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Summary

Transfer processes in which an entity is transferred down a gradient of a con-
centration-like quantity satisfy the relation q=—A.B, with q the flux density, A
dependent on time, concentration and position, and B a function of the concentration
gradient, V0. In ordinary diffusion B=V6. This paper considers the more general
transfer process, designated n-diffusion, for which B=| V0 [*=1V6 (n>0).

The paper deals with the simplest unsteady one-dimensional problem of n-diffusion
(with A constant) into a semi-infinite region. The results are simply extended to the
related problem in the (doubly) infinite region.

Solutions are found in terms of the incomplete beta-function, though for certain
values of n solutions are expressible in terms of elementary functions. Infinite * tails ”
(analogous to that in 1-diffusion) occur for 0<n<l, whilst the concentration profiles
are finite for n>1. Distance of penetration into the region and cumulated flux vary
as (time)l/(n+1),

The present paper is intended as an introduction to later work on concentration-
and space-dependent forms of n-diffusion which are immediately relevant to physical
problems of interest.

I. TRANSFER PROCESSES
Many branches of mathematical physics are concerned with transfer
processes, in the sense that some entity is transferred down a gradient of a
concentration-like quantity. For processes of this nature we have the general
relation
q=—A.B. (1.1)
Here q is the vector flux density ; A is a function of time, concentration, and
position (and is, in the general case, a tensor of rank 2) ; and B is a vector function
of the concentration gradient.
Assuming conservation of the transferred entity and differentiating, we
obtain
00/ot=V.(A.B). (1.2)

Here 0 is the concentration and ¢ is the time.

(@) Diffusion
In this paper we use the word * diffusion ” in a mathematical sense, with
no implications as to the physics of the transfer process. For diffusion, as the
term is generally employed,
' B=V0. (1.3)

We may categorize the various types of diffusion by the form of A. A is constant
for linear diffusion, whereas in time-, concentration-, and space-dependent
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2 J. R. PHILIP

diffusion A is a function of the appropriate variable. In more complicated
types of diffusion A may vary with two, or with all three, of time, concentration,
and space.

(b) n-Diffusion
In this paper we consider a generalized form of diffusion for which

B=| V0 |*-1V6. (L.4)*

The various types of n-diffusion, as we shall call it, may be categorized
according to the form of A in the same way as for 1-diffusion. In this paper
we confine our attention to the case A=constant.t This study serves as the
introduction to further work dealing with concentration-dependent n-diffusion
and certain forms of space-dependent n-diffusion. These more complicated
types of n-diffusion are immediately relevant to physical problems of interest,
including unsteady vertical heat transfer from a horizontal surface by (turbulent)
free convection (Priestley 1954), and unsteady turbulent flow of a liquid with a
free surface over a plane. The latter does not seem to have been yet formulated
in the literature as a problem in n-diffusion ; Philip (1956) gives the parallel
development for non-turbulent flow.

It is of some interest that n-diffusion has the most general form of B for
which solutions of the simplest unsteady problems may be found by similarity
methods. We apply these methods here to the case A=constant; but, as we
propose to show in later work, they are effective also in concentration-dependent
n-diffusion [A=f(0)] and in space [x]-dependent n-diffusion with A ccat (c<<n).
The methods apply also to the more general class of n-diffusion with A=f (0).a-.

II. n-DIFFUSION IN A SEMI-INFINITE REGION
The one-dimensional form of the n-diffusion equation is

00 0o 00 |»—100
w=%( % @) @1)

with A and n positive constants. « is the spatial dimension. We limit ourselves
to the physically interesting case of positive n because the cases n<(0 involve
irrelevant complications.

We consider the most elementary (and perhaps most important) unsteady
transfer problem, namely, transfer in the semi-infinite region x>0, subject
to the conditions : v

0=0y t=0, 2>0; }

0=0,, #=0, ¢>0. (2.2)

* Of course, we could regard n-diffusion as characterized also by B= V0, but with A dependent
on V0 (as well as, in general, £, 0, and space) ; but the present treatment is perhaps more convenient.

