required, for a considerable number of
them computations must replace measurements. It is recommended that computations be carried out in Cartesian coordinates common to all meshes, as mentioned before. The procedures most suitable for use with Cartesian coordinates are described below.

(a) At least One of the u-Circles and One of the v-Circles do not degenerate into a Straight Line

Problem 1.-Two u-circles or two v-circles are given. It is not necessarily known whether they are u - or v-circles. Find the geometric centre and the value of the parameter.

Solution.-Refer to Figure 5. Since it is not known whether the circles are u - or v-circles, small letters will be used for the symbols, but the procedure is similar for capital letter symbols.
(1) Find the mid point n_{12} between the two centres of the circles.
(2) Using equation (22) find the length q_{12}.
(3) On the line joining the centres of the two circles transfer the length q_{12} from n_{12} to that side on which the centre of the smaller circle lies. This determines the geometric centre P_{0}.
(4) Using equation (24) compute b_{1} or b_{2} and using equation (25) compute m. Alternatively, m can be found directly from equation (26). If m is ${ }^{-}$ real, the two given circles are u-circles, if m is imaginary, they are v-circles.
If one of the given circles degenerates into a straight line, the geometric centre is found as the intersection of this line with the perpendicular to it through the centre of the non-degenerate circle. The value of the parameter is given by one of the two equations (25).

Problem 2.-The geometric centre, the source and sourceless axes, the value of the parameter, and a point are given. Find the u-circle and the v-circle passing through the given point.

Solution.-Refer to Figure 5. Let D be the given point. If either p_{2}, the centre of the u-circle through D, or P_{2}, the centre of the v-circle through D are given, draw a perpendicular to the line $p_{2} D$ (or $P_{2} D$) through D and intersect with the axis on which $p_{2}\left(P_{2}\right)$ does not lie. The point of intersection is the centre of the circle not given. If neither circle through D is given, find the centre of the v-circle through D as the intersection of the bisector of $D M_{1}$ (or $D M_{2}$) and the sourceless axis.

Problem 3.-One u - and one v-circle, the geometric centre, the two axes, and the value of the parameter are given. Find the two points of intersection, one of which. will be used.

Solution.-Refer to Figure 5. Let the given circles be the $u_{2^{-}}$and v_{2}-circle with the centres p_{2} and P_{2} respectively. The graphical solution is straightforward. Analytically the point D can, often with less labour, be found as the point of intersection of the straight lines $p_{2} D$ and $P_{2} D$. If a is the direction tangent of the line $p_{2} P_{2}$, the direction tangents of the lines $p_{2} D$ and $P_{2} D$ equal $\tan \left[\tan ^{-1} a \pm \tan ^{-1}\left(R_{2} / r_{2}\right)\right]$ and $\tan \left[\tan ^{-1} a \mp \tan ^{-1}\left(r_{2} / R_{2}\right)\right]$ respectively.

If one of the two circles degenerates into a straight line, let it be called the circle 1. Then the distance from the geometric centre P_{0} of the points of intersection between the other circle 2 and this straight line is equal to $\left(b_{2} \pm r_{2}\right)$ or ($B_{2} \pm R_{2}$), as the case may be, positive values being on the side of P_{0} on which p_{2} or P_{2} lies.
b_{2} or B_{2} is to be computed from equation (25).

(b) Both v-Circles Degenerate into Straight Lines

In this case the bundle of v-circles degenerates into a pencil of straight lines and the u-circles are concentric circles with their centre in the point of intersection of the v-lines. If the direction tangents of two v-lines are a_{1} and a_{2} and the radii of two u-circles R_{1} and R_{2}, we obtain

$$
\begin{align*}
& \Delta u=u_{2}-u_{1}=\ln \frac{R_{2}}{\overline{R_{1}}}=2 \cdot 30259 \log _{10}\left(\frac{R_{2}}{R_{1}}\right), \ldots \ldots \ldots \tag{27}\\
& \Delta v=v_{2}-v_{1}=\tan ^{-1} a_{2}-\tan ^{-1} a_{1}=\tan ^{-1} \frac{a_{2}-a_{1}}{1+a_{1} a_{2}} . \quad \ldots \tag{28}
\end{align*}
$$

