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Summary 

Damped temperature-time oscillations associated with thermal convection 
are analysed and the energy of thermal inductance is identified with the free energy 
of entropy flow from the convection chimney. 

I. MATHEMATICAL ANALYSIS 

In an earlier paper by two of the present authors (Bosworth and Groden 1960) 
the possible solutions for thermal transients associated with natural convection were 
enumerated on the basis of a postulated equivalent electrical circuit. One of the 
possible solutions included trigonometrical functions in which multiple steady states 
were in principle expected. In 1960 Wecksler realized that such conditions could be 
obtained (lecture to The Institution of Radio Engineers Australia, Radio and 
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Fig. I.-Oscillatory transients, Z = temperature. 

Electronic Engineering Convention, Sydney, 1961). The thermal transient for a 
heated wire took the form (temperature versus time) of a damped wave in which the 
actual temperature of the wire rea.ched the same value as the final asymptotic value 
after the lapse of to, t2, t4, t6 seconds from the addition of the heating current while 
the temperature passed through maxima in it, t5, etc. seconds and through minima in 
t3, t7, etc. seconds (Fig. 1). 
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or 

The amplitudes associated with the various critical times are denoted by: 

Zo at t = to = t2 = t4, ... , 
Z1 at t = tt, first maximum, 
Za at t = ta, first minimum, 
Z5 at t = ts, second maximum, etc. 

Using the notation of the previous paper we have 

x = (L-RCr)j2r.J(LC) ~ 0, 

Y = (ljR).J(LjC) > 0, 

T = tj.J(LC), 

C = IjA = T2/TI > I, 
and for IXI ~ I, 

(I) 

(2) 

(3) 

(4) 

Z = r~R[ 1- exp{-( X+ ~)T}{COS(I-X2)!T- (:_+x;t Sin(I-X2)iT}]. (5) 

When T -700, 

Z -7 Zo = rRj(r+R). (6) 

This value also is attained when 

2 t X+ Y. 2 t cos(I-X ) T- 2! sm(I-X ) T = 0, 
(I-X r (7) 

or when 

2 t -1 (1- )-{ X 2 t} 
(I-X) T = tan X+Y +n7T, n = 0, 1,2, ... , (8) 

where tan-1{(I-X2)tj(X+ Y)} is the principal value of the inverse tangent function. 
Then 

1 [ -1{(1-X2)t}] 
T2 = (I_X2)t 7T+ tan X+ Y . (9) 

The extreme values of Z occur at the points when dZjdT = 0. This condition yields 

or 

(I_X2)TT = tan-1{(I-X2)ijX}+n7T, 

= cos -1 X +n7T. 

Hence, for the first maximum (n = 0) 

cos-1 X T 
T1 = (I_X2)t = sin T' 

if 
cos T = X. 

(10) 

n = 0, 1,2, .. "} (11) 

(12) 

(13) 
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Similarly, for the first minimum (n = 1) 

73 = (T+l7)jsin T. (14) 

These two values yield, in turn, 

z1=r~R[I+Yexp{-(x+ ~ti~T}] (a maximum), (15) 

and 

Z3 = r~R[l-Yexp{-(x+ ~)~:;}] (a minimum). (16) 

Now 

0= 72 = 17+ tan-1{(1_X2)tj(X+Y)}} 
71 cos-1 X 

_ 17+ tan -1 {sin Tj(cos T+ Y)} 
- T ' 

or, solving for Y, we get 

Also let 

where 

Y = _ sin(O-l)T 0 
. sinOT > . 

Eliminating Y we then get 

B - _ sin(O-l)T. T cot(C-1)T 0 
- .OT e >. sm 

(17) 

(18) 

(19) 

(20) 

(21) 

Since B must be positive, sin(O-l)Tjsin OT must be negative. This condition leads 
to the following restrictions for T: 

(b) when 1 < 0 ~ 2, 

1T 1T 1 
then a < T < 0-1' ~ 

1T 21T J then a < T < 71' 

(22) 