T We shall use the term ¢ n-diffusion ” to describe this simple case as well as to denote the
whole class of phenomena defined by (1.4). Unfortunately, we can hardly apply the adjective
‘“linear” to the simple case.” We shall avoid ambiguity by specifically labelling all types of
n-diffusion, other than that with A constant, as *‘ concentration-dependent »’, “ space-dependent, ,
ete.
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It is a simple matter to modify the methods and results of this paper so that
they apply to the related problem in the infinite region with the governing
conditions :

t=0, >0, 0=0,; <0, 6=0,;

6,
t=>0, f 2d0=0. (2.3)
6o

The similarity substitutions
F=(8—0p)/(6:—00) ; o=a[| 6,0, [r—14¢]-H®+D (2.4)

form the generalization in n-diffusion of the ‘ Boltzmann transformation
(Boltzmann 1894) in 1-diffusion. Applying (2.4) to (2.1), (2.2), we obtain the
ordinary equation

. dd_d dg\» .
n+1 do dcp( de)’ o (2.5)

subject to the conditions
=0, #=1; ¢@—>o00, $—0. (2.6)

When n is such that >0 for all finite ¢ the second of conditions (2.6)
immediately implies
#—0, dd/de—0. (2.7)

But when » is such that $=0 at some finite ¢ (in fact, when »>1), we must
consider further the behaviour of dd/de near $=0. We therefore introduce the
quantity ¢(&#), the flux density at the point with reduced concentration &, and
observe that

a0 dd |
| ¢(@) | =4 l % ‘ =(4 | 6, —0, [22t—n)Un+1) 55’ . (2.8)
Now, since ¢(0)=0 and A>0 and »>0, we have, for >0,
9=0, dd/de=0. (2.9)

This result holds whether the least value of ¢ at which $=0, ¢, is finite or not.
The substitution

V= —ds/de (2.10)
reduces (2.5) to
p=—n(n-+1)¥*—2d¥/de. (2.11)
This has the integrals |
n=1; @*=4log [¥,/¥]. (2.12)
natl; =200 g1y (2.13)

¥, denotes the value of 1" at ¢=0 (i.e. at $=1).
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A further integration of (2.12) and use of (2.6) yields
d=erfe ¢/2, (2.14)

the well-known solution for n=1. In this case ¥ ,==n"1

The case n#1 needs further discussion. Referring to (2.11), we observe
that, when ¢ and ¥ are both non-negative, d¥"/d¢ is non-positive.* That is,
¥ is a non-negative monotonic function of ¢, decreasing from its largest value,
¥, at ¢=0. It now follows from (2.13) that, for the case 0 <n <1, ¢p—>o0 as
¥ —0 [i.e. as #—>0: cf. (2.9)]; and that, for the case n>1, ¢ approaches the
finite positive value [{2n(n+1)/(n—1)}¥T ']t as -0 (i.e. as $—0).

Integrating (2.13), and using the first of conditions (2.6), we obtain

v (L—n)g2 \Ua-D
1; 9=1-Y¥ 14— ‘F do’. A5
nAL lf 0 ( +zn<n+1)w-1) ¥ (2-15)

¥, can now be evaluated.

(@) The Case 0 <n<1
In this case the substitutions

a=tan—1(£1_:7£ﬁf) ‘o, (2.16)
2n(1+n)
m=2n/(1—n), ' 2.17)

reduce (2.15) to

2n(1+mn) )% J’ o Ve i
f=1—| ———| ¥ cosma'da’. 2.18
(o)t comaas (#19)
We introduce the identity
3
f " cos™ oc'doc'=%B(7£'2i1, ), (2.19)
0

1
where B(p, q) is the beta-function f 2'?-1(1—a')e-1da’. B(p, q) is expressible
0

in terms of gamma-functions, but it is more convenient here to retain beta-
function forms.

Then it follows from (2.6), (2.18), and (2.19) that

1—n \Vad+n) 2 2/(L+n)
¥, (2_75(T+—n)) : m) . (2.20)
2—2n

* Jtfollows at once that the family of ¢(#) curves do not possess points of inflexion. .
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(2.18) then reduces to the forms

o i
P=1— f cos™ o'do’ / f cos™ o'dot’
0 0

2

o
— M !’ 17
(m+1 )f cos™ o'do
’
b i
=f cos™ a'da’ / f cos™ o'da’
o 0

i
(,’n+1%)J‘ cos™ o'dat’. (2.21)
’

Elimination of ¥'; from (2.16) yields
2

1 1—n -1 /(1 +n) )
a=tan~ Sn{d ) T p=tan=1k, o. (2.22)
(2 —2n’ %)

We observe that, in this case, as ¢ goes from 0—co, « goes from 0— 47w and &
goes from 1—0.

(b) The Case n>1
In this case the substitutions

1—n\ 3
a:si\n—l((g;&)fi) ) 2 (2.23)
m=(n-41)/(n—1), (2.24)

reduce (2.15) once again to the form (2.18), but with the factor (1—n) in the
denominator of the expression to power i replaced by (n—1).