(c) Notes Regarding the Computation of $\Delta \mathrm{u}$ and $\Delta \mathrm{v}$

When using equations (16) and (18) for the computation of $u_{1}, u_{2}, v_{1}, v_{2}$ care must be exercised-because both $\sinh ^{-1}$ and $\sin ^{-1}$ are multivalued functions. The following rules eliminate any possibility of an error in the computation of $|\Delta u / \Delta v|$ and $|\Delta v / \Delta u|$, that is, the quantities required for the computation of the conductances in Figures 3 and 4.

Rule for the Computation of $\Delta \mathrm{u}$
To find $|\Delta u|$ take the difference of $\left|u_{1}\right|$ and $\left|u_{2}\right|$ if the sourceless line is outside the curvilinear square, and add $\left|u_{1}\right|$ and $\left|u_{2}\right|$ if it passes through it.

Rules for the Computation of $\Delta \mathrm{v}$
(1) Definition of " small" and " great" arcs.-Let that part of the v-circle that lies between the sources M_{1} and M_{2} and contains the arc considered be drawn (or thought to be drawn). If this part of the circle is greater than a half-circle, viz. if the centre of the circle is within the area defined by the part of the v-circle drawn and the straight line connecting the sources M_{1} and M_{2}, the arc shall be called a "great" arc. If this is not the case the arc shall be called a " small" arc.
(2) If $\operatorname{Sin}^{-1}\left(m / R_{1}\right)$ is the value of $\sin ^{-1}(m / R)$ that is between 0 and $\frac{1}{2} \pi$, then

$$
\begin{array}{ll}
v_{1}=\sin ^{-1}\left(\frac{m}{R_{1}}\right)=\sin ^{-1}\left(\frac{m}{R_{1}}\right), & \text { for " small" arcs, } \\
v_{1}=\sin ^{-1}\left(\frac{m}{R_{1}}\right)=\pi-\operatorname{Sin}^{-1}\left(\frac{m}{R_{1}}\right), & \text { for " great" arcs. }
\end{array}
$$

(3) To find $|\Delta v|$, take the difference of $\left|v_{1}\right|$ and $\left|v_{2}\right|$ if the source line is outside the curvilinear square, and add $\left|v_{1}\right|$ and $\left|v_{2}\right|$ if it passes through it.

V. Sharp Corners

Sharp corners may occur at the electrodes and at the border lines of different dielectrics. Usually a sharp corner is formed by two straight lines. If this is not the case it can for a certain distance be approximated by a corner of this type to make the following treatment possible.

In Figure 7 let $a O c$ be the sharp corner of the aperture

$$
\begin{equation*}
\alpha=p \pi, \tag{29}
\end{equation*}
$$

and let $O b$ be the bisector of α. Let the distance $O A=O B=O C=t$ be conveniently chosen. Let three circles of equal radius R with their centres on the lines $O a, O b$, and $O c$ be drawn in such a way that they intersect at right angles.

Fig. 7.-Sharp corner in the ζ-plane.

Fig. 8.-Sharp corner in the w-plane.
at the points D and E that lie on the bisectors $O d$ and $O e$ of the angles $a O b$ and $b O c$ respectively. The analysis of the triangle $O D M$ shows that the radii R of these circles and the distances s of the points D and E from the corner O are given by

$$
\begin{align*}
R & =\frac{t \cdot \sin (p \pi / 4)}{1 / \sqrt{2}-\sin (p \pi / 4)} \tag{30}\\
s & =\frac{t \cdot \sin [(1-p) \pi / 4]}{1 / \sqrt{2}-\sin (p \pi / 4)} \tag{31}
\end{align*}
$$

