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Summary 

From the theory of normal vibrations of a lattice, a practical means of obtaining 
the equation of state of an ionic solid is developed from which the thermal expansion 
can be derived. Using previous work by Kellermann, application is ~ade to the case 
of sodium chloride and the results compared with experiment. Possible reasons for 
the discrepancy between theory and experiment, which is very large at 'high temper­
atures, are discussed. The variation with temperature of the specific heat at constant 
volume and the isothermal compressibility are also investigated. 

I. INTRODUCTION 
In a previous paper by the author (Fletcher 1957) it was pointed out that a 

number of workers have attempted to draw qualitative and quantitative con­
clusions regarding the presence of defects in solids from their behaviour as regards 
thermal expansion, particularly at high temperatu~es .. It was pointed out 
that this procedure was a dubious one since almost nothing was known of the 
thermal expansion of ideal solids, i.e. not containing defects. In that paper an 
equation of state, based on the theories of Debye and Griineisen and from which 
the thermal expansion could be obtained, was developed ~nd ,!lipplied t9 an ionic 
solid, potassium chloride. In the present work an attempt has been made in 
Section II to develop a more a,ccurate equation of state, based on the theory of 
normal modes of vibration of a lattice. In Section III this has again been applied 
to an ionic solid, sodium chloride, since one is most. justified in ;ignoring the 
electrons explicitly for such a case. A wide discrepancy. betw~e;n theory. and 
experiment, not explicable by the presence of defects, is found and possible 
reasons for this are discussed in Section V. In attempting to explain the dis­
crepancy it was considered useful to calculate the specific hea,t Ov<andcom­
pressibility X T also, as described in Section IV. Here agreement with experiment 
is considerably better. . 

II. EQUATION OF STATE 
A brief resume of part of a paper by Kellerma,nn (:l,~40) will be given first 

in order to define certain quantities [;;] used later.i Consider a crystal, 

in which unit cell of volume va is determined by latticevectorsai,a2' a3 and 
. contains 8 particles, whose positions in the cell are given by the basis vectors 

* Department of Mathematics, University of Sydney. 



238 G. C.FLETCHER 

rx (x=l, 2, ... ,8). Let the xth particle in celll=(ll, l2' la) (lj integral or zero), 
whose equilibrium position is 

r!=al+rx=lla1 +l2a2+laaa+rx, ............ (1) 

suffer a displacement u! to the position r!. Assuming central forces between 
pairs of particles and neglecting external forces on the particles, the total potential 
energy of the erystal may be written 

(2) 

where 
11' _ (I I I' I) 'Pxx,-'Pxx' rx-rx' .................... .. (3) 

is the mutual potential energy of the (1, x) and (1', x') particles, assumed to 
be a function only of their distance apart, and terms with x=x', 1=1' are omitted 
from the summation in (2). Expansion of this in powers of the Cartesian 
components u!u" u!y, u!z of the displacements u! up to the second order gives 
4>~<DO+<D2' where 

(4) 

<D.= -~ ~ ~ 
" "x,x' 1,1' 

(5) 

where 

and ~ refers to summation over the three Cartesian directions. The Lagrangian 
II! 

equations of motion for the system are then 

.. I II' I' 
mxUxz-~ ~ ~('Pxx')XyUx'y=o ............... (6) 

x' I' y 

where mx is the mass of the (1, x) particle. Assumption of a normal mode of 
vibration of the form 

u!=Ux exp [i(27tk·r!-wt)], ............ (7) 

where t denotes the time variable, leads to a 38-dimensional secular equation 

where 

.......... (9) 

for each vector k. Here 0 denotes the triumvirate of numbers l' = (0, 0, 0). 
Application of the usual cyclic boundary condition restricts k to the values 
k=klbl+k2b2+kaba, where aj·bj=a;j, k;=hdn (h;=O,l, ... , n-l), and 
na=N is the number of cells in the lattice. 
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If it is assumed further that the interparticle potential energy may be 
expressed as the sum of two terms 

CP=CPC+CPR= -cp-m+bp-n, ,.' ....• '.'. (10) 

p being the interparticle distance, then [X X'] may correspondingly be rewritten 
0'] y 

.A lattice parameter a may be chosen so that a i oca, b i oca-I, and va oca3 , Then 
obviously k· (f!, -f!) is independent of a so that 

0[; X'] 1 oca-m-2ocv -!(m+2) a , 
y ( 12) 

R[X X'] 
J 

.......... 
0'] 

y OCVa -1(n+2). 

