
PROGRAMME DESIGN FOR THE O.S.LR.O. MARK I OOMPUTER

IV. AUTOMATIC PROGRAMMING BY SIMPLE COMPILER TECHNIQUES

By G. W. HILL*t and T. PEARCEY*

[Manuscript received January 24, 1956]

Summary

Techniques are described for using the C.S.I.R.O: Mark I computer to assemble
complete programmes from greatly reduced input programmes by selecting and trans·
ferring routines from standard libraries and forming appropriate commands to inter·
connect routines and the problem programme. The" compiler" process is described
for computer-code programmes, and for hyper-code programmes which use interpretive
routines to provide elaborate arithmetical operations corresponding to each hyper­
code.

Examples of compiler routines are given in computer-code command form and
as schematic outlines, and the compiler processes are illustrated by simple problem
examples. Possible extensions of compiler techniques are considered and processes
for using compiler techniques are discussed.

Use of compiler techniques reduces considerably the" human error" in programmes,
training time of programmers, and the time required for preparation, insertion, and
checking of problem programmes.

1. INTRODUCTION
As the use of automatic computers expands, increasing attention is being

paid to the principles involved and the techniques used for rapid programming,
in particular to the more advanced aspects of programming known as " automatic
programming" (Office of Naval Research 1954). This is a logical extension
of the principles of programming already well established and is being developed
largely from a need to assist the user by reducing the effort and specialized
knowledge required of him, to reduce the frequency of errors in programmes etc.
and thereby increase the use of a computer.

Much of the routine type of work required of a programmer can be transferred
to the computer. The programmer need supply only basic, non-redundant
information about his problem, in a suitably chosen" language ", leaving the
computer to build up the detailed programme in its own, or command language.
Recent work by Laning and Zierler (1954) indicates the trend towards the
presentation of computing problems in language closer to that of the user.
With further developments of automatic programming techniques we may.
expect a user to be able to submit his problem in his own language and to have
no concern with the basic command code of the computer.

A practical automatic programming system involves a number of specially
designed routines which facilitate the transformation of the information presented

* Division of Radiophysics, C.S.I.R.O., University Grounds, Chippendale, N.S.W.
t Present address: Division of Mathematical Statistics, C.S.I.R.O., University of Adelaide.

J

138 G. W. RILL AND T. PEARCEY

into a complete programme which the computer can " understand" and later
perform. The first stage toward such a system is the development of compiler
routines which are here discussed, the principles of which are illustrated in
relation to a particular machine.

To simplify the task of programming, automatic programming of the
C.S.I.R.O. Mark I computer by means of simple compiler techniques has been
developed. This computer is of the high-speed fully automatic type, which is
directed by a suitable programme of coded commands.. Electronic equipment
provides elementary arithmetical and logical operations as well as operations
used for organization of sequences of operations and for communication between
the computer and the user. To each elementary operation provided by electronic
equipment corresponds a "computer code". More elaborate operations are
obtained by appropriate routines of commands expressed in computer code.
Special groups of routines have been designed to enable elaborate operations to
be invoked by " hyper-code" commands. Programme design in terms of these
code systems has been described in previous papers; computer-code programme
techniques in Part II (Pearcey and Hill 1953b) and hyper-code programme
techniques in Part III (Pearcey and Hill 1954). The notation there described
has been freely used in the present discussion and has been used in the pre­
sentation of Tables 3 and 7 of the actual compiler routines.

Programming is the process of translating a problem from the mathe­
rna1iical language of algebraic expressions and methods of solution into an
appropriate sequence of data to be punched on the input tape as " input codes".
Special insertion routines enable the computer to translate input codes into the
coded commands of the problem programme. One of the simplest insertion
routines, the" primary" routine,. uses upper or lower halves of command codes
as input codes and the programmer must translate the problem into the form of
half command codes. The exacting task of evaluating addresses for upper-half
command codes can be performed by the computer by use of a "control"
routine to decode further input codes known as " control designations".

Even more of the burden of programming can be transferred to the computer
by extending the range of input codes, and increasing the complexity of the
decoding routines.' The technique of using a computer to construct commands
for problem programmes is known as automatic programming and the decoding
routines used for this purpose are called " compiler routines ".

Compiler routines designed for use on the C.S.I.R.O. Mark I computer
decode special input codes representing elaborate operations supplied by routines
stored as a library in the computer's slow-access store. The routines are trans­
ferred to the store containing the problem programme, and appropriate inter­
connexion commands are inserted in the programme.

II. THE FUNCTION OF COMPILER ROUTINES

The input codes, used by the programmer to specify the operation required,
may be arranged according to a variety of conventions. A simple convention
considered in this paper requires the input codes to be arranged in a manner
similar to that adopted in normal programming, thus exploiting the fact that

PROGRAMME DESIGN FOR C.S.I.R.O. MARK I COMPUTER. IV 139

users will generally be acquainted with normal programming techniques. A
logical extension to a more elaborate convention will be indicated which corres­
ponds to coding of " three-address" operations with a corresponding reduction
of the amount of punching required in preparing an input tape. This requires
a few additional techniques to be learned, such as counting a three-address
operation as corresponding to a number of commands when calculating addresses
of subsequent commands.

A much more elaborate compiler routine is required to extend the convention
for input codes to correspond with the widely known symbolism used in normal
algebraic expressions. Such a "symbolic-compiler" routine greatly reduces
the amount of specialized knowledge required of the user since input codes
can be punched directly from algebraic expressions. The techniques required
for this elaborate process include those to be considered in this paper.

The simple compiler routine to be considered merely relieves the programmer
of the task of selecting standard routines and in(}orporating them into the
problem programme. These standard routines are made continually available
to the compiler routines by storing them as a "library" in store space Be.'
Library routines must"be selected and transferred from the library to the problem
programme in store space B p and appropriate interconnexion commands formed.
These operations are performed almost unconsciously by the human programmer
but must be programmed explicitly and systematically for compiler routines.

Interconnexion commands in the resultant programme must transfer
problem data from definite store locations implied by the problem programme
to registers required by the library routine and transfer results from those
registers back to the same or other store locations. The interconnexion com­
mands also shift control to the routine and arrange for control to be returned
to the programme commands following use of the routine.

Consequently, the programmer must supply extra input codes to specify
the locations implied by the problem programme for operands and result, and a
"compiler code" to specify which library routine is involved. The library
store, BL) contains" library data" associated with each routine, which specifies
which registers are to hold operands and results and indicates the" linking"
mechanism for returning control to the programme when the routine's operation
is completed. The compiler routine combines the library data with the pro­
grammer's input codes according to the coding conventions associated with
such interconnexion commands.

Selection and transfer of library routines must simulate the effects obtained
by a human programmer using the control routine to incorporate parameters
into routines. Provision must be made to transfer all routines involved in a
problem, including all subordinate routines used by any superior routine involved.
To economize on store space, any routine is to be transferred only once, even if
involved more than once by the same problem.

During transfer, all routine commands referring" to other locations in the
store must be adjusted to refer correctly to new locations in B p' This corresponds
to operations of the control routine which add the address in which the first
~ommand of a routine is stored to those commands of the routine which are

140 G. W. HILL AND T. PEARCEY

coded with addresses relative to the first. Provision must be made to enable
other parameters to be incorporated during transfer for the cases in which the
parameters are supplied by the programmer or by superior library routines.
In special cases provision can be made for parameters to modify the very process
of transfer itself as is required in "unrolling" a repeated loop of commands
into a linear sequence.

Addresses must be expressed in symbolic form if the compiler routine
varies the number of commands in a section of the problem programme. For
economy jn store space the compiler routine may omit redundant interconnexion
commands or insert transferred routines into the programme when they are first
referred to. The programmer is unable to predict correct addresses of commands
in such. a programme and must therefore denote them by convenient symbols
and let the compiler routine calculate the correct equivalent address when it has
completed the variation of groups of commands.

The extra programming work imposed by use of " symbolic" addresses is
rarely worth the small saving in store space obtained by suppressing redundant
commands. It is simpler to adopt an invariant pattern of interconnexion
commands including redundant commands and to avoid "inserting" unpredict­
able" lengths of routine commands into the input programme by transferring
routines after the programme is completely assembled. A. process for organizing
this will be subsequently illustrated.