The ratios (R / t) and (s / t) for a few typical angles α are contained in Table 1. If a system of Cartesian coordinates (ξ, η) with the origin O and the direction of the ξ-axis coinciding with the direction $O a$ is chosen (Fig. 7), the configuration of Figure 7 can be conformally transformed into the configuration of Figure 8 (Schwarz-Christoffel transformation) and the transforming function is

$$
\begin{equation*}
\zeta=\xi+\mathrm{j} \eta=t\left(\frac{w}{t}\right)^{p}=t\left(\frac{u+\mathrm{j} v}{t}\right)^{p} \tag{32}
\end{equation*}
$$

The curvilinear square $O^{\prime} A^{\prime} D^{\prime} B^{\prime}$ deviates only slightly from the rectilinear square $O^{\prime} A^{\prime} F^{\prime} B^{\prime}$. This is evident from Table 1, in which the ratios

$$
\begin{equation*}
\frac{O^{\prime} D^{\prime}}{O^{\prime} F^{\prime}}=\left(\frac{s}{\bar{t}}\right)^{1 / p} \cdot \frac{1}{\sqrt{2}} \tag{33}
\end{equation*}
$$

are tabulated for various angles α.

Table 1
ratios $(R / t),(s / t)$, and $\left(O^{\prime} D^{\prime} / O^{\prime} F^{\prime}\right)$ for typical angles α

α	45°	90°	135°	180°	225°	270°	315°
p	$0 \cdot 250$	$0 \cdot 500$	0.750	$1 \cdot 000$	$1 \cdot 250$	$1 \cdot 500$	$1 \cdot 750$
R / t	$0 \cdot 381$	1-180	$3 \cdot 667$	∞	-6.684	-4.262	-3.597
s / t	1.085	$1 \cdot 178$	$1 \cdot 288$	$1 \cdot 414$	$1 \cdot 570$	1-762	$2 \cdot 035$
$O^{\prime} D^{\prime} / O^{\prime} F^{\prime} .$.	$0 \cdot 980$	$0 \cdot 982$	$0 \cdot 991$	1. 000	$1 \cdot 014$	1.031	1.061

An argument based on the subdivision of the figures $O A D B$ and OBEC into ($n^{2}-1$) parts which are nearly curvilinear squares (n is an integer) and one figure which is geometrically similar to the original figure, shows that the figures $O A D B$ and $O B E C$ can in very good approximation be replaced by the networks of conductances shown in Figures 3 and 4, as if they were curvilinear squares $(\Delta u=\Delta v=t)$ with the corners at O, A, D, B and O, B, E, C respectively.

Fig. 9.-Curvilinear rectangle with a sharp corner, $t_{1}>t$.
It is sometimes convenient to make the lengths $O A$ and $O B$ slightly different. In this case Figures 3 and 4 can still be used, if the following specifications referring to Figure 9 for $t_{1}>t$ are adhered to, in which the directions of Δu and Δv are indicated.
R is given by equation (30).

$$
\begin{align*}
& R_{1}=\frac{\left(t-t_{1}\right)\left[\left(t-t_{1}\right) / \sqrt{2}+\left(t+t_{1}\right) \sin (p \pi / 4)\right]+2 \sqrt{2} t t_{1} \sin ^{2}(p \pi / 4)}{2[1 / \sqrt{2}-\sin (p \pi / 4)] \cdot\left[t \cdot \sqrt{2} \cdot \sin (p \pi / 4)+\left(t-t_{1}\right)\right]}, \tag{34}\\
& \left.\begin{array}{l}
\frac{\Delta u}{\Delta v}=\left(\frac{t_{1}}{t}\right)^{1 / p}, \\
\frac{\Delta v}{\Delta u}=\left(\frac{t}{t_{1}}\right)^{1 / p} \cdot
\end{array}\right\} \tag{35}
\end{align*}
$$

Equation (34) is derived from the condition that for given values of t and t_{1} and for R given by equation (30), the circles of radii R and R_{1} intersect at right angles. Equations (35) are the consequence of the transformation equation (32).

