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Summary 

Following a short review of the drift theory of plasma radial compression, 
an exact solution for the motion of a charged particle in an axially symmetric 
time-dependent magnetic field is· obtained. The method gives forms for the 
cylindrical coordinates rand B of the charged particle that have a simple inter­
pretation, the z-motion being of constant velocity. As examples, the exact results 
are discussed for a simple power law and an exponential time dependence of 
the magnetic field and, using the latter results, the drift theory of plasma radial 
compression is qualitatively verified. 

I. INTRODUCTION 

In an earlier paper (Seymour 1963), a review was included of the drift theory 
of radial compression of a tenuous plasma suitably contained within a long, straight 
solenoid through which is passing a time-dependent electric current, and this was 
followed by a trajectory approach to the same problem using the equations 
of motion for a charged particle moving in a time-dependent axially symmetric 
magnetic field, B(t). A simple, but not very adequate, approximation then led to a 
flux-conserving result similar in form to, but different in nature from, that obtained 
by the drift analysis. At that stage it was evident that an exact solution for the 
trajectory approach would be helpful, since it should permit determination of the 
various charged particle motions that may occur in collisionless plasma approxi­
mation, but mathematical difficulties were ehcountered. 

In the present paper, the general form of the exact microscopic solution for 
the motion of a charged particle in a time-dependent axially symmetric magnetic 
field is obtained, and applied to particular cases of interest. This gives insight into 
the macroscopic motions of charged particles in a plasma of low number density, 
in which interparticle collisions are rare. For the convenience of the reader, the 
salient features of the particle drift and trajectory approaches described by Seymour 
(1963, pp. 436-43) appear in the next section, prior to the