We may now use the value of ¢, for n>>1 to evaluate ¥, for this case. The
result is
n—1 \Ur+D 92 2/(n+1)
\F"(il_n(n_Jrl)) s (2:20)
n—1’

The forms (2.21) hold here also, and the expression for « with ¥, eliminated
is
n—1 2 1-n71/(rn+1)

—qin-1 —gqin-1
o=g8in In(n+1) ]3( o 1) o=sin"1k,o. (2.26)

n—1’ 2

In this case, as ¢ goes from 0—>1/k,=q,, « goes from 0—4x and & goes from
1-0.
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ITI. SOLUTION IN TERMS OF ELEMENTARY FUNCTIONS

o
f cos™ a'da’ is expressible in terms of trigonometrical functions when m
0

is integral; so that solutions for the cases
n=m/(2+m), m a positive integer ; (3.1)
n=(m+1)/(m—1), m an integer greater than 1 ; : (3.2)
can be found in terms of elementary functions.

The simplest solutions of each type are presented in Tables 1 and 2. It
will be observed that, for each type, the functions entering the solution differ
according as m is even or odd.

TaBrE 1
THE SIMPLEST SOLUTIONS OF TYPE (3.1)
m n & k,
2 3\ /4
1 1/3 1 —Fk,p/(1+kzp2)t (Z) =0-806
2 1/2 1 — Zftan-1 b g+ /(1 4+ k208 2\
/ "“T‘L_[ an 2Pt a<P/( +kg9?)] 3—7:& =0-521
2
ko (34 2kg0? 55 \1/8
3 3/5 1 _&M - =0-432
(LK o282 217,338
2
2 k_o(5 4 3k o2 32 \15
4 2/3 1 — 2|3 tan-1 1 o a®(BF3kao) =0-356
3r a +k2<p2)2 22.5%
TABLE 2

THE SIMPLEST SOLUTIONS OF TYPE (3.2)

m n D &,
2 3 1 — 2[sint by +oyp(1—iphi] T\
— —[sin~ — — =0-
= b® +oy@(1—kpe?) 2«,3) 0-476
3 2 1 — 3k, p(3—kap?) L)
3oy p(3—kpe PXT =0-382
2 . 2 2 35. w2\ 1/8
4 5/3 1 — o [3sin™t by +k,@(5—2kp0™) (1—kpe?)?] (217_ 53) =0-332
k E 2 \38/5
5 3/2 1— —22[15—10k%q>2+3k%<p4] (3—5) =0-299
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These solutions in terms of elementary functions are of some interest.
However, available tables (Pearson 1934) make solution in terms of incomplete
beta-functions (see following Section IV) more useful for numerical purposes,
even* in the cases treated in this Section.

IV. SoLUTION IN TERMS OF THE INCOMPLETE BETA-FUNCTION
‘We observe that

i b
J‘a cos™ a.'doc’/J'o cos™ o'do’ = x(m—{-l, %) ; (4.1)

r=cos? o

Here I,(p, q) is the incomplete beta-function ratio of Pearson (1934) defined
by

T 1 ‘
I(p, q)=f x'P=1(1 —x’)q—ldw’/f 2?11 —g')e—1de’. S (4.2)
0 0
Our solutions are thus expressible in terms of this function. (2.21) may be
rewritten
'm+1
s=1("57 1) (4.3)
with # specified as follows :
0<n<l; x=(1+kio?)?, (4.4)
n>1; r=1—kje (4.5)
Pearson’s tabulation of I «p, @) is for p=14($)11(1)50. It follows that,

m+

without interpolation, Pearson provides values of I,

, 5] only for

m=0(1)21(2)99. Thus, curiously enough, the table gives (w1thout interpolation)
only solutions which could be found by the elementary methods of Section ITI.{
The table, of course, allows solutions to be computed with much less labour than
would be required otherwise.

V. POWER SERIES AND ASYMPTOTIC FORMS OF SOLUTION
(@) Power Series in ¢

The power series forms in ¢ provide information on the behaviour of the
solution near $=1.

Case 0 <n<<1. In this case (2.15) may be rewritten
P
3=1—‘If'1f (1+k,3cp’2)—1/(1-”)d<p’. (6.1)
0

* In fact, as we see later, Pearson’s tables are directly usable only in cases where the solution
is expressible in terms of elementary functions.