VI. Change of the Mesh Size

In parts of the field in which the field gradient is smaller and does not change rapidly an increase of the mesh size reduces the labour considerably without affecting the degree of accuracy. If in Figure 10 the circle which passes through the points A, B, and C forms the boundary $A C$ in the curvilinear rectangle $A C D E$ and the boundary $C B$ in the curvilinear rectangle $C B F D$-which can be arranged for in the layout of the net-the node C can be eliminated in the

Fig. 10.-Part of a net with a node C not yet eliminated.
following way. Prerequisites are that, in the neighbourhood of C, σ does not vary very much and the equipotentials and field lines in the w-plane are nearly straight. Then we can assume that approximately

$$
\begin{equation*}
\varphi_{c}=k_{a} \varphi_{a}+k_{b} \varphi_{b} \tag{36}
\end{equation*}
$$

where

$$
\left.\begin{array}{l}
k_{a}=\frac{Y_{a}}{Y_{a}+Y_{b}} \tag{37}\\
k_{b}=\frac{Y_{b}}{Y_{a}+Y_{b}}
\end{array}\right\}
$$

and where Y_{a} and Y_{b} are the conductances connecting the nodes $C A$ and $C B$ respectively. Let us split each of the conductances Y_{E}, Y_{D}, and Y_{F} that connect the nodes E, D, and F respectively and C (Fig. 10) into two parallel conductances $\left(k_{a} Y_{E}\right),\left(k_{a} Y_{D}\right),\left(k_{a} Y_{F}\right)$ leading to node A, and $\left(k_{b} Y_{E}\right),\left(k_{b} Y_{D}\right),\left(k_{b} Y_{F}\right)$ leading to node B respectively (Fig. 11). Let us, further, connect the nodes A and B by a conductance equal to the series combination of Y_{a} and Y_{b}. The broken lines in Figures 10 and 11 are the conductances that are affected by this procedure and the full lines are those that are not. If the potentials $\varphi_{A}, \varphi_{B}, \varphi_{D}, \varphi_{E}, \varphi_{F}$ of the nodes A, B, D, E, and F, and the external node currents $I_{A}, I_{B}, I_{D}, I_{E}$, and I_{F} at these nodes (Figs. 10 and 11) respectively are assumed to be equal in pairs,
the analyses of Figures 10 and 11 show that the current I_{C} appearing in Figure 10 is split into two parts $\left(k_{a} I_{C}\right)$ and ($k_{b} I_{C}$) loading additionally the nodes A and B as shown in Figure 11. Since this way of accounting for the current I_{C} is reasonable, the given method for the elimination of the node C is sound.

Fig. 11.-Part of the net of Figure 10 with the node C eliminated.
VII. The Computation of the Potential Gradients
(a) Curvilinear Squares

If the values $\varphi_{A}, \varphi_{B}, \varphi_{C}$, and φ_{D} of the potentials at the four corners of a curvilinear rectangle $A B C D$ (Fig. 2) are given, the potential gradient at any point that is not outside this rectangle can be computed with the aid of the formulae

$$
\left.\begin{array}{l}
g_{u}=\frac{\partial \varphi}{\partial u} \cdot\left|\frac{\mathrm{~d} w}{\mathrm{~d} \zeta}\right| \tag{38}\\
g_{v}=\frac{\partial \varphi}{\partial v} \cdot\left|\frac{\mathrm{~d} w}{\mathrm{~d} \zeta}\right|
\end{array}\right\}
$$

In equations (38) g_{u} and g_{v} are the potential gradients in the directions of the orthogonal lines $v=$ constant and $u=$ constant respectively, so that the magnitude g of the gradient is given by

$$
\begin{equation*}
g^{2}=g_{u}^{2}+g_{v}^{2} \tag{39}
\end{equation*}
$$

If the field produced by φ in the w-plane is nearly uniform, the value $\partial \varphi / \partial u$ can be interpolated from the values $(\partial \varphi / \partial u)_{A D}$ and $(\partial \varphi / \partial u)_{B C}$ where $(\partial \varphi / \partial u)_{A D}$ can be approximated by