(a) when 0 ~ 2, 

and it can be shown that in both ranges of T, B is always finite (note that (21) 

becomes infinite when (O-l)T = nTT). 
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Using the experimental values t1, t2, Zo, and Zl, and obtaining B from (19) 
and G from (4), T is then taken from Table 1 (which is based on (21)), and then X 
from (13), and Y from (18); to and t3 can be obtained from (8), (12), and (14), and 

TABLE 1 

VALUES OF B FOR GIVEN C AND T 

B=-
sin(C-l)T 

. eT cot(C-l)T 

sinCT 

~ 1·2 1·4 1·6 1· 8 2·0 2·2 2·4 2·6 3'0 3·5 4·0 

--~---

1·2 102·4 47 ·14 35·04 
\;) 1·3 41·24 12·31 6·545 4·996 
~ 
C'l 

1·4 20·29 8·300 3·433 1·834 1·409 
V 1·5 17·31 5·355 2·883 1·262 0·608 0·521 
h 1·6 34·47 4·607 2·114 1·208 0·485 0·177 
V 1·7 5·44.5 1·899 0·947 0·.522 0·161 0·028 \;) 

~ 1·8 12·787 2·131 0·883 0·424 0·205 0·033 
1·9 3·326 0·998 0·410 0·169 0·060 0·001 
2·0 16·341 1·446 0·481 0·171 0·049 0·008 

------

I 
~ 
~ 
V 
h 
V 
\;) 

~ 

2·0.5 6·046 1·00.5 0·328 0·102 0·021 0·001 
2·10 3·337 0·705 0·216 0·054 0·006 
2·1.5 2 ·109 0·494 0·136 0·025 0·001 
2·20 1·420 0·342 0·080 0·009 
2·25 90·827 0·988 0·231 0·042 0·002 
2·30 8·664 0·697 0·1.50 0·019 
2·35 4·043 0·492 0·091 0·006 
2·40 2·405 0·344 0·051 0·001 
2·45 1·577 0·23.5 0·025 
2·50 1·085 0·156 0·010 
2·55 0·764 0·098 0·003 
2·60 0·542 0·057 
2·65 14 ·199 0·383 0·029 
2·70 4·941 0·267 0·012 
2·7.5 2·712 0·181 0·004 
2·80 1·721 0'1l7 
2·85 1·166 0·072 
2·90 0·816 0·040 
2·95 0·580 0·019 
3·00 0·412 0·007 

Z3 from (16). The calculated values of to, t3, and Z3 may be compared with the 
experimental values (Table 2). From Bosworth and Groden (1960), the equations (2b), 
(14), and (17) and Table 2 enable the parameters r, R, L, and G to be calculated. 
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II. EXPERIMENTAL ApPARATUS 

The experimental system consisted of a horizontal platinum wire, electrically 
heated, immersed in a liquid. The temperature rise of the wire was measured by mak­
ing it part of the Wheatstone bridge network sho'Wll in Figure 2. AB was the platinum 
wire (approximately 0·5 Q) and BC a manganin resistor adjusted to be equal in 
resistance to the unheated platinum wire. AD and DC were exactly equal resistors 
of about 60 Q. A constant voltage was maintained across AC by a voltage stabilizer, 
and the bridge output across BD, which gave the temperature rise, was measured 
by an electronic recorder. If a constant voltage is maintained across two resistances 
in series, one fixed and one variable, the power in the variable resistor remains 
substantially constant against considerable changes in resistance (Rosengren 1961). 

TABLE 2 

MEASUREMENTS AND CALCULATED PARAMETERS FROM TRANSIENTS 

Calculated 

Heating 
11 t2 t3 Zo Zl Z3 

Current 
(A) 

(a) (6) (s) (degC) (degC) (degC) t3 Zs 
(8) (degC) 

----

0·681 2·42 5·2 7·5 4·94 5·49 4·84 6·1 4·93 
0'766 1·95 4·4 6·6 6·06 6·74 5·97 5·1 6·03 

Is rs Rs Ls Os 
(.J (degC)-l ((degC)2 em ((degC)2 em ((degC)282 (.J (degC)-2 
B-1 em-i) s .J -1) 8 .J -1) em .J-l) em-i) 

0·681 2·49x 10-4 5'3xl04 3·2 X 104 2·4x 104 4·5 x 10-5 

0·766 3·15x 10-4 3·9x 104 3·8x 104 2·5x 104 3·5x 10-5 

Thus, for an increase in resistance of 3% in the platinum wire AB, which at room 
temperature is given by a temperature rise of about 8 degC, the power decreases by 
only 0'02%. The circuit used therefore gives a constant heating rate in the platinum 
wire for the temperature rises produced. 