Hyper-compiler routines, which construct programmes in hyper-code for
problems involving elaborate operations provided by interpretive routines, must
cater for transfer of the interpretive routines as well as of hyper-routines involved.
Since interpretive systems enable inclusion of special operations as well as
standard operations, the compiler must keep a record of all hyper-operations
used by the problem and organize the transfer of all required interpretive routines
arid interconnect them to form an interpretive system.

III. OONVENTIONS FOR OOMPUTER-ConE OOMPILERS

The following conventio~s have been adopted for initial versions of com­
puter-code compiler routines for the O.S.I.R.O. Mark I computer.

(1) Notation.~Stores are denoted by SL for storage of library routines and
library data, Se for the compiler routine and working space, and Spin which
commands of the problem programme are inserted. R x , R y , R z denote single­
word registers of the arithmetic unit, while x, y, z denote locations in stores, or
the D register, of problem data. "Transfer data" are to be stored in a block
of locations starting at to relative to which te and te are addresses in which is
stored, or from which is extracted, a transfer datum. Similarly i is the address
of the first location of an " index block" in which the library data of the mth
library routine are stored in location i +m.

aL is the address in SL of library data currently required and ap is the address
in Spin which the next command will be stored. The particular a p corresponding
to reference to the mth routine in the library is denoted by a~and that correS­
ponding to the tth library routine transferred is denoted by a~. . The address in
S p to whi{ln tne "btlild" of a library routine is transferred is denoted by hI'

PROGRAMME DESIGN FOR C.S.loR.O. MARK I COMPUTER. IV 141

while e denotes the address relative to the" head" at which a routine is to be
"entered" by shifting control to h~+e. A routine will have n parameters,
occupy Z+l store locations, and use DL (L=15, 14, etc.) as a "link register".

(2) The entire input programme is assembled before transferring library
routines. During compilation of the problem programme, transfer data are
stored and are later used to specify which routines are to be subsequently trans­
ferred from B L to B p' This avoids the necessity for symbolic addresses. For
the same reason redundant commands are included in an invariant pattern of
interconnexion conimands.

(3) Conventional computer-code commands are assembled by the normal
processes of the primary and control routine, but· an extra control operation,
E, is provided which transfers control to the compiler routine whenever E­
designated compiler codes are input.

TABLE 1

COMPUTER-CODE CONVENTIONS FOR INTERCONNEXION COMMANDS

Location Programme Input-code Library
in Sp Commands Commancs Data

ap-3 (x)~Rx (x)~M* Rx
ap-2 (y)~Ry (y)~M Ry
ap-l (S)~DL' (S)--rDo L
ap hp+e~S m;e: E
ap+l (Rz)~z (M)~z R z

* The code M is a zero or "blank" in the machine code, so that (x)--.-M is punched as
x;O,OX.

(4) Table 1 indicates the conventional pattern of computer-code inter­
connexion commands for reference to a library routine which evaluates a function
of the contents of registers R" and Ry and stores the result in register R z when
control is shifted to its eth command. The programme data occur in store
locations IV, y and the result is to be stored in location z. The compiler routine
must use the compiler code, mpll +epl ; E (in which E corresponds to tape code
7Y (cf. Table 3)) or in punched code m;e,X: 7Y,* to organize transfer of the
mth library routine to store locations starting from hp and then form the correct
" cue command", hp+e-,.B.

(5) When the interconnexion commands are first stored in B Pl the compiler
code mpll +epl is held in location ap • The address a~is stored in the teth location
of the transfer data block, i.e. location to+te of Be' When the input programme
is completely assembled the t.th transfer datum from location to +t. is extracted
for O<te<final value of te' The transfer datum a~ is then used to extract the
corresponding compiler code and m, the library code, specifies the routine to be
transferred. When h PI the head address of the first command of the routine,

* For punching notation see Part I, p. 333 (Pearcey and Hill 1953a). This particular code
may be written m;B:E.

JJ

142 G. W. HILL AND T. PEAROEY

is determined, it is combined with the entry code, 6, to form the cue command
hp+e-,.-S, which is then inserted in location ap to complete the interconnexion
commands. .

. (6) Routines involving subordinate routines are stored in the library with
each cue command to a subordinate replaced by the corresponding compiler
code, e.g. ms+es' During transfer to Sp, each library command of the form
(S)-,..Dr is detected as implying that the following library command is a compiler
code. The compiler code is transferred unaltered to S p and its address ap is
stored in the transfer data to ensure subsequent transfer of the subordinate
routine.

(7) .A library index is held in Se to enable the library code m to be used to
yield data specifying the location in S L of the corresponding library routine.
Location i+m of the index contains aLPll +nP2+tPl in which t=1. When a
routine requiring no parameters, n=O, is transferred, the index datum is replaced
by hpPl1 +OPI in which t is given the fresh value of zero. This change is detected
upon any subsequent reference to the same routine and is used as a criterion for
avoiding a repetition of the transfer of the routine. In this case the cue command
is formed and inserted as hp-"-S, thus completing the interconnexion commands
correctly.

(8) The library data listed in Table 1 are packed in location aL as five-digit
codes for the link number, L, and register codes R x, R y, R z in the form
LP16+RyPll +RzP6+RxPl' For routines involving fewer registers, some register
codes are zero and the programmer omits corresponding input-code commands.
Thus for the operation z=log x, involving one operand only, the second row.of
Table 1 is omitted, and for a " hoot" routine, which involves no operands and
yields no results, the programmer supplies only (S)-,.-Do and the compiler code,
while all register codes of the library datum are zero.

(9) The library data include specification of the length of the rou.tine to be
transferred by holding 1pll in location aL +1 and the commands of the library
routine occur in locations aL +2 to aL +1+2.

(10) When referring to a library routine involving n parameters, the pro­
grammer supplies the parameters in the input programme immediately preceding
the compiler code at each reference of the routine. Library routines supply
parameters for subordinate routines involving n parameters by storing them
immediately following the compiler code. In each case the parameters are
transferred by the compiler routine to the transfer data block following the
" cue address ", an of the subordinate routine. The programmer may avoid a
redundant second transfer of the same parametric routine by punching the
entry code, equal to the number te corresponding to the a p of the first reference
involving the particular set of parameters. Otherwise the entry code for
parametric routines is zero.

(11) Parameters are incorporated only into those commands which shift
control to, or transfer data to or from, store locations. Such parametric
commands have the form "(M)--,..~, (?)--,..M, (K)--,..S". The address digits
PlS-P20 of each parametric command are used to hold the number P where
o <:,p <:, 7, so that the pth parameter IS added to the remainder of the command.

PROGRAMME DESIGN FOR C.S.I.R.O. MARK I COMPUTER. IV 143

For p =0, the address, h p, of the routine's first command in S p is added and
therefore library parametric commands are coded with addresses relative to the
head of each routine. This process corresponds to the use of control designations
for incorporating parameters during input of commands.

Constants stored as pseudo-commands in library routines, whose binary
codes would be confused with parametric commands, would be modified during
transfer. Such constants are therefore assembled via the H register as described
in Part I (Pearcey and Hill 1953a, p. 330).

These conventions are summarized in Section IX from the point of view of
the user, who is more concerned with the processes of constructing input tapes
for library routines and problem programmes than with the principles of operation
of compiler routines. .

IV. EXAMPLE OF COMPUTER-CODE COMPILERS

A number of computer-code compiler routines have been designed to cater
for various operations. Compiler routine II forms interconnexion commands
according to conventions 4, 5, and 8, while compiler 12 caters for parametric
routines as in convention 10. Transfer operations according to conventions
6 and 7 are provided by compiler TI, while up to seven parameters can be
incorporated by compiler T2.

Compiler routines 12 and T2 are given in " schematic" form in Table 2
and in conventional computer coding in Table 3 for use in association with the
problem programme, which, together with an outline of the library contents and
resultant programme, is given in Table 4. In the schematic outline of Table 2,.
orders are to be performed serially unless otherwise indicated. In the equation
notation used, (x) implies" the current contents of location x ", and new values
are indicated by primes. Commas are used to indicate partitioning of 20-digit
words into codes for symbols, most of which have been implicitly defined pre­
viously. Numbers in square brackets are addresses of computer-code commands
in Table 3, corresponding to each schematic order of Table 2. The tape of 12
and T2 is read in and compiled into the second magnetic store M" by standard
methods.