$$
\begin{equation*}
\left(\frac{\partial \varphi}{\partial u}\right)_{A D}=\frac{\varphi_{D}-\varphi_{A}}{\Delta u} \tag{40}
\end{equation*}
$$

and similarly for $(\partial \varphi / \partial u)_{B C}$ and $\partial \varphi / \partial v$. For $|d w / \mathrm{d} \zeta|$ we find by differentiation of (12) after some manipulations

$$
\begin{equation*}
\left|\frac{d w}{d \zeta}\right|=\frac{2 m}{\sqrt{ }\left\{\left(\rho^{2}-m^{2}\right)^{2}+4 m^{2} \eta^{2}\right\}} \tag{41}
\end{equation*}
$$

where $\rho=|\zeta|$ is the distance of the point considered from the geometric centre, η its distance from the source line, and m the parameter.

The use of equation (40) leads to errors, if the field of φ in the w-plane is considerably curved. For practical work the case of importance is that one for which one of the two lines of constant φ, say the line $\varphi=\varphi_{D}$, is a straight line of constant u or v in the w-plane, corresponding to a boundary equipotential in the z-plane, and the other line of constant φ, that is, the line $\varphi=\varphi_{A}$, can be approximated by a circle. This is shown in Figures $12(a)$ and (b) with the notations that correspond to the boundary equipotential in the z-plane being a line of constant v.

If coordinates ξ and η are introduced equalling u and v (Fig. 12 (a)) or $(-v)$ and u (Fig. $12(b))$ respectively, the field in the w-plane corresponding to Figure $12(a)$ or $12(b)$ can be assumed to be produced by a source and sink of equal intensities as was explained in Section III (a). If the intensity of the source and sink is C, then φ is given for Figure $12(a)$ by the right-hand side of equation (13) multiplied by C, and for Figure 12 (b) by the right-hand side of

Fig. 12.-Equipotentials in the w-plane.
(a) Case 1 ; (b) case 2.
equation (14) multiplied by C. A pair of these C-multiplied equations (13) or (14) written down for two pairs of values C, m and C^{\prime}, m^{\prime} and equated for $\xi=\Delta u, \eta=0$ (Fig. $12(a))$ or $\xi=0, \eta=\Delta u$ (Fig. 12 (b)) gives a relation between C, m, C^{\prime}, and m^{\prime} for a fixed distance Δu and a fixed potential φ_{A}, but the equipotential lines φ_{A} are of different curvatures. If the C-multiplied right-hand side of equation (13) is differentiated with respect to ξ and ξ made equal to zero, and the C-multiplied right-hand side of equation (14) differentiated with respect to η and η made equal to zero, expressions for $\partial \varphi / \partial u$ along the equipotential φ_{D} result. The ratio c of $\partial \varphi / \partial u$ for a given value of m, to $(\partial \varphi / \partial u)^{\prime}$ for $m^{\prime} \rightarrow \infty$ can be computed and determines the increase or decrease of $\partial \varphi / \partial u$ compared with the case of a uniform field. If C is eliminated by using the relation between C, m, C^{\prime}, and m^{\prime}, C^{\prime} cancels out and we obtain, after expressing m in terms of the radius of curvature r or R with the aid of equation (15) or (17) and an obvious relation eliminating b or B with the aid of Δu :

For Figure 12 (a)

$$
\begin{align*}
c=\frac{\partial \varphi}{\partial u} \int\left(\frac{\partial \varphi}{\partial u}\right)^{\prime} & =\frac{m^{2}}{m^{2}+\eta^{2}} \cdot c_{0}, \tag{42}\\
c_{0} & =\frac{\Delta u / m}{\tanh ^{-1}(\Delta u / m)} \tag{43}\\
\frac{\Delta u}{m} & =/\left(\frac{\Delta u}{2 r+\Delta u}\right) \tag{44}
\end{align*}
$$