Defining 

(; x') =va!(m+2)e- 2(mxmx')-- [X x'] .......... (13) 
Y 0'] 

Y , 

where, for future convenience, e is the magnitude of the charge on the electron, 

then 0(: ;') is independent of va while R(: ;') ocval(m-n) and (8) may be 

rewritten 

where 

O(X X') R(X X') If now 0'] y and 0'] yare calculated for one value ao of a (the suffix 

zero will be used hereafter to refer to this value) and equation (14) solved for 
all k, it is comparatively simple to repeat this process for any other value of a. 
Putting g=t'a!vo=a,3/ag, 

0(; ;,)=0(: ;1, } 
R(X X')=R(X X') gl(m-n) .,""", .. , (16) 

0'] Y 0'] Yo' 

R(X X') so that it is only necessary to multiply the by a factor independent of 
,0'] y 0 

k to obtain the equations determining the normal frequencies of vibration of the 
crystal for any value of the lattice parameter, 
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Denoting these frequencies by w(k,i), where i=l, 2, ... ,38, the energy of a 
given state of the crystal is 

Em=<I>O+ Z [m(k,i)+t]nw(k,i), ............ (17) 
k,i 

where the m(k,i) are positive integers or zero (not to be confused with the index m 
in (10)). The relevant partition function at temperature T is 

Z =Z exp ( -EmlkT) =exp (-<I>olkT)/ IT [2 sinh (nw/2kT)]. 
m ~ 

.. (18) 

The free energy of the crystal is therefore 

F= -kT In Z=<I>o+kT ri [In 2 +In sinh (nw/2kT)]} 
.. (19) 

=<1>0+.9"'· 

The equation of state for the crystal may be obtained from the equilibrium 
condition 

P= _(OF) __ (0<1>0) _(0.9"') :lV -:lV :lV" . . . . . . . .. (20) 
U T U T ,U T 

which is sufficient to give the variation of volume with temperature at constant 
pressure. 

III. ApPLICATION TO SODIUM CHLORIDE 

It was decided to apply this method to determine the theoretical thermal 
expansion of sodium chloride, for which Kellermann (1940) had determined the 
normal frequencies of vibration at room temperature. It was possible, therefore, 
to use this work as a starting point, apart from the relative simplicity of investi­
gating an ionic crystal, for which the assumption that the interparticle potential 
energy depends only on the interparticle distance is most likely to be valid (see 
Fletcher (1957) for a discussion of this point). Kellermann did not consider the 
electrons explicitly but treated the Na+ and 01- ions as basic particles so that 
.~=2 and, taking a as the nearest-neighbour distance, va=2a3• Then in (10); 
with c= ±e2 and m=l, the first term corresponds to the Coulomb force between 
two ions and the second to all other forces, e.g. van del' Waals. In the case of 
the latter he ignored all but nearest-neighbour interactions (see Section V), 
thereby obtaining 

where (J.M is the Madelung number for the lattice, as the contribution per cell 

to <1>0' To determine values of band n for use in calculating (X Xl) he used the 
x y 

relations 

where x T is the compressibility. Neither of these is correct: this point and 
correction for the error introduced are discussed in Section IV. Kellermann 
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tabulated (va/e2) 0[: ;'] = (m"m",)t 0 (: ;') and (m"m",)! R(: ;') for about 

50 wave vectors k covering the relevant region of k-space. Using these as 

O(X X') and R (X X'), the six normal frequencies of vibration were calculated 
xYo xYo . 

in the present work by means of a digital computer for these vectors k and for 
g=1(0·01)1·14, a range designed to cover the possible change of volume from 
room temperature to the melting point. For each k and i cu(k,i) was tabulated 
against g and ocu/og, 02CU/og 2 evaluated by numerical methods. 