+ A P-fold increase in the number of immediately available solutions would be provided

by a tabulation of f
0

. P4+1(1\2P—1
by a tabulation of I (p,}) for p:W 5) 55|

P—1
cos™q’de’ in the interval of 0<<a<w/2 for m——ﬁ(i—)) 5 [or, equivalently,
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In the interval 0 <o <k, ! we may apply the binomial theorem and term-by-
term integration, obtaining

_ 1 kao® 2—n (k3o*\*  (2—n)(3—2n) (kap?\®
"—1“T1‘P[1_§ T—nt7215 (l—n) 317 (l—n) T ]

(6.2)
The corresponding result in the case n>1 is

_ 1 kpe*  n—2 (kjp*\* (n—2)@2n—3) (k3p*\?
"_1"%‘9[1‘5 n—1 215 (n—l) L (n—l) T ]

(5.3)
We observe that series (5.3) is finite whenever 1/(n—1) is a positive integer (i.e.
whenever the integer m of (3.2) is odd). Also, since k,¢ <1 for ¢ <q,, series (5.3)
converges throughout the interval 0<<¢ <<¢,.

(b) Asymptotic Form for & small (0<n<1)
Forms of solution discussed to this point do not readily provide a full picture
of behaviour near #=0. Accordingly, the asymptotic form developed here for
0<n<1 is of some interest.

We rewrite (2.15) as
A I R (5.4)
P

Then, applying the binomial theorem and term-by-term integration, we have

§=(1—n)¥k,~2A=Mp=0+m/d=0) [1 _li_n = 1 i
2—n (2—n)(3—n)
+3 1(6—3n)1 —n)2(k,0)*  3N7T—8n)(1—n)(k,0)° +. . ] (5.5)

With some reductions involving (2.20) and (4.4), (5.5) yields the approxi-
mations, good for ¢ small (¢ large),

S~ 2”(1 in) ]1’(1‘"’<p"‘1+”’/‘1‘”),

5.6
on [2%(1 -I-n) ]1/(1 +n), g=(1=m)L+m) (5.6)

Although series (5.5) is conveniently (and pfoperly) described as asymptotic,
it converges in the interval o>k, 1

(¢) Power Series in (1—kpp) (n>1)
On the other hand, in the case n>1, behaviour near $=0 may be examined
by means of the power series in (1—Fk,p). Putting

e=1—Fk,op, (6.7
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~ we may here reduce (2.15) to

S U1, j-s

- gl =1)(1 — e’ Ur—De’, (5.8)
b

0
Since £<{1, we may apply the binomial theorem and term-by-term integra-
tion, obtaining

¥ 1 1 €
—21n=1)(py —1). L. enfr—-)| = _ _— .- =
#=2 (n—1) k. € ['n 2n—1 2(n—1)

n—2 (e \* (m-2)en—3) e \3_
"~ 21(3n—2) (2(n—1))_ 31(dn—3) (2(n—1)) } (5.9)

With some reductions involving (2.25) and (4.5), (5.9) yields the approxi-
mations, good for & small,

(2¢)n/tn—1)

n n ’
m[B(m’ %)] (5.10)

n n (n—1)/n
il ]

It will be noted that series (5.9) is convergent throughout the interval
0<e<1.

Py

VI. SOME GENERAL PROPERTIES OF n-DIFFUSION
In this section we discuss certain general features of n-diffusion in the
semi-infinite region (subject to conditions (2.2)) which emerge from this study.

(a) Profile Character

We consider how the character of the concentration profiles, in the reduced
form ¢(3), varies with n.

(i) Depth of Penetration ; Order of Profiles near #=0.—An obvious feature
of the profiles is the sharp distinction between the case 0<n<1, for which ¢,
ig infinite, and the case n>1, for which ¢, is finite. We have, for the latter
case,

1 2n(n+1 2 n—171/(n+1)
Po=7"= (__ ) . (6.1)
k, n—1 B 1
n—1’
o i8 a monotonic function of n, decreasing as n increases for n> 1.
When (n—1) is small, but positive, we have the approximation
Po2(n—1)-%, (6.2)
An approximation for n large is
Po~ (2n)Hn+D), (6.3)
Also
lim g,=1. (6.4)

N—>0
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Figure 1 shows ¢,(n), together with approximations (6.2) and (6.3).

In the case 0>n>1, the rate of approach of ¢ to infinity as #—0 is of some
interest. It is useful to introduce the notation ¢® to denote the ¢ function for
n=n,.

We then have from (5.6) that,

if 0<n,<n,<1, }

6.5
oD— oo as #—>0 more rapidly than does o3, (6.5)

(6.5) and the monotonic decreasing property of ¢, for n>>1 supply an ordering
relation for the family of ¢(3) curves close to $=0. This is that,

if 0<n,<n, and & is sufficiently small,) (6.6)
PI(B)> ¢ (). ) '

(ii) Concentration Gradient at x=0; Order of Profiles near $=1.—Equations
(2.20) and (2.25), and the known result for n=1, provide the relation between ¥,
(i.e. minus the concentration gradient at =0 in reduced form) and n. It is
readily shown, both for v>0 and v<0, that

for n=1-+4v, lim ¥,==n"% (6.7)
0

Tt is thus confirmed that ¥,(n) is continuous through 0 <n <1, n=1, and n>1.