The platinum wires used had diameters 0·005, 0'01, 0'015, and 0·02 cm. The 
liquids studied were water, ethanol, n-butanol, glycerol, toluene, and aqueous 
solutions of methyl cellulose. With toluene, a series of damped temperature-time 
oscillations, with a period of about 10 s, and 5-lO discernible maxima, were obtained. 
With the other liquids only one temperature maximum and one minimum were 
obtained, only the distances to, iI, t2, and t3 (Fig. 1) being measurable. The temper­
ature rises of the wires were up to about 20 degC. 
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III. THERMAL PARAMETERS 

The solution for the parameters in the proposed equivalent electrical circuit, 
(Bosworth and Groden 1960, Fig. 3) lies in the trigonometrical region. An attempt 
has been made to identify free energy characteristics of the thermal system with free 
energy values calculated from the thermal parameters. 

If Cq is thermal capacitance, Cs entropy capacitance, T absolute temperature, 
and () temperature rise, the entropy stored in a thermal capacitor is Cq In{(T+(})/T}, 
and if (}/T is small, this is Cq(}/T or Cs(). The free energy dissipated in the discharge 
of the entropy capacitor is tCs(}2. The entropy flux inductance, L s, of a system is 
defined by Ls dIs/dt = (), where Is is the entropy flux and t is time. The free energy 
dissipated in the discharge of an entropy inductance is tLsI~. 

A c 

o 
Fig. 2.-Bridge circuit. 

Table 2 gives values from two temperature-time transients. The values are for 
entropy flux per centimetre of wire. The thermal systems were a horizontal platinum 
(impure; temperature coefficient of resistance 0'00315) wire (diameter 0·01 cm; 
length 4·00 cm; resistance 0·623 Q at 30· O°C) in water (temperature 30· O°C; 
depth 12·0 cm), with heating currents of 0·681 and 0·766 A. 

On comparing the calculated values of t3 and Z3 with the experimental values; 
the agreement is seen to be good with Z3 and indifferent with t3 (Table 2). 

IV. THE FREE ENERGY ANALOGY 

If we consider the 0·766 A system, the capacitive element is provided by a 
cylindrical mass of water 0·2 cm in diameter around the wire (Bosworth 1960). 
This water has a mean excess temperature of about 1 degC. The free energy associated 
with the flow of its excess entropy to the bulk of the liquid, which is approximately 
the heat capacity of the liquid multiplied by half the square of its mean excess 
temperature divided by the absolute temperature (309°K), is about 2 X 10-4 joules/cm. 
The calculated value of tCs(}2 (() = Zo) is 6·4xlO-4 joules; the two free energy 
estimates are seen to be in rough agreement. 
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However, the value of tLsl; (where Is is the fraction of the total entropy flux 
which passes through Ls) is 3·2 X 10-4 joules, and this value is several hundred times 
the kinetic energy of motion of the convection chimney (Bosworth 1960). Another 
characteristic of the thermal system must therefore be sought for identification with 
the free energy of entropy-flow inductance. Taking the volume of heated liquid in 
the convection chimney to be 10 ml/cm of wire and to have a mean excess temperature 
of 0 . 2 degC, the free energy dissipated in the flow of its excess entropy to the bulk 
of the liquid is about 3 X 10-3 joules, and this is seen to be of the order of the calculated 
value of tLsl; (3'2x 10-4 joules). 

Better knowledge of the convection behaviour, which can be obtained inter­
ferometrically, and fuller analysis of the temperature-time transients, may give 
exact agreement between the free energy quantities. It seems possible, therefore, 
that the analogy between thermal and electrical flow can be shown to be complete. 

There was a large discrepancy between the experimental and calculated values 
of to. A possible explanation is that the single circuit proposed should be replaced 
by a number of similar networks connected in series, each corresponding to an 
isothermal shell around the wire. 
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