Oonsidering now one mole of the crystal, for which V=2Na 3 , 

(23) 

and 

(ocI>o/ OV)T= (2N ag)-l( dcI>o/dg) =ao-4(iIXMe2g-4/3 -nbaon +1g-t(n+3»), 

. .. . . . . . . . . . . . . . .. (24) 
while 

(~~) T = 4;ag ~i coth (n~i~i))(ocu~;,i)L' ............ (25) 

Since the normal frequencies had been calculated only for certain points in 
k-space, the relevant region of k-space was divided into cells, volume t::..K, each 
containing one of these points. If the total volume of k-space for each i, and 
therefore corresponding to N states of the crystal, is K, (25) may be rewritten 

(~~) = 4;a3 :2:. coth (n~i~i)) (O(i)~k,i)) t::..K, .. (26) 
T 0 k,. g T 

summation now being carried out only over the values of k for which cu(k,i) 
had been calculated. 

The actual procedure used was for a given value of g, to evaluate (24) and 
also (26) for two or more suitable values of T. By interpolation it was then 
possible to find the temperature for which (20) was satisfied, i.e. corresponding 
to the value of g chosen (p was in fact neglected since at normal pressure its 
magnitude was less than 0·01 per cent of either of the other terms). 

IV. DETERMINATION OF PARAMETERS 

The form of interparticle potential energy assumed by Kellermann and the 
present author involves two parameters, band n. Although these could be 
calculated in principle from atomic theory, Kellermann's determination of them 
from experimental data appears more realistic for the purpose of the present 
approximate theory. As will be seen, this amounts to fitting the theoretical 
(V,T) and (xnT) curves to experiment at one point. It is convenient to introduce 
here two parameters defined by Kellermann 

(27) 

and 
B=4a~e-2(dv/dr)r=ao= -4nbe-2aon +1, ............ (28) 
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whence 
n= -AjB-l and b= -te2n-la~-lB. . ....... (29) 

In terms of these the condition (20) becomes, using (26), 

Further, the isothermal compressibility is given by 

=( -8rlM +3A-6B)e2j36a6g4 j 3 

+..!!!L ~ 
4Ka~ k,i 

[ ( nCiJ ) (a 2CiJ) n. 2 (' nCiJ ) {(aCiJ) l2] coth 2kT ag2 T.r- 2kTcosech 2kT ag r5 11K. 

............... , (31) 

The aim of choosing A and B so that (30) and (31) are satisfied by experimental 
values of T, ao, and X T cannot be attained before calculating the normal fre­
quencies, however, since the frequencies are required for evaluating certain terms 
in these relations. Thus it is necessary to obtain approximate values at first 
by some such means as that used by Kellermann, namely, the use of (22), which 
is equivalent to ignoring the frequency-dependent terms. Having calculated 
the normal frequencies CiJ lI using these incorrect values, All Bll nIl bu of the 
parameters, the present author obtained approximate corrections to them as 
follows. These CiJl and their derivatives were substituted into (30) and (31) 

to obtain new values of the parameters, A 2, B 2, n 2, and b2. Now 0[; ;'] 

is independent of the parameters and it can be shown that 

(x=/=y), } 

(x =/=x'). 

.. (32) 

The approximation was made of assuming all R[; ;'] oc(A+2B); then con­

sideration of (16) shows that a recalculation with the new values, A 2 , B 2, would 
produce the same values of Q for different values, g2' of g instead of those, gH 

used before, where 

From (15) the frequencies CiJ 2 corresponding to g2 are 

By this means a new tabulation of CiJ against g was prepared, interpolation made 
for g2=1, and further values of the parameters found by substitution in (30) 
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and (31). This procedure was repeated until self-consistency was obtained. 
The final results were 

A=10'68; B=-1·048; n=9·188; b=9'902x10-83, 

as compared with Kellermann's values 

A=10'18; B=-1'165; n=7'738; b=1·148 X 10-71, 

both being based on the values (X.M=1·7476; e=4·8xlO-10e.i3.u.; 
ao=2' 814 X 10-8 cm; and x T =4 ·16 X 10--12 cm 2jdyne, corresponding to g= 1 ; 
T=288 OK. 