The tape programme of Table 4 is designed to print values of

5
y=(arc sin x)/cos x- ~ arxr

r=O

for values of x<0·5 read from tape punched in decimal code. Such a programme
might be used, for instance, to examine goodness of fit of a polynomial to the
function (arc sin x)/cos x.

The primary, control, and compiler routines are transferred from SL=M",
the second 1024-word magnetic drum store, to Sc=M by switch operations of
the console switchboard. The input tape listed in Table 4 is placed in the tape
reader, all registers are cleared, and the computer started. The problem pro­
gramme is compiled in S p=M' in locations 0' to 29' with compiler codes not yet

. replaced by cue commands and their addresses stored as transfer data in locations
250-257. When the command 1l0-rS,D, punched at the end of the programme,

H4 G. W. HILL AND T. PEARCEY

tape, shifts control to compiler T2, the routines specified in the transfer data are
transferred until te=tc' Command 186 then returns control to the primary
routine to read P2o-,.-T,D punched at the end of the input tape and the computer

TABLE 2

SCHEMATIC OUTLINE OF COMPILER ROUTINES I2, T2

Oompuer Routine 12

1. Extract (i+m)=aL;2n+t [40-45]
2. If n is non-zero shift to 9. [46-50]

3. Set (to+tcl'=a~ and t~=tc+n+l [51-54]

4. Set (a~)'=m,e and extract (aL)=L, R y' R z' Rx' [55-60]

5. Set (a~-l)'=L+(a~-l) andr'=a~ [61-71]

16. If Ry is non-zero set (a~-2)'=Ry+(a~-2) and r'=r-l [72-82]
7. If Rx is non-zero set (r-2),=Rx+(r-2) [83-90]

:S. Set (A),=Rz code, ap=a~+l, shift to the primary routine [91-94]

9. Set r=n-l and t~=tc +n [95-98]

10. Set (to+tcl'=(a~-l) and t~=tc-l, a~'=a~-l, r'=r-l [99-105]
11. If r is negative shift to 3 otherwise to 10_ [106-109]

-Oompiler Routine T2

12. Set t~=O [llO]

13. Extract (to+te) =a~ and (a~) =m,e and (i+c) =aLPl1 + (2n+t)pl or hpPl1 [lll-123]
14. If t=O shift to 24. [124-125]
15. Extract (aL+l)=l. If n"",O shift to 31. [126--132]
16. Set (i+m)'=hp (i.e. t=O. n=O) [133-135]
17. Set (to+t.)' =hp [136-137]

18. Extract (aL +2)=library command. set aL=aL+l [138-141]
19. If of form (?)~M. (M)~t (K)~S. shift to 26. [142-153]

20. Set (ap),=library command and ap=ap+l [154-157]
21. If of form (S)~Dr shift to 27. [158-161]
22. Set l' =l-1. If l> 0 shift to 18. [162-164]
.23. Extract (i+m) =hp [165-168]

.24. Set (a~)=hp+e~S. t~=te+n+l [169-:178]
25. If t;;;.tc shift to primary routine. otherwise to 13. [179-184]
26. Add .(to+te+p) to library command and shift to 20. [185':'197]

27. Extract (aL+2)=ms+es' set a~ =aL+l, (to+tc)=ap• t~=tc+l [198-204]
28. Extract (i+m,) =au ns' t [205-207]

29. Set n~=ns-l. if ns negative shift to 20. [208-210]

30. Set (to+tcl'=(aL). t~=tc+l. aL=aL+l, shift to 29. [2ll-218]
31. If e is zero, shift to 17. [219-222]
32. Extract (to+e)=hp• set n'=O, shift to 24. [223-226]

Programme constants [227-231] Library index [232-237] Transfer data [250-300]

.stops with the problem programme completely assembled in M'. This example
illustrates:

(1) The method. of forming interconnexion commands.-The first E-designated
compiler code has m=l, which causes (232+1)=285Pn +Pl to be extracted.

PROGRAMME DESIGN FOR C.S.I.R.O. MARK I COMPUTER. IV 145

After a~=1 is stored in location 250, and the compiler code 0,1;0,0 in I', the
content of location 285", i.e. 15,0,A,0, is extracted and combined with (0') to
form (S)----,..D15' while (A)----,..M is left in register A to be combined with the next
input command, forming (A)----,..30 in 2'.

(2) Incorporation of parameters into library routines.-.After 18 programme
commands are formed~ the parameters are stored temporarily in locations 18',
19' before being transferred to locations 255, 256, whence they will be added
during transfer of the polynomial routine to commands whose P20-PIR digits
represent p=l, p=2 respectively.

(3) Transfer of library routines.-Library routines are held in M". When
the command 1l0----,.S,D is performed, te is started at zero and the process of
transferring library routines begins. The transfer datum (250) =IPn is used to
extract the compiler code 0,1;0,0 from location I', and this specifies the routine
to be transferred; the input routine for which m=l. The corresponding
library data (i+m)=(232+1)=285Pn +Pl and (286")=l-1==26 are extracted
and, after the current ap=hp is stored,in locations 233, 250 of the index and
transfer data blocks, the 27 commands, 287"-313", are transferred to locations
33'-65'. Finally the cue command hp+e-,.-S==33----,..S is placed in location l'
and the compiler routine proceeds to transfer the next library routine required.

(4) The method of ensuring transfer of library subordinate routines.-The
" arc sin" routine uses the " sinecosine " routine as a subordinate routine in a
trial and error process. .As the arc sin routine is transferred from 375"-392"
to 66'-83', the command from 385" is detected as having the form (S)----,..D and
the compiler code 0,2;0,0 in location 386", which implies a reference to the
sinecosine routine, is transferred unaltered to location 77, which number is then
~tored as a transfer datum in location 258. If any parameters had been involved
by the subordinate routine, they would have been transferred also.

(5) Omission of redundant transfers.-Following transfer of the "print n

routine, the transfer datum (258)=77pw is used to extract the compiler code
0,2;0,0 from location 77'; Since the corresponding sinecosine routine has been
transferred, (232 +2) =84Pn has zero t and therefore the transfer is not repeated,
while the cue command is correctly set as 84-,.-S in 77'.

v. EXTENSION OF COMPUTER. CODE OOMPILER TECHNIQUES

The similarity of the pattern of interconnexion commands for the compiler
routine just described to that used by human programmers enables users to
exploit the advantages of compiler techniques with very little extra training;
the actual programming is more rapid and errors less frequent. The volume
of tape punching in preparing input tapes can be reduced further by using a
more elaborate ·compiler routine for forming interconnexion commands. In
this way the number of keyboard operations involved by the pattern of Table 1
may be reduced by about 30 per cent. by using the punching pattern

x:y:z:m;e:E.,

which is transformed by the compiler routine to the equivalent of Table 1 ..
The data' addresses, x, y, z, can be made to refer to D registers for values less;

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

TABLE 3

COMPUTER-CODE COMMANDS OF PRIMARY, CONTROL, COMPILER 12, AND COMPILER T2 ROUTINES (AS USED IN EXAMPLE IN TABLE 4)*

(O)~S 40 (A)~D4 70 c(A)~-I' 100 (-I')~A 130 z(A)~S 160 z(A)~S 190 (A):!;.. A 220 (Hu)~A

(C):!;..K 1 c(A)~Hu 1 (C)~D. 1 (D1):!;..K 1 Pl~S 1 198~S 1 (A):!;..A 1 z(A)~S

c(A)~O' 2 (Hu):!;..K 2 (D.)~A 2 c(A)~250 2 219~S 2 Pn~D7 2 (A):!;..A 2 136~S

Pll:!;..C 3 (232)~A 3 0,31~A 3 Pn:::"Dl 3 (D4)~Hu 3 8(D7)~S 3 (D.):±;..A 3 (Hu):!;..K

(Z)~B 4 (A)-~Hu 4. z(A)~S 4 Pll:::"C 4 (Hu):!;..K 4 138~S 4 c(A):!;..K 4 (250)~A

(Do)~Hl 5 (Hu)~Ds 5 83~S 5 Pll:::"D • 5 (C)~232 5 D4~Hu 5 250-,,-A 5 D.:::"D.

