DEVIATION FROM MATTHIESSEN’S RULE AND LATTICE
THERMAL CONDUCTIVITY OF ALLOYS*

By P. G. KLEMENS}

The purpose of this note is to point out that the difference in the ideal
electronic thermal conductivity between an alloy and a pure metal can be
estimated from the corresponding difference in the ideal electrical resistivity,
using the Wiedemann-Franz law. This allows the separation of the thermal
conductivity into an electronic and a lattice component to be made with greater
confidence, particularly at liquid oxygen temperatures.

Matthiessen’s rule states that the electrical resistivity of metals is composed
of an ideal and a residual resistivity

P=p;F Py e (1)

where p—p, as T—0, g, is independent of temperature 7', and p,(T) is independent
of g, The ideal resistivity p; arises from the scattering of electrons by lattice
waves, while p, is due to the scattering by imperfections and impurities.

On going from a metal to an alloy, the residual resistivity is substantially
increased. However, this is not the only change, for the number of free electrons
is generally affected, and hence the band structure. Consequent changes in p,
cannot be separated from changes due to the increased number of scattering
centres, but in general a change in band structure causes a change in p;, which
can be observed. Thus we may write for an alloy

0=00FP:iFAPsy e (2)
where now p, is the ideal resistivity of the parent metal and Ap, the change in
ideal resistivity on alloying.

In analogy to (1), the electronic thermal conductivity x, is limited by the
scattering of electrons by imperfections and impurities, leading to a residual
thermal resistivity W,, and by the lattice waves, leading to an ideal thermal
resistivity W, (see, for example, Klemens 1956). Thus

1/, =W, =Wo+W,.. ..o, (3)

Furthermore, it can be shown that W, and g, are relatedl by the Wiedemann-
Franz-Lorenz relation
po=LWyT, ....ccooiiiiiiiiiiia., (4)

‘where L=mn2/3(K/e)? is the Sommerfeld value of the Lorenz number (K is the
Boltzmann constant, e the electronic charge). For the ideal resistivities, however,

P9 7 % (5)

except at high temperatures, where the two are equal (e.g. Klemens 1956).

* Manusecript received February 16, 1959.
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The thermal conductivity of metals and alloys is additively composed of
the electronic component x, and a lattice component %g, the latter arising from
the heat transport by lattice waves (Koenigsberger 1907 ; for proof of additivity
see Klemens 1956). Thus

B (6)

but in pure metals x,<x, In alloys, where x, is small because W, is large,
%, and x, are often of comparable magnitude, and if %, can be calculated, one
can deduce x, from the measured values of x. To obtain x, it is necessary to.
measure p, and hence to deduce W,.

In recent years a number of systematic investigations of the thermal and
electrical conductivities of alloys have been undertaken so as to evaluate their
lattice thermal conductivities (for reviews see Olsen and Rosenberg (1953) and.
Klemens (1956, 1958)). In order to deduce %, at very low temperatures (say,
below 20 °K) it is usually sufficient to consider only W,, derived from p,, when
calculating x, from (3), W, being negligibly small. However, at higher temper-
atures W, cannot be neglected, even in alloys. Kemp et al. (1954, 1956) have:
congidered the term W, in (3) to calculate x,—and hence obtain x,—at temper-
atures up to about 90 °K. This procedure has been followed in subsequent
investigations (see Klemens 1958), and from the behaviour of %, at these higher
temperatures it has been possible to obtain information concerning the scattering:
of lattice waves by various point defects and by anharmonicities.

Unfortunately there is no direct information about the value of W, in alloys,.
for », can be directly measured only in the pure parent metal. It has thus been
assumed in all such work on the lattice thermal conductivity of alloys that in the-
alloy W, is the same as in the parent metal. As long as W;<W,, an error in W,
will not be serious, but the higher the temperature and the more dilute the alloy,
the greater will be the relative contribution of W, to W, and of x, to x, and the
more important will be errors of W, in calculating %,

Since Matthiessen’s rule (2) is not obeyed when going from a pure metal to-
an alloy, but p; changes by Ap, due to changes in the band structure, one would
expect (3) to break down similarly, so that the electronic thermal resistivity
becomes

W, =Wo+W,4+AW,, ..., (7)

where W, is now the ideal thermal resistivity of the parent metal. Since AW,
cannot be observed directly, there is some uncertainty in the separation of x,
and %, from observations of x and p,. Paradoxically, uncertainties due to AW,
are greatest for dilute alloys, even though AW, is then probably small, because:
of the increased necessity, as pointed out above, of knowing W, AW, accurately.

It is the purpose of this note to point out that AW, can be calculated from:
Ap; by means of a relation analogous to (4)
Ap;=LTAW, ....... e, (8)

and since Ap, can be deduced from measurements of the electrical conductivity
of the alloy, it is possible to calculate », with greater confidence.
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The ideal electrical and thermal resistivities arise from interactions between
electrons and phonons which take electrons from a region of momentum space
where there are too many electrons into a region where there are too few, relative
to the equilibrium concentration. As pointed out elsewhere (Klemens 1956),
‘the deviations g of the distribution function from the equilibrium distribution f°
are of the form

g(k)ocf(ky) dfo/de, ...l (9a)

for electrical conduction, and
' g(k)ocf(ky) e dfo/de, ..evniiniiian... (9b)

for thermal conduction, where k is the electron wave-vector, k, is a unit vector
specifying the direction of k, f(k,) is some function of k, depending on the shape
of the Fermi surface and the zone structure, and is the same function in both
cases, and ¢ is the reduced electron energy (e=(H—{)/KT, { being the Fermi
energy).

In the case of electrical conduction the sign of g depends upon f(k;) and thus
on the direction of k. Hence p, is due to the motion of electrons (through inter-
action with phonons) to distant regions on the Fermi surface, involving sub-
stantial changes in k; (horizontal movement).

In the case of thermal conduection, the sign of g(k) can be reversed not
only by changing k, but also by changing . Thus W, is due to two types of
motion in k-space : horizontal movement through large angles on the Fermi
surface, and vertical movement through values of ¢ comparable to unity. To a
first approximation each movement contributes to W, in an additive manner,
80 that

Wo=WaitWhie e (10)

Since f(k;) is the same in the cases of electrical and of thermal conduction,
horizontal movement is equally efficacious in both cases, so that W,,; and p, are
related by the Wiedemann-Franz relation (4)

P (11)

It is the occurrence of the term W, in (10) which is responsible for the inequality
(5). This term is particularly important at low temperatures.

Now W, is relatively insensitive to changes in the band structure, being
mainly governed by a local property of the Fermi surface. On the other hand
Wy, being due to motion of electrons over large distances on the Fermi surface
(large changes in k,), is sensitive to the overall shape of the Fermi surface,
Pparticularly in regard to its position relative to the zone boundaries (Klemens
1954, 1956).

The change Ap; on alloying is due to the sensitivity of the horizontal move-
ment to changes in the band structure ; it is reflected by ehanges in W, which
must be much larger than any change in W,,. Thus from (11) we obtain (8)
a8 a good approximation.

Using (7) and (8), one can deduce x, for alloys with more confidence than
previously, since values of p, and Ap; can be obtained from measurements of p.
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This eliminates one source of uncertainty in the evaluation of %, There still
remains a second limitation : since x is measured only with limited precision, x,
cannot be determined from (6) if x,>x,, even if %, is accurately known. Thus
studies of x, are still confined to alloys which are not too dilute. However, the
correction (7) and (8) should make possible a more reliable estimate of %, at
higher temperatures in the case of many dilute alloys which previously could be
analysed only at low temperatures.
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