1·05 

,.00 ~? ____ ..L.-_____ ..L-____ --:=:-
250 500 750 1000 

Fig. l.-.Expansion of sodium chloride. 

-0-0- Experimental (Eucken and Dannohl 1934). 
Theoretical. 

With these corrected values of the parameters, the procedure described in 
Section III was carried out to obtain V as a function of T at constant (zero) 
pressure. The results are shown in Figure 1; the experimental curve was 
obtained from the values of Eucken and Dannohl (1934) for the thermal expansion 
of sodium chloride. Owing to the wide discrepancy between theory and experi­
ment, it was decided to try to check the tables of normal frequencies by calculating 
the specific heat at constant volume and the isothermal compressibility. To do 
this it was necessary to obtain temperatures T corresponding to the values of g, 
under which the frequencies were tabulated, and for this Eucken and Dannohl's 
figures were used. The expression (31) was used to evaluate Xn while for the 
specific heat 

Nli . (liCU(k,i)) 
E=<I>o+ 2K ~. cu(k,~) coth 2kT !l.K, 

k,. 
........ (35) 
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and 

O _(aE) _ Nn2 '" 2 h2 (nW) AK 
y- aT y -4KkT2 ~ W cosec 2kT Ll • • ••••• (36) 

The results are shown in Figures 2 and 3. The experimental values for Oy were 
taken from Hunter and Siegel (1942) while those for X T were obtained from their' 
values of Xs by use of the relation 

X T =Xs +1X2VT/Op , •••••••••••••••••• (37) 

together with the figures quoted by Hunter and Siegel for Cp and the results of: 
Eucken and Dannohl (1934) for V and for the coefficient of thermal expansion IX. 
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Fig. 2.-Specific heat of sodium chloride. 
-0-0- Experimental (Hunter and Siegel 1942). 

Theoretical. 
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Fig. 3.-Compressibility of sodium chloride. 
-0-0--- Experimental (Hunter and Siegel 1942). 

Theoretical. 

V. COMPARISON WITH EXPERIMENT AND DISCUSSION 

Figure 1 shows that the theory used here predicts a much more rapid increase 
of volume with temperature than is found experimentally. Analysis of this 
discrepancy is complicated by the fact that the form of potential energy assumed 
and the values used for the parameters A, B, n, and b affect both (acI>o/aVh 
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and (o.r/oV)n although the total effect on the (V,T) curve of quite large changes 
in these:parameters was found to be surprisingly small. Essentially the method 
used has! mvolved the finding of a temperature T to which a given set of <u's,' 
and hence a given value of V, corresponds. The good agreement with experiment 
in the case of 01' might seem to indicate that the <u's are tabulated against the 
(lorrect. values of V (and hence of T). However, cosech (J; is so insensitive a 
function of (J; when (J; is small, as (J;=n<u/2kT.,it:! here, especially for high temper­
atures, that one could vary T considerably (and hence alter the tabulation of 
the <u's against V) without affecting this agreement appreciably. It does indicate 
that the <u's obtained are of the right order of magnitude. In the case of Xn 

however, the frequency-dependent terms are both very sensitive to the choice 
of T, are relatively independent of one another, and their magnitudes are .-,,25 
:and 40-50 per cent. of the other terms in (31). The reasonable agreement with 
experiment does, therefore, suggest that the <u's are correctly tabulated against V 
and that the fault lies elsewhere in the development of the theory of thermal 
·expansion ·used here. 

Assuming for the moment that the form assumed for the potential energy 
:and the values used for the parameters are essentially correct, (oI.'l>O/OV)T is 
determined, but inclusion of anharmonic terms in the expansion of 1.'1> would 
:affect (O!TIOV)T' With cubic symmetry quartic terms in the u! are the first to 
be considered; their coefficients will be of the same sign as those of the quadratic 
terms and by perturbation theory they will contribute to Em terms proportional 
to (m 2 +m+t)/<u 2• Thus Em would be increased, which can be interpreted in 
terms of a larger effective <u. Since the important factors in (o.rloVh are the 
(loth (n<u/2kT), this would mean a larger value of T would be necessary to keep 
-(o.r/oV)T=(ol.'l>o/oVh. Thus inclusion of anharmonic terms would improve 

:agreement with experiment. An attempt to assess this was made but it seemed 
obvious 'that a fairly exact calculation would be necessary before any worth­
whilecOliclusions could be drawn. 