(Do):!;..Do 6 !(A)~Hl 6 c(A)~Hu 6 8(D.)~S 6 (D.):!;..K 6 (Hu):!;..K 6 c(A):!;..Do 6 170~S

8(Do)~S 7 (Hu)~A 7 (Hl)~A 7 99~S 7 (C)~250 7 (232)~A 7 154~S 7 <0,0,0,31)

(O)~S 8 z(A)~S 8 (C):!;..K 8 (D6)~A 8 (D.):!;..K 8 (A)~D. 8 (D.):!;..K 8 <0;0,31,0)

Pn~B 9 Pl~S 9 (-2'):!;..A 9 51~S 9 (2n)~A 9 (Ds)~A 9 (2n)~A 9 <0,0,31,31)

(Hl):!;..A 50 95~S 80 (C):!;.. A lIO (D.):::"D. 140 Pll:!;..Ds 170 (D4)~Hl 200 Pll:!;..Ds 230 <O~S)

Pl.!:,.S 1 (D1):!;..K 1 c(A)~-2' 1 (D.):!;..K 1 (A)-+Do 1 (Hu):!;..A 1 (A)~Do 1 «S)~Do)

(Hu):!;..A 2 (C)~250 2 Pn:::" D • 2 (250)~A 2 (227)~A 2 (230):!;..A 2 (D1):!;..K 2 <250Pn +Pl)

(I)~Do 3 Pn:!;..Dl 3 (D.)~A . 3 (A)~D3 3 z(A)'!:"S 3 (D.)~Hu 3 ·(C)~250 . 3 <285Pn +Pl)

8(Do)'!:"S 4 c(A):!;..D1 4 (227)~A 4 c(A):!;..K 4 185~S 4 (Hu):!;..K 4 Pn:!;..Dl 4 <314Pn +Pl)

(B)~S 5 (D4)~A 5 z(A)'!:"S 5 (O')~A 5 (Do)~A 5 . c(A)-.-O' 5 (A)~Hu 5 <349Pn +Pl)

(Z)~B 6 (C):!;..K 6 91-~S 6 (A)~D4 6 (228)~A 6 (D6)~Hu 6 (Hu):!;..K 6 <373Pn +Pl)

(Do)~Hl 7 c(A)~O' 7 (D.):!;..K 7 c(A)~Hu 7 z(A).!:,.S 7 Hu:±;..Da 7 (232)-THl 7 <393Pn +5Pl)

f-<
0:>

p

:a

~
i'>
§
~

t;3
~

~

18 (Hu):tS 8 (D5):tK 8 (-2'):t.A 8 (Hu):tK

19 (29):tA 9 (O")-?"A 9 (Ds):tK 9 (232)-?"A

20 (28):tA 60 (A)-?"D2 90 c(A)-?"-2' 120 (A)-?"Hu

21 (27):tA 1 t(A)-?"A 1 (D.)-?"A 1 (Hu)-?"D5

22 (19)*"A 2 t(A)-?"A 2 (228)"":"A 2 t(A)~Hl

23 c(A)-?"24 3 t(A)-?"A 3 Pll:tO 3 (Hu)~D.

24 [p.o-?"T] 4 t(A)-?"A 4 13-?"S 4 pl.(A)~S
25 13~S 5 t(A)~A 5 (A)-?"Da 5 169-?"S

26 40-?"S 6 0,15~A 6 Pll':::;"Da 6 (D5):tK

27 <0,0,13,27) 7 (O):tK 7 (A):tD1 7 (1"):"'A

28 <31,31,18,14) 8 (-l'):tA 8 c(A)--+D. 8 (A)~D,

29 <31,4,26,0) 9 (O):tK 9 (O):tK 9 (D.)~A

8 185-?"S 8 Pll:tD2 8

9 (Do)-?"A 9 (D1)-?"A 9

150 (229)"":"A 180 (D.)':::;" A 210

1 (230)':::;" A 1 8(A)~S 1

2 z(A)~S 2 111~S 2

3 185~S 3 O~B 3

4 (Do)~A 4 13~S 4

5 (O):tK 5 (Do)~A 5
{\ (A)~O' 6 28,0"":" A 6

7 Pll:tO 7 (A)':::;"Do 7

8 (229)"":"A 8 c(A)~Hu 8

9 (231)':::;"A .9 (Hl)-?"A 9

(Hu)-?"A

2':::;" A

8(A)~S

154-?"S

(D 5):tK

(2")-?"B

Pll:tD5

(D1):tK

(B)~250

Pll:tD1

209~S

(D4)~Hl

Reg. Contents

0 apPll

Do Input codes or
library connnand

Dl tcPll

D. L, R y ' R z' Rx or
tePll

Ds npll or rpll or

atpll

D, mPll+epl

D5 aLPll or hpll

D6 npll

D, Pll

~ o ;
Ij
~
Ul

S
z
O;j
o
~

p
Ul
H
~ o

~
H

a
• Explanatory Nows.-(l) The notation used iu this table aud Table 7 is outliued in Parts I, II, aud III of this series of papers (Pearcey and Hill 1953a, 1953b, 1954). (2) For con- 0

venience, the commands are given in the form in which they would occur after insertion into the compnter (Le. explicit addresses) rather thau in the form in which they would be punched ~
(Le. using control operations ou "symbolic" addresses). (3) In the case shown above, i~232 aud to~250, so that the library iudex will have the values shown in locations 232-237. >d
(4) To aid in reading the programme, a list is given of the way in which registers are used. Thus the G register contains the address, app,,, in which the current input programme com- ~
mand or library command is to be stored. (5) Primes denote addresses iu magnetic stores I-IV. (6) This programme is held in the second magnetic store M". ~

~

~

f-l
If:>.
""'1

No.

0
1
2
3
4
5
6
7
8
9

10
II
12
13
14
15
16
17

TABLE 4*
5

PROGRAMME COMPILATION FOR y=(arc sin xl/cos x- I: arxT
-

Programme Commands Library Contents

As Punched As Compiled Final Form Compiler Routines aL l Comment
Initially

IS (S)~Do (S)~D15 (S)~D15 Primary 0 16
0,1;0,0. E 0,1;0,0 33~S Control 16 14 These routines are used to

lA (M)~30 (A)~30 (A)~30 Input parameters 30 10 compile programmes
lA (30)~M (30)~A (30)~A Compiler 12 40 70 using routines from a

(S)~Do (S)~D14 (S)~D14 Compiler T2 110 122 restricted library as
0,4;0,0. E 0,4;0,0 66~S Library index 232 18 listed below

lA M)~31 (A)~31 (A)~31

lA (30)~M (30)~A (30)~fl m Library Routines aL (aL +l) (aL) =L,Ry,RZ,RX e, n, etc.

(S)~Do (S)~D15 (S)~D15

0,2;0,l. E 0,2;0,1 85~S 0 Print 250 32 15,0,0,A e=0,7

lA (M)~32 (A)~32 (A)~32 1 Input 285 26 15,0,A,0 e=O

lA (31)~M (31)~A (31)~A 2 Sinecosine 314 32 15,0,A,A e=O,1

lA (32)~M (32)~G (32)~G 3 Division 349 21 15,G,A,A e=O

(S)~Do (S)~D15 (S)~D15 4 Arc sin 373 17 14,0,A,A e=Ot

0,3;0,0. E 0,3;0,0 117~S 5 Polynomial 393 II 15,0,A,A n=2

1A (M)~31 (A)~31 (A)~31
t Command in library, location 385 is (S)~D15' is followed in location

lA (30)~M (30)~A (30)~A

(S)~Do (S)~D15 (S)~D15
386 by 0,2;0,0, the compiler code of the subordinate sinecosine routine
for which m=2

0,5;0,0 - -
--

..... -
II>-
00

~

:a

~
....
2i
I:;j

t-3

~
i?'J
><1

lA 0,24;0,0
Transfer Data

18 0,5;0,0. E 0,5;0,0 139~S

19 lA (M)~32 (A)~32 (A)~32 to+tc (to+ty=ap (to+t.l' =hp Routine
20 lA (32)~M (32)~A (32)~A .
21 (S)~Do (S)~D15 (S)~D1S 250 IPll 33Pll Input
22 0,0;0,7. E 0,0;0,7 158~S 251 5Pll 66Pll Arc sin
23 lA O~S O~S O~S 252 9Pll 84Pll Sinecosine

24-29 ao to a5 ao to as ao to as 253 14pll 117Pll Division
30 (M)~O blank space working space 254 18Pll 139Pll Polynomial
31 (M)~O 255 n= 5Pll n= 5Pll --
32 (M)~O 256 h=24Pll h=24Pll --

1l0~S D 257 22Pll 151Pll Print
P80~T D 258 77Pll - [Already transferred]

* This programme is compiled by 12 and T2 of Table 3 and placed by them into 'the first magnetic store M' in the locations indicated. Control
designations nS, nA are accepted by 12T2; in this example. IS stores zero.