We note that
lim ¥,=o0; lim ¥,=1,; (6.8)

n—0 n—> 0
and thafo, when 7 is small, we have the approximation
¥, ~2/7*n. (6.9)

Figure 2 shows V',(n), together with approximation (6.9).

An important property of W;(n) is the fact that it possesses a minimum
value, approximately 0-55794, at n=mn4~1-29. The existence of this minimum
leads to the following relations ordering the family of ¢(#) curves close to d=1.

If 0<n,<ny<my and (1—9) is sufficiently sma,]l,l
P () <™ (D).

If ne<m, <n, and (1—9) is sufficiently small, 1
PI(9)> ™ (). )

Ordering relations (6.6) and (6.10) are in opposite senses, so that any two
members of the set of profiles 0 <n<n, intersect once and once only in the
interval 0<®<1. This set of profiles contains the sub-set 0<n<1 with ¢,
infinite and the sub-set 1 <n<m, with @, finite. Figure 3 shows typical members
of the set, the “ finite ¢, sub-set being represented by the profile n=>5/4.

Ordering relations (6.6) and (6.11) are in the same sense, so that the set of
profiles n>>n, are non-intersecting in the interval 0 <& <1. ¢, is finite for this
set of profiles, which are illustrated in Figure 4 ; the profile for n=1 is shown
also for comparison,

(6.10)

(6.11)
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T
$o—> 0 AS N —>1
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l
[
|

° 2 3 4 5
n——
Fig. 1.—n-diffusion in the semi-infinite region. Variation with n

of depth of penetration in the reduced form ¢,.

2.0 : ; ; :

S n
T EQN.(6'9)
__ 1o ¥, —»1AS N —> 00
E
5

051~

1 1 L 1
o 1 2 3 4 5

N ———
Fig. 2.—n-diffusion in the semi-infinite region. Variation with n
of concentration gradient at surface =0 in the reduced form ¥',.
Also shown is ¥, which represents flux density at z=0 in
reduced form,

11
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It will be understood that intersection relations between the two sets are
somewhat complicated and that a representation of the whole family of profiles
on the one graph would appear, at first glance, rather disorderly.

(iii) Relationships connecting ¥'; and ks and kp.—We note the following
relationships :

1
0<n<l; lFl/ka=2/]?»(§__L;,:'I, ), (6.12)
n
n>1; qpl/kh=W1<P0=2/B(m7 ‘%) (6.13)
1-0 T : . .
s/a
1
ost W 12 |
1/3
o6l B
&
0.4} -
\
‘ \
o2} B
N
NS 5/4 4 1/2 13
1 1 \f\ — — o0 83
o 1 2 3 4
b —>

Fig. 3.—n-diffusion in the semi-infinite region. Concentration profiles

in the reduced form ®(¢p) for “ intersecting ”’ set n<n,. Numerals on

curves denote values of n. Infinite profiles are identified by the infinity
sign. Profile for n=1 shown broken for clarity.

(b) Variation with Time
The form of the time-dependence of the phenomenon follows immediately
from (2.4). We have, in particular, the following results :

@(F) octt v+, (6.14)
ds

el ~1(n+1)

To(8) cct=Um D, (6.15)

gy oct=nln+D), (6.16)

¢ 1
f qldtocf dd octlln+1), (6.17)
0 0

¢, denotes the value of the flux density g at =0 (=1).



n-DIFFUSION 13

(¢) Flux Density and Integrated Flux Density
We have the following expressions for the flux density and its time integral :

gy =AYn+D)]| §, —0, |20/ +1) f—n/n+1) P, (6.18)
2
f gyl (n 1) AVO-+D] 6, —0 [20ln-+D) 1w+ P, (6.19)
0

W1 is a measure, in reduced form, of flux density and of total transfer to
time {. Some interest therefore attaches to the dependence of ¥ on n. This

o T T T T
o8} _
o6 .
\
\
Py \
\
04— \ a
A\ 3
A
\ 2
N 4/3
0-2 N\ -
/‘
I~
1 } Rl B
o 1 2 3 4
¢ —>

Fig. 4.—As Figure 3, but for ‘ non-intersecting set > n>mn,. Profile
for n=1 also shown for comparison (broken curve).

is illustrated in Figure 2. We note that W7 has a maximum value approximately
equal to eme [~1-08] at n~a2/n2%e[~0-075]; and that lim ¥}=1 and
lim ¥i=0. "0
>0
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