For Figure 12 (b)

$$
\begin{align*}
c=\frac{\partial \varphi}{\partial u} \int\left(\frac{\partial \varphi}{\partial u}\right)^{\prime} & =\frac{m^{2}}{m^{2}-\xi^{2}} \cdot \mathrm{c}_{0} \tag{45}\\
c_{0} & =\frac{\Delta u / m}{\tan ^{-1}(\Delta u / m)}, \tag{46}\\
\frac{\Delta u}{m} & =\sqrt{\left(\frac{\Delta u}{2 R-\Delta u}\right)} \tag{47}
\end{align*}
$$

c_{0} is the ratio $(\partial \varphi / \partial u) /(\partial \varphi / \partial u)^{\prime}$ at the line of symmetry of Figures 12 (a) and $12(b)$ and is the value sought. $(\partial \varphi / \partial u)^{\prime}$ is the value given by equation (40).

Fig. 13.-Example VIII (a). Field between two concentric circles. Coordinates of points :

$A(3 \cdot 9265$,	$-1 \cdot 6264)$	F	$(6 \cdot 8532$,	$2 \cdot 8387)$
$B(4 \cdot 2205$,	$0 \cdot 50026)$	G	$(9 \cdot 2388$,	$-3 \cdot 8268)$
$C(3 \cdot 9265$,	$1 \cdot 6264)$	H	$(9 \cdot 9437$,	$-1 \cdot 0609)$
$D(5 \cdot 5433$,	$-2 \cdot 2961)$	I	$(9 \cdot 2388$,	$3 \cdot 8268)$
E	$(6 \cdot 6713$,	$0)$		

(b) Squares with a Sharp Corner

For $\alpha>\pi$ the voltage gradient at the corner itself is infinite, but, as Cohn and Vogel (1953) have emphasized, its value at a short distance from the corner has significance in high voltage engineering. The voltage gradient at the corner for $\alpha<\pi$ is zero and its value in the neighbourhood of the corner is of little interest.

To compute the voltage gradient for a point at the distance ρ from the corner equations (38) and (39) are applied again, but $|\mathrm{d} w / \mathrm{d} \zeta|$ is given by

$$
\begin{equation*}
\left|\frac{\mathrm{d} w}{\mathrm{~d} \zeta}\right|=\frac{1}{p} \cdot\left(\frac{t}{\rho}\right)^{(p-1) / p} \tag{48}
\end{equation*}
$$

Equation (48) is obtained from equation (32) by differentiation. For Δu and Δv the values t_{1} and t respectively are taken (Fig. 9). The maximum gradient at the distance ρ from a corner of conducting material occurs for $\alpha>\pi$ on the bisector of the angle α and is directed from the corner. Since this is the only value of interest, no additional work regarding the directions of the lines $u=$ constant and $v=$ constant arises in this case.

VIII. Examples

Two simple examples without current loading ($\tau=0$) will demonstrate the power of the use of curvilinear nets. For the conductivity σ the value $\sigma=1$ is assumed. All numerical values given were computed with a computational accuracy to five digits. This accuracy is unnecessary, unless wanted for the purpose of comparison.
(a) Field between Two Concentric Circles

Figure 13 shows a portion of a sector of 45° aperture bounded by two concentric circle arcs $A B C$ and $G H I$ of radii $4 \cdot 25$ and 10 respectively as equipotentials and by two radii $A G$ and $C I$ as flow lines. This arrangement can easily be analysed by well-known formulae. We start arbitrarily at the point D at a distance 1.75 from the point A and, to simulate unfavourable conditions, select as the mesh boundary $D E$ a circle arc of radius 20 with its centre on the line $A D$ produced beyond the point D. The point E where the mesh boundary ends is the point of its intersection with the bisector of the sector. These assumptions determine a net of four meshes unequivocally. The computed characteristic data of the net are contained in Figure 13, the origin of the Cartesian frame used being the centre of the sector and the x-axis its bisector through E.

The values of $u_{1}, u_{2}, \Delta u, v_{1}, v_{2}, \Delta v, \Delta u / \Delta v$, and $\Delta v / \Delta u$ resulting for the individual meshes are shown in Table 2.