I
tl
l;j

~
":l o
~
Q

00
H
~
o

~
~

Q
o

I
~

I-'
II>­
~

150 G. W. HILL AND T. PEARCEY

than 16, otherwise to serial store locations, and full use of input control designa­
tions can be made in assigning these addresses.

In programmes involving fewer than 32 data elements, the tape punch
pattern can be reduced to 35 per cent. of the original number of keyboard
operations, by the codes,

x,y;z,m:E and e=O,

where x,y,z,m are five-digit codes and the three-address operation, assembled
by the primary routine as a single command, is transformed by the compiler
routine to the five commands of Table 1. In this system, use of input control
operations is very restricted.

These reductions of keyboard operations require compiler routines with
elaborate decoding operations, in which each three-address command is counted
as five computer-code commands for the purpose of numbering programme
commands. If such a scheme is used consistently, the programmer need not
be familiar with normal programming methods but only with the special three­
address methods.

The techniques used in transferring library routines can be extended to
cater for modification by a parameter, of the process of transfer. This would be
required to unroll a repeated loop, sucn as a polynomial routine, into a linear
sequence of commands. The programmer would supply the parameters, n
(number of coefficients) and h (address of the first coefficient), and mark the
e code with distinctive digits such as PlO' P 9. The schematic commands numbered
23 and 31 of Table 2 would have the form:

23. If e has PlO shift to 36, otherwise extract (i+m)=hp
31. If e has P9 shift to 33, if e is zero shift to 17

which transfers control to an extra sequence of commands. T dis sequence
transfers coefficients from the library if e has P 9 and then unrolls the library
routine by transferring II +1 commands· and transferring l2 + 1 commands
n times, increasing the parameter h by unity each time and finally transfers the
terminating sequence of length la +1. The library data lu l2' la are stored in
aL +1, aL +2 with the first command of the routine in aL +3. It is convenient
to use portion of compiler routine T2 by replacing land aL of Table 2 by
appropriate values, as in the following schematic form of an additional sequence
of compiler commands,

33. If e has P9 transfer (h+r) to ap+r for O<;r<n and set h'=ap-ap+n
34. Extract ll' l2' l3' set l' =ll and shift to 17.
35. Set l'=l2' aL=aL -l2-1, n'=n-l, h'=h+l, if n>O shift to 18.
36. Set l' =l3' e' =0 shift to 18

after which command 23 detects e=O and continues compilation normally.
Computer-code compiler J.;echniques can be extended to cover quite a wide

range of problems by extending the number of library routines. Less than 500
store locations would be required for routines for printing fractions or integers,
reading decimally punched fractions or integers, division yielding fraction or
integer results, square root, cube root, sinecosine, tangent, arc cos, arc sin,

PROGRAMME DESIGN FOR C.S.I.R.O. MARK I COMPUTER. IV 151

exponential, logarithm to the base 2 or e, and hyperbolic functions. The rest
of the 1024 store locations of one only of the magnetic drum stores of the
C.S.I.R.O. computer may be devoted to the primary, control, and compiler
routines and a battery of test routines for testing units of the computer, i.e.
arithmetic unit test, store test, etc.

VI. CONVENTIONS FOR . HYPER-CODE COMPILER ROUTINES

Hyper-code commands are interpreted by a system of computer-coded
routines, which provide an elaborate arithmetical or organizational operation
corresponding to each hyper-code selected and interpreted by an interpretation
system. .As indicated in Part III (Pearcey and Hill 1954), standard operations
are provided which include addition, subtraction, multiplication, division, and
square root, as well as simple transfers, printing, and input of numbers according
to different systems of representation. Useful systems of interpretive routines
have been developed for elaborate arithmetics using floating decimal, double
precision, and complex number representations, etc .

.Additional hyper-operations of the form f(A)-rA are provided by hyper­
commands of the ETC type,* coded as n;15,Z, which shift control'to additional
computer-coded routines starting at location n. Sequences of hyper-operations
are obtained by hyper-routines which are invoked by hyper-commands of the
CUE type, coded as n;10,Z, which shift hyper-control to location n. .After the
hyper-routine is performed, the hyper-routine returns hyper-control to its
superior routine by a LINK-type hyper-command, coded as n;ll,Z.

Interpretive techniques have the effect of providing the user with a " hyper­
computer" operating as though the hyper-code were the new computer code.
Compiler routines for hyper-code programmes must not only form the hyper­
programme with its associated hyper-routines, but also, in effect, construct the
hyper-computer by compiling the necessary function block and any additional
routines of the ETC type. For this dual process the following conventions have
been adopted for initial versions of hyper-code compiler routines for the C.S.I.R.O.
Mark I computer.

(1) N otation.-It is convenient to distinguish those symbols referring to
store locations and operations associated with the interpreted hyper-programme
by the superscript H and those associated with toe interpreting routines,
including the function block and additional ETC routines, by the superscript I.

(2) .Again,' the complexity of symbolic addresses is avoided by including
even redundant commands in the interconnexion pattern and by using transfer
data stored during assembly of the input programme to organize transfer of
library routines involved. The hyper-commands ~ssembled from the tape and
transferred hyper-routines are inserted in store space sf" while the interpretation,
function block, and ETC routines, are transferred to S~, leaving space for data
storage in S~. When this process is complete the interpretive system is trans-

* Hyper-commands of types ETC. CUE, and LINK correspond to those correspondingly
coded and concerned with programme organization as described in Part III (Pearcey and Hill
1954).

152 G. W. IDLL AND T. PEAROEY

ferred from s~ to M, the rapid-access store, all r.egisters are cleared, and the
computer started. Hyper-commands will be extracted from slJ, by the inter­
pretation routine in S~ and decoded to refer to data locations and routines for
hyper-operations in S~.

(3) The primary and control routines are used to input conventional
computer-code and hyper-code commands and shift control to compiler routines
whenever E-designated compiler codes are detected. Two types of compiler
codes are E-designated; namely, CUE-type codes punched as m,e;10,Z, which
refers to the hyper-operation provided by the mth hyper-routine in sf, and
ETC-type codes. punched as m,e;15,Z, which refers to the hyper-operation
provided by the mth special interpretive routine in si.

The process of punching data-address codes of hyper-commands is simplified
by modifying the conventions outlined in Section XV of Part III (Pearcey and
Hill 1954) which required post-punched P and Q designations to adjust data
addresses to refer to p-word and q-word data groups respectively. The task of
adjusting data addresses has been transferred to the interpretation procedure
by including extra commands in interpretation routines to multiply stored data
addresses by p or q and add the address of the head of the data groups. Conse­
quently data addresses may be coded and stored as numbers of the set
0, 1, 2, 3, ... , etc.

.-.

TABLE 5

HYPER-OODE OONVENTIONS FOR INTEROONNEXION OOMMANDS FOR z=j(x,y)

Location
I

Programme Commands Library

I in slJ, Data

I

Input (Hyper-code) Compiled

alJ,-4
I

(x)~A (x)~A

I
alJ,-3 (A)~O* (A)~Rx Rx

alJ,-2 (y)~A (y)~A

alJ,-l (A)~O (A)~~y Ry
H ap m,e~L Et h+e~L

alJ,+l (O)~A (Rz)~A R z

alJ,+2 (A)~z (A)~z

* The symbol" 0 " denotes a " blank" or zero address. (A)~O is punched 8,Z:
t This is punched m,e;1O,Z:7Y.

(4) No modification of the input hyper-command pattern is required for
ETC-type library references but in the case of CUE-type library references to
library hyper-routines the interconnexion commands must be constructed from
input commands and library data as is illustrated in Table 5. Similar patterns.
are obtained for operands requiring fewer addresses for oper.ands or data by
omitting unnecessary rows.

(5) When the interconnexion commands are first formed in slJ" the CUE­
type compiler code, m,e-,.-L, is stored unaltered in location alJ, and its address
is stored in location iff +t~ of a transfer data block referring to hyper-routines.