As far as the form assumed for the potential energy 1.'1> is concerned, Keller­
mann makes the point that only nearest-neighbour interactions are considered 
for the'repulsive part. This does not seem so, however, since, provided one 
:assUmes <a' repulsive interparticle potential energy proportional to p-n, the 
contribution to <1>0 from all particles will be of the form Olan, where 0 is just the 
-coeffiCIent of a-n determined here (from experiment), and similarly for 1.'1>2' 

Regarding the constancy of the form of $, e.g. of the parameters, assumed here, 
·one expects an increase in temperature to spread out the electron clouds about 
the ions. Provided these clouds stay spherically symmetrical, the Coulomb 
terms ±e21 p will be unchanged, but the others will be increased owing to greater 
repulsion between the electrons. This would increase the restoring force on a 
displaced ion, increase the <u's, and decrease -(O.rjOV)T (o.rloV is negative) 
if T is kept fixed. On the other hand, -B, which is essentially the repulsive 
force between two ions, would be increased; this increase would result in a 
decrea.se in (oI.'l>O/OV)T also. Thus, one cannot say without further investigation 
whether one would have to increase or decrease T, thereby improving or: 
worsening agreement with experiment, to maintain -(O.rIOV)T=(o$loV)T' 
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One further point is that, if some or all of the electrons were considered as separate 
particles, they would be expected to perform high frequency oscillations, thereby 
increasing the average normal frequency and decreasing -(a.rjaVh. The 
effect on (a<'PjaV)T is difficult to estimate, since it would involve Coulomb, 
correlation, and exchange effects between the electrons. 

Reference to Figure 1 shows that the theoretical coefficient of thermal 
expansion eventually becomes infinite and then negative. Obviously this ha~ 
no connexion with observations where IX becomes zero and then negative. With 
regard to the theoretical work of Blackman (1958) on this point, practically all 
Yv= -(a In vja In Vh are positive, but for a few wave vectors kyv is negative 
and the number of these increases as V, i.e. T, decreases. 

One further point is that the approximate summation procedure introduced 
over the wave vectors k, for which the normal frequencies had been calculatedt 

may have affected the results obtained. Error is most likely to enter through the 
factors aClJjag since these do vary quite rapidly with k in some regions of k-space~ 
Since, however, the summation was carried out over 384 wave vectors, the overall 
effect on the calculations was not considered serious. 

VI. CONCLUSIONS 

An attempt, based on lattice theory, has been made to calculate the­
theoretical thermal expansion of sodium chloride. The agreement with experi­
ment is very poor, the theoretical value of IX increasing far too rapidly with 
temperature, eventually becoming infinite and then negative. Investigation 
of the variation with temperature of Ov and X T using the tables of normal' 
frequencies of vibration of the crystal obtained in the work, indicates that these 
frequencies are essentially correct in absolute magnitude and as functions of 
the volume of the crystal. The discrepancy between theoretical and experimental 
values of IX seems most likely to be due to the neglect of anharmonic terms in 
the expansion of the potential energy <'P but may partly be caused by the 
assumptions as to the form of <'P and the constancy of this form. 

With regard to future work along the lines indicated here, it would be 
relatively simple to obtain correct values of the parameters A, B, n, and b exactly 
by an iterative process, since at each stage it would only be necessary to recalculate 
the ClJ's for three or four values of g covering the value at which (30) and (31) 
are to be satisfied, using a digital computer. It would be simplest and most 
satisfactory to do this at 0 OK, since then the frequency-dependent terms are­
greatly simplified; however, experimental values of ao and XT at 0 OK would be­
difficult to obtain accurately. If some other temperature is chosen, the method 
is easily extended to lower temperatures by considering values g <1; this was, 
not done here owing to an oversight in carrying out the calculations. 
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