Table 2
values of $u_{1}, u_{2}, \Delta u, v_{1}, v_{2}, \Delta v, \Delta u / \Delta v$, and $\Delta v / \Delta u$ for the meshes of figure 13

	Mesh	ABED	BCFE	DEHG	EFIH
u_{1}	.	$0 \cdot 7923$	0	0	1-6353
$u_{2} \ldots$.	-0.1855	$0 \cdot 6956$	$0 \cdot 7530$	$0 \cdot 7296$
$\Delta u \ldots$.	$0 \cdot 9778$	0.6956	$0 \cdot 7530$	0.9057
v_{1}.	.	0	0.7839	$0 \cdot 3526$	0
$v_{2} \quad \cdots$.	1-2121	1.9463	-0.7626	$1 \cdot 2601$
	\cdots	1-2121	1-1624	1-1152	1.2601
$\Delta u / \Delta v$.	$0 \cdot 8067$	0.5984	$0 \cdot 6752$	0.7188
$\Delta v / \Delta u$		$1 \cdot 240$	$1 \cdot 6720$	$1 \cdot 4810$	1-3912

If the scheme of Figure 4 is taken as the basis, and if the individual conductances are computed and all parallel conductances between two nodes are lumped, the network of Figure 14 results. The potentials φ_{D}, φ_{E}, and φ_{F} of the points D, E, and F were taken as unknowns and the potential of the node $(A-B-C)$ was set equal to 1 and that of the node $(G-\dot{H}-I)$ set equal to zero. The results of the computations are given below and in the brackets are added the theoretically correct values and the per cent. deviations from them. Solving

Fig. 14.-Values of the final conductances in examples VIII (a) and (b).

Conductance	Example VIII (a)	Example VIII (b)
Y_{1}	0.6200	0.6036
Y_{2}	0.9192	1.1036
Y_{3}	0.2992	0.5000
Y_{4}	0.6185	0.0550
Y_{5}	0.6478	0.5000
Y_{6}	0.3376	1.1004
Y_{7}	1.0332	1.6004
Y_{8}	0.6956	0.5000

three simultaneous linear equations expressing Kirchhoff's first rule leads to $\varphi_{D}=0.5781(0.5970,-3.2 \%), \varphi_{E}=0.4707(0.4730,-0.57 \%), \varphi_{F}=0.3678$ $(0 \cdot 3491,+5 \cdot 4 \%)$. It is somewhat misleading to consider the per cent. deviations from the actual values of the potentials, the value $1-\varphi_{F}=0 \cdot 6322(0 \cdot 6509$, -2.9%) is more important, for instance, than φ_{F}. If the deviations are referred to the potential difference between the two outer electrodes the percentages are much smaller. The total conductance between the arcs $A B C$ and $G H I$ has the
value $0.9373(0.9179,+2 \cdot 1 \%)$. Hence the error in the computation of the capacity would be $+2 \cdot 1 \%$. With the aid of the formulae (38), (40), and (41) the approximate values of the gradients g_{A} at A and g_{C} at C were computed. The results are: $g_{A}=0.2696(0.2750,-2 \cdot 0 \%)$ and $g_{C}=0.3097(0 \cdot 2750$, $+12 \cdot 6 \%$). Correction factors c_{0} can be computed, for the node A with the

Fig. 15.-Example VIII (b). Field in a coaxial square cable. Coordinates of points :

$A(0,0)$	$F(1 \cdot 0839,6 \cdot 0839)$
$B(0,3 \cdot 4672)$	$G(5,0)$
$C(0,5)$	$H(5,4 \cdot 4617)$
$D(3 \cdot 2885,0)$	$I(5,10)$
$E(2 \cdot 5,3 \cdot 9645)$	

aid of equations (46) and (47), and for the node C with the aid of equations (43) and (44). The radius R required in equation (47) was ascertained by finding by linear interpolation in the w-plane the point of potential φ_{D} on the line $B^{\prime} E^{\prime}$. For the radius r required for equation (44) the point of potential
φ_{E} was similarly found on the line $C F$. We obtain $R=3 \cdot 802$ and $r=1 \cdot 3733$, $c_{0 A}=1.0474, c_{0 C}=0.9057$ and for the corrected values of the gradients $c_{0 A} \cdot g_{A}=0 \cdot 2824(0 \cdot 2750,+2 \cdot 7 \%)$ and $c_{0 C} \cdot g_{C}=0 \cdot 2805(0 \cdot 2750,+2 \cdot 0 \%)$.