PROGRAMME DESIGN FOR C.S.I.R.O. MARK I COMPUTER. IV 153

Similarly each ETO-type compiler code, m,e;15,Z, is stored unaltered and its
address a~ is stored in location iff +t~ of another transfer data block, where
O<t~ <t6<t~<40 say.

When the input programme is completely assembled, the transfer data of
the type alJ, are used to select hyper-routines to be transferred from sf to slJ"
and when this is complete the standard interpretive routines, together with
additional interpretive routines determined by the transfer data a~, are trans­
ferred from s1 to S~. When each hyper-routine or ETO routine is transferred,
the address of its first command is known and used to form h+e----,-L or h+e----,-S
to replace the compiler codes, m,e----,-I/or m,e----,-S in locations alJ, or a~ respectively.

The same compiler routine is used for this purpose with certain commands
changed to alter the reference from " hyper" to "interpretive".

(6) Hyper-routines involving either subordinate library hyper-routines
or ETO routines are stored in the library sf with OUE commands and ETO
commands replaced by appropriate compiler codes. During transfer the
address in slJ, to which such a compiler code is transferred is included in the
appropriate transfer block to ensure transfer of all subordinate hyper-routines
or ETO routines involved.

(7) With each library is associated an index in Se consisting of a list of
afPn +kP9+nP2+tPl in locations iH +m for hyper-routines, and for the non­
parametric ETO routines a list of a1Pn +tPl in location i I +0, where af and a1
are the addresses of the mth routine in the libraries in sf and s1 respectively.
As previously, n is the number of parameters and t is a sign that the routine has
been transferred. The extra symbol, k, denotes a number having a PIO digit
if the hyper-operation does not involve Ry and a P9 if R z is not involved.

'When a non-parametric routine, with n=O, is transferred, the index datum
is replaced by hpPn +OPI and detection of zero t for any subsequent reference to
the same routine enables the compiler code to be replaced by hp+e----,-L or
hp+e-,.§ without a second transfer of the routine invol~ed.

(8) Hyper-routines can be standardized to use data locations 0, 1, 2 as
registersRx, R y , R z , thus reducing the library data to the length specification
lpn in location af and the number corresponding to k incorporated in the index
data. If k has no PIO' the compiler routine adds R y =l to the command in
location alJ,-l and if k has no P9 the compiler routine adds R z =2 to the command
in location alJ,+l, while if Rx is involved no modification is required to the
corresponding input command.

(9) ETO routines provide operations of the form 1(.1)-+.1 so that problem
parameters are involved only by provision of various points of entry into the
routine. Since ETO routines may require to use operations provided by routines
of the interpretive function block, provision is made for incorporation of the
head parameter of the standard interpretation block of routines as well as that
of the ETO routine itself for P =1, 0 respectively. Since only the register A
is involved, the library data are reduced to the length specification lPn stored in
location a1 where the first routine command is in location a1 +1.

154 G. W. HILL AND.T. PEARCEY

(10) .As in the case of computer-code compilers, the convention for incor­
poration of parameters requires that parameters be provided immediately
preceding the compiler code in the case of input programmes, and in the case of
library hyper-routines which refer to subordinate hyper-routines, any parameters
are stored following the compiler code. In both cases, the parameters are to be
transferred to the transfer block, whence they are incorporated into commands
of the hyper-routine when it is subsequently transferred. To avoid redundant
transfer for further references to the same parametric hyper-routine, the entry
code is punched equal to the value t~ had at the time of first reference to the
routine. •

(11) Since it is found that hyper-commands of library routines have the
P20 digit zero, it is convenient to distinguish those hyper-commands into which
parameters are to be incorporated by storing them in the library with their P20

digit unity. The P19-P17 digits of such commands are used to represent p,
where the pth parameter associated with the hyper-routine is to be incorporated
into the command.

VII. EXAMPLE OF HYPER-CODE OOMPILER

.A compiler routine for hyper-code programmes, compiler H2, is given in
schematic form in Table 6 and in conventional computer coding in Table 7,
together with library data for use in association with the problem programme
outlined in Table 8. This hyper-programme is designed to print values of

8
y=(sin x)/(arc cos x) - ~ arxr

r~O

for values of x<0·5 read from tape punched in decimal code. It is intended
for use in association with an interpretive system for double precision arithmetic.

. The library of hyper-routines is to be held in sf =M" from location 300"
onwards, while the interpretive routines are to be held in s1-Miv in locations
as listed in Table 7." The primary, control, and compiler routines are to be
transferred from sf - M" to Sc-M by switch operations of the console switch­
board. The input tape is placed in the tape reader, all registers cleared, and the
computer started. The problem hyper-programme will be compiled in locations
0'-21' of sf,-M' and transfer data will be placed in locations 300-303 and
322-323 as indicated in Table 7.

The command 1 Ol----rS ,D, punched following the problem programme (Table 8),
shifts control to the group of commands 101-246, which are designed fqr transfer
of hyper-routines if Ds has no P20 and for transfer of interpretive routines after
P20 is set in Dg by command 249. In this case, Ds holds t~, which has no P20'

and the transfer data in 300-303 are used to transfer hyper-routines from
314"-325" to 22'-33' and from 327"-334" to 34'-41'. In the latter case para­
meters in 302, 303 are incorporated into the hyper-commands transferred to
34' and 37'. .At the conclusion of this transfer, te exceeds t~ and control is
returned to the primary routine.

The control designation 50T, read from tape, sets a~ equal to 50Pw thus
leaving space for working data. The command 247----rS,D shifts control to a

PROGRAMME DESIGN FOR C.S.I.R.O. MARK I COMPUTER. IV

TABLE 6

SCHEMATIC OUTL~NE OF COMPILER H2 FOR HYPER-PROGRAMMES

1. Set t~=t~-tf (i.e. 20Pll) and erase this command [40--42]

2. If (A) is a cue command, shift to 4. [43-47]

3. Set (t~+t~)'=a~, t~'=t~+1 and shift to primary routine command 1. [48-54]

4. Extract (iH+m)=aLPll+kp.+np2+tPl' If n is zero shift to 8. [55-69]

5. Set r=n-l, l,!' =t: +n [70--72]

6. Set (tf +t~)' = (aIJ,), t~' =t~ -1, a~' =aIJ,-I, r' =r-l [73-79]

7. If r not negative shift to 6. [80--81]

8. Set (tf+t~)'=aIJ" t~'=t~+n+l [82-85]

9. Set (aIJ,)'=cue command, aIJ,' = aIJ, + 1 [86-89]

10. If k has no PlO> set (aIJ,-2)' = (aIJ,-2) +Pll [90--95]

11.

12.

13.

14.

15.

16.

If k has no P. set 2Pll in A to be added to next command [96-98]

Shift to primary to continue assembly of input commands [99-100]

Entered by 101~S,D following input programme; sets te=O [101]
H H I H . I

Extract (to +te)=ap {or ap}, (ap)=m,e; CUE {or (ap)=m,e; ETC} [102-107]

Extract (iH+m)=aLPll+kp.+np.+tPl {or (iI+m)=aL;t} [108-120]

Store aL and n and if t=O shift to 26. [121-127]

17. Extract (aL) =l. If n zero shift to 20. [128-133]

18. If l is zero, shift to 21. [134-137]

19. Extract (tf +e) =hIJ" set n' =0 and shift to 27. [138-141]

20. Set (iH+m)'=hIJ, {or W+m)'=h~} [142-143]

21. Set (tf+t~)'=hIJ, {or (t~+t~)'=h~, (t~+t~+l)'=ho' n'=l} [144-151]

155

22. Set al;=aL + 1, extract (aL) =library command if hyper-command, shift to 28. [152-159]

23. If of the form ?~M, (M)~?, K~S, shift to 31. [160--171]

24. Set (ap)'=library command and ap=ap +1. [172-175]

25. Set l' =l-1. If l> 0 shift to 22. [176-178]

26. Extract (iH+m)=hIJ, {or W+m)=h~} [179-180]

27. Set (aIJ,)'=hIJ,+e~I {or (a~)'=h~+e~S} [181-183]

28. Set t~=te+n+1. If t;>tc' shift to primary, otherwise to 14. [184-192]

29. If CUE type shift to 33, if ETC type shift to 32. [193-200]

30. If non-parametric shift to 24, otherwise shift P to P'O-P18 digits [201-204]

31. Add (to+te+P) to library command, shift to 24. [205-218]

32. Set (t~+t~)'=a~ and shift to 24. [219-222]

33. Set (tf +t~)' =aIJ" extract (iH +ms) =aLPll +kp. +nsP2 +tPl [223-236]

34. Set n;=ns-l, if ns negative shift to 24. [237-239]

35. Set (tf+t~)'=(aL)' t~'=t~+l, al;=aL+l and shift to 34. [240--246]

36. Entered by nT, 247~S,D from tape; set t~=t~, t~' =P20' t~=t~-tf [247-251]

37. Adjust references of 174 to S~, 129,154,242 to s1. set first command in S~, shift to 15.
[252-262]

Programme constants [263-272] Library index [273,-275, 276-279]

TABLE 7

COMPILER ROUTINE H2 IN CONVENTIONAL COMMAND FORM*

70 1100 130 160 190

40 22~Hut (A)~D. 13~8 (A)~D7 (267).:t.A 102~8

1 (Hu)~D8 Pl1::;"D. (D2)::;"D2 (D6)~A z(A)~8 (O)~D.