Considering that the net consists of four meshes only and that the mesh boundaries deviate appreciably from the equipotentials and flow lines, all deviations from the correct values are surprisingly small.

(b) Field in a Square Coaxial Cable

A square conductor of side length 10 is surrounded by a square conducting sheath of side length 20 in an arrangement in which four axes of symmetry exist. This numerical problem has been dealt with by Woods (1953) and others. Figure 15 shows an eighth of the arrangement, $A C$ being the considered portion of the inner equipotential, $G I$ that of the outer equipotential, and $A G$ and $C I$ being flow lines. C is a sharp corner of 270° aperture and I one of 90° aperture. A is the origin of the selected Cartesian frame and $A G$ its x-axis.

The condition that a net of four meshes be used determines the meshes unequivocally, the point E being the intersection of the (not drawn) bisectors of the angles $A C I$ and CIG. Figure 15 contains the characteristic data of the net and Table 3 the values characteristic of the meshes.

Table 3
values of $u_{1}, u_{2}, \Delta u, v_{1}, v_{2}, \Delta v, \Delta u / \Delta v$ and $\Delta v / \Delta u$ For the meshes of figure 15

	Mesh	$A B E D$	$B C F E$	$D E H G$	EFIH
$u_{1} \quad$.	.	0	0	0	0
$u_{2}=\Delta u$.	$0 \cdot 9894$	1	$0 \cdot 5672$	1
$v_{1} \quad \cdots$.	0	0	0	0
$v_{2}=\Delta v$.	$0 \cdot 8195$	1	$1 \cdot 2483$	1
$\Delta u / \Delta v$.	1-2073	1	$0 \cdot 4544$	1
$\Delta v / \Delta u$.	$0 \cdot 8283$	1	$2 \cdot 2008$	1

The final resulting network of conductances is shown in Figure 14. The result of the analysis together with the figures ascertained by Woods (1953) or found from them by interpolation and the deviations from these figures that can be considered correct are given in the following :

$$
\begin{aligned}
& \varphi_{D}=0 \cdot 3562(0 \cdot 3326,+7 \cdot 0 \%), \\
& \varphi_{E}=0 \cdot 4171(0 \cdot 4330,-3 \cdot 7 \%), \\
& \varphi_{F}=0.4724(0 \cdot 4950,-4 \cdot 6 \%) .
\end{aligned}
$$

The total conductance is $1 \cdot 2957(1 \cdot 2791,+1 \cdot 6 \%)$.
As in example VIII (a) the results are surprisingly good.

IX. References

Cohn, G. I., and Vogel, F. J. (1953).-A solution of a common insulation problem. Pwr. Apparatus and Systems 6: 460.
MacNeal, R. H. (1953).—An asymmetrical finite difference network. Quart. Appl. Math. 11: 295.

Motz, H., and Worthy, W. D. (1945).-Calculation of the magnetic field in dynamo-electric machines by Southwell's relaxation method. J. Instn. Elect. Engrs. II 92 : 522.
Southwell, R. V. (1946).-" Relaxation Methods in Theoretical Physics." (Oxford Univ. Press.)
Tasny-Tschiassny, L. (1949).-The triangulation of a two-dimensional continuum for the purpose of the approximate solution of second-order partial differential equations. J. Appl. Phys. 20: 419.
Woods, L. C. (1953).-The relaxation treatment of singular points in Poisson's equation. Quart. J. Mech. 6: 163, Example II.

[^0]: * Electrical Engineering Department, University of Sydney.