2 (Z)~41 (A).:t.D1 (D2).:t.K z(A)~8 205~8 99~8

3 (A)~D. (O).:t.K (300)---.-A 142---.-8 (Do)~A (Do)~A

4 (264)"':"A (-l')~B c(A)---.-D. (D.)---.-A (264)"':" A (264)"':"A

5 (268)::;"A (D1).:t.K (D.).:t.K 0,31"':"A z(A)~8 (268)::;" A

6 z(A)~8 (B)~300 (O')---.-A z(A)~8 205~8 z(A)~8

7 55--78 Pl1::;"D1 (A)~D. 144~8 (Do)~A 223~8

8 (Ds).:t.K Pl1::;"O 31,0"':"A c(A).:t.K (265)~A (269)::;"A

9 (O)~300t Pl1::;"D. (A)::;"D. (300)~A (266) ::;"A z(A)~8

50 Pl1.:t.Ds 8(D.)~8 t(A)~A D(.)::;"D6 z(A)~8 219--:,,8

1 Pn.:t.Ds 73--.>8 t(A)~A 181~8 205~8 (Do)---.-A

2 (D.)--,.A (D1).:t.K t(A)~A (D9):t.K (Do)---.-A 8(Do)~8

3 (Do)::;"Do (O)~300 t(A)---.-A (O)~276 (O).:t.K 172~8

4 1--r8 pn.:t.D1 !(A)---.-A (D2).:t.K [c(A)--rO'] 30,0~A

5 (D.)---.-A c(A).:t.D1 0,31~A (O)~300 Pl1.:t.O (D6).:t.A

6 !(A)~A (D.)~A 8(Ds)~8§ 8(Ds)~8 Pl1::;"D7 (A)---.-Do

7 !(A)~A (.G).:t.K 3::;"A'Il 152~8 8(D7)~8 28, 0"':" A

8 !(A)~A c(A)~O' c(A)~D9 (320)~A 152--,.8 (A)::;" Do

9 t(A)~A Pl1.:t.O (D9).:t.K (D2).:t.K (D9).:t.K c(A)~Hu

220

(O)~300

Pl1.:t.Ds
172~8

(D1).:t.K

(O)~300

Pl1.:t.D1

(Do)~A

t(A)~A

t(A)~A

t(A)~A

t(A)~A

t(A)---.-A

0,31~A

c(A).:t.K

(273)---.-Hl

(Hu)~A

7, 30"':" A

2::;" A

8(A)~8

172--,.8

250

20~Hu

(Hu)~D2

(261)~A

c(A)~174

(271)---.-A

(A)---.-~29

c(A)~154

(272)~A

c(A)~242

(O)~A

(266).:t.A

c(A)--,.O'"

107---.-8

(0,0,0,31)

(0,0,31,0)

(0,0,31,31)

(0~8)

«(O)--rZ)

(0,0,10,0)

(0,0,5,0)

......
Ol
0:.

p

~

~
~
I:i

~

.1

60 t(A)~A 8(D5)~S (276)~A c(A)~301 (273)~A (Hl)~A Pn~D5 . <0,0,7,31)

0,31~A Pn~A (A)~Hu Pll~D6 (D4)~A (A)~A (D5)~K «OiV)~A)

2 c(A)~K (C)~K (Hu)~D5 Pn~D5 (D3)~K (A)~A [(O")~BJ «OiV)~B)

:3 (273)~Hl (-2')~A (270)~A (D5)~K c(A)~O' (A)~A (Dl)~K 300Pn +513Pl

4 (Hu)~D5 (C)~K t(A)~Hl [(O")~AJ (D6)~Hu (D2)~A (B)~300 313Pn +513Pl
,5 (Hu)~A c(A)~-2' (Hu)~D6 (A)~Do' (Hu)~D2 c(A)~K Pll~Dl 326Pll +517Pl

fi t(A)~A (D5)~D5 Pl.(A)~S (263)~A Pn~D2 (300)~A 237~S 0Pn +lpl

'7 3,31~A 8(D5)~S 1 79--+S (267)':::'A (Dl)~A c(A)~D. (D8)~Hu 227Pn +lpl

8 z(A)~S 2~A (D 5):tK z(A)~S (D2)':::'A 172~S (Hu)~Dl 268pu +lPl

9 82~S O~B [(O")~AJ 193~S 8(A).!',S (D8)~K p2o~D8 307Pn +lpl

• The primary and control rontines in locations 0-29 have been omitted from this table to avoid dnplicating part of Table 3, and the D registers are nsed for much the same
purposes, as in Table 3.

t The number 22 represents t& -tff +2, where the two spaces are for parameters involved in transfer of the function block.

t The programme parameters have been given the values tff ~300, t&~320, iH ~273, / ~276.
§ This and other sign tests on (D,) have no effect for (D,) ~ 22 during transfer of hyper· routines, but command 249 sets P20 in Ds to introduce other operations during transfer

()f interpretive routines.
'\[The numher 3 represents l _iH .

~
o

~
t:I

• t;J
00

~
>:!;j
o
p:j

9
00
;...
~
o

~
H

C
o

i
~

f-"
Ot
""I

158 G. W. HILL AND T. PEARCEY

sequence of commands 247-262 designed to prepare for transfer of interpretive
routines. Commands 247-251 replace t;; by t~, t~ by P20' and te by t&-tff

252-258 change 174 to refer to 8~, and 129, 154, 242 to refer to 81
259-261 sets the first command in 8~ as 50--,..8
262 shifts to 107 with D3 previously set at 42 by command 191
107-125 with (A) zero set 0, aLl n zero corresponding to a pseudo-command
of the ETC type in 42'.

The interpretive system of routines is transferred from 1iv_227iv to
50 111-276 111 and (42') is adjusted as though it were an ETC-type compiler
code. Commands 184-186 increase te from 20 to 22, which · is then used
to organize the transfer of the arc cosine routine from 269iv-306iv to
277"'-314'''. It will be noted that commands 148-151 set ho=50 in location 323
so that during transfer all commands with p = 1 will be adjusted to refer to
address ho=501 the head address of the interpretive system of routines. When
this transfer is complete, te exceeds t~ and control returns to the primary routine
which reads P20--,..T,D from tape and the computer stops.

By use of switchboard operations, the contents of the store 8~ == MIII are
transferred to M, all registers are then cleared, and the data tape is inserted in
the tape reader. When the computer is started, command 0 shifts control to 50,
the first command of the interpretive system of routines, and this system proceeds
to extract and interpret hyper-commands. The hyper-commands 0'-4' read
in nine two-word coefficients into locations 8-25 and then, for each x-value
read by hyper-command 5', the value of y is calculated by hyper-commands
6'-19' and printed by hyper-command 20'.

This example illustrates those aspects of hyper-compiler techniques, which
differ from the techniques previously described for computer-code compilers.

VIII. EXTENSION OF HYPER-COMPILER TECHNIQUES

The volume of punching required in forming the programme tape may be
reduced by minimizing the data put on the tape for library references, as indicated
previously. Further reduction of punching of hyper-codes can be obtained
by including an additional routine linked into the primary routine designed
to expand 10 binary digit codes, consisting of five address digits, a, and five
operation code digits, j, into the conventional 20-digit hyper-code form,
apn +.fP6+20Pl·

.A further economy in store space would be obtained if only those inter­
pretive routines actually required by the programme were transferred to form
the interpretive programme finally used. This would require an additional
routine to examine each hyper-code of the input programme and transferred
hyper-routines, and store a third set of transfer data. These transfer data would
be used following transfer of hyper-routines to select standard interpretive
routines for transfer, and, when this is completed, the ETC-type routines would
be transferred in the manner already considered.

In certain cases, the library of routines used may require extension of the
hyper-compiler routine to cove-r the case of parameters modifying the mode of

PROGRAMME DESIGN FOR C.S.I.R.O. MARK I COMPUTER. IV . 159

trans er as in unrolling a polynomial, and the case' of ETC-type interpretive
routi es which require other ETC-type routines as subordinates. These
exte sions correspond to those discussed in the case of computer-code compiler
rout' es, and were omitted in compiler H2 for the sake of simplicity.

IX. PROCESSES FOR USE WITH COMPILER ROUTINES

ile most programmers will be concerned solely with construction of
probl m programmes, some will be concerned with construction of libraries for
use 'th compiler routines.

(a) Process for Oonstruction of Libraries
aving selected the routines to be formed into a library, adjust the coding

of pa ametric commands to include P,PIS in the P20-P18 digits of commands of
the f I'm (~)---,..M, (M)---,..~, K---,..S, or (8+P)P17 in the P20-P17 digits of hyper­
com ands. Allocate library code numbers to the routines and then replace
all re erences to subordinate routines by mpu +epi in the case of computer-code
comp lation or by m,e---,..S, m,e---,..L in the case of hyper-code references to ETC
routi es or hyper-routines respectively. If parametric subordinate routines
are i volved, insert the parameters immediately following the compiler code
in th superior routine. Finally insert lpll preceding the routine and in the
case f computer-code programmes include library data Lpl6 +RyPll +RzP6+RxPl
prece 'ng the length datum.

hese may be assembled together with the primary, control, and compiler
e into M" using control designation mS to store the aL of the mth library
e and the library index is simply formed for each m by the control opera­

tion A, mp2 +PI and the result inserted into the appropriate location iH +m
of M . . The resultant sequence of commands can then be punched out on tape
using a standard routine and is thereafter available for subsequent use.

remains only to form a " library record" for use by other programmers
inten ing to use this library. The library record lists the routine operations
provi ed by the library together with a list of corresponding values of m,e,n
and a description of any parameters involved. .Also included are the terminating
contr 1 designations to be punched following input programmes as in Table 8.

(b) Processes for Users of Libraries
he problem programme is designed in the conventional manner with the

following exceptions. In the case of hyper-programmes data locations 0,1,2
are left free for use as registers. .All references to library operations are encoded
as m,e,E; m,e---,..L,E; or m,e---,..S,E as the case may be, where m and e are obtained
by reference to the library record. Should n be non-zero' the parameters
indicated in the library record are provided immediately preceding the compiler
code.

The terminating control operations specified in the library record are
punehed on tape immediately following the punching of the input programme .
.After the library is inserted from tape and checked, the input programme is

160 G.W. HILL ANDT. PEARCEY

inserted as has been descr-ibed.
ferred to appropriate stores by
standard fashion.

The compiled programme may then be transc

switchboard operations and performed in the

TABLE 8
8

HYPER-PROGRAMME COMPILATION FOR y=(sin x)/(arc cos x)- :E arxT USING INTERPRETIVE
T~O

No.

o
1

2

3

4

5
6
7
8
9

10

11
12

13
14
15
16

17
18

19
20

21

ROUTINES FOR DOUBLE PRECISION ARITHMETIC

Programme Commands Library Contents

As Punched As Compiled As in Table 7 aL l

IS, hT, 2S, 8nT, [h=5, n=8] Primary routine 0" 16
3S, lAT Control routine 16" 14

3A O~Do 8~Do Input parameters 30" 10
+- (Do):tK Compiler H2 40" 233 (Do)~K

2A (I)~O (I)~5
Index of hyper-routines 273" 3

I=;'Do 1 =;. Do
Index of ETC routines 276" 4

lA I~S I~S

(I)~4 (I)~4
0 Library of Hyper-routines

(4)~..4 (4)-..4 0 Exponential 300" 12
2,0.....,.S_ E 277...,.S 1 Sinecosine 313" 12
(..4) 3 (..4) 3 2 Polynomial 326" 8
(4)4 (4)4
(..4)~0 (..4) 0

Library of Interpretive Routines
1,0 L_ E 22 L
(0)~..4 (2)4 0 Basic interp_ system Oiv 226
(3)':;'..4 (3)':;'..4 1 Cube root 227iv 40

(..4) 3 (..4)~3 2 Arc cos 268iv 38
(4)4 (4)4 3 Logarithm 307iv 52

(..4) 0 (..4) 0
3A 0 -
2A 0

Transfer Data
-

2,0 L. E 34 L Loc_ Hyper-routiJ?-es Loc. I Interp. Routines
(0)4 (2)...,...4

(3)=;'..4 (3)=;'..4 300 11; 22 320 - ; 50
(..4)~Ot (..4) Ot 301 17 ; 34 321 - ; 50

lA 5 S 5 S 302 64;0 i.e. 8n 322 7 ; 277

101 S. D - 303 5;Q i.e. h 323 - ; 50

50T,247~S. D -

P20-T . D - Hyper-programme Interp. Programme
in M' in MIfI

0'-21' Input pro- 0"'- 49'" Data space
gramme

22'-33' Sinecosine 50"'-276'" Interp. syst.
34'-41' Polynomial 277"'-314'" Arc cos

X. USE OF COMPILER ROUTINES

Efficient use of a group of libraries requires a rapid means of checking that
any library is correctly inserted from tape. .An extra pseudo-code included

PROGR.AMME DESIGN FOR C.S.I.R.O. MARK I COMPUTER. IV 161

at the end of each library may be so chosen that the .sum of this and preceding
library command codes is zero. This enables a checking routine, using a repeated
loop of commands to sum the command codes of any library, to check the
accuracy of insertion in a few seconds.

Checking of compiled programmes is speeded by use of a special routine for
printing the resultant programme in symbolic form. This routine prints the
input programme in conventional form and then lists the name and store location
of the head of all transferred routines. This process is quicker than printing
the complete programme, including library routines, in the conventional manner.
It is necessary, however, to design a group of codes associated with each library
routine which is used by the programme-print routine to print the names of
library routines transferred. These print codes can be stored in locations
(JL -1 and aL -2 for eight-letter mnemonics.

Design of compiler routines and associated libraries of routines requires
little more programming time than is required for design of the library routines
themselves. The time required for inserting and checking programmes using
compiler techniques is less than that required previously, because of the con­
siderable reduction in checking time due to the reduction of human errors in
coding and punching.

A further advantage of compiler techniques is the simplification of pro­
gramming techniques, which results in faster preparation of programmes and
training of programmers. The" Programmers' Manual" for use with compiler
techniques is much simpler than that required for previous techniques and
reduces the need for specialized knowledge of instrumental techniques foreign
to the field of research of the user.

The compiler techniques adopted for use with the C.S.I.R.O. Mark I
computer have been designed so far to simplify the task of programming in
conventional " command" form for both computer-code commands and hyper­
code commands. Further simplification requires the input symbolism to be
freed from the restrictive form of "command" notation and brought closer
to the form of conventional algebra, to which mental idiom a far larger number
of users is more accustomed.

XI. REFERENCES

LANING, J. H., and ZIERLER, N. (1954).-A program for translation of mathematical equations for
Whirlwind 1. Engineering Memorandum E-364, M.I.T. Instrumentation Laboratory.

OFFIOE OF NAVAL RESEAROH (1954).-Symposium on automatic programming for digital com-
puters. (O.N.R.: Washington; D.C.)

PEAROEY, T., and HILL, G. W. (1953a).-Auat. J. Phys. 6: 316-34.
PEAROEY, T., and HILL, G. W. (1953b).-AUBt. J. Phys. 6: 335-56.
PEAROEY, T., and HILL, G. W. (1954).-Auat. J. Phys. 7: 485-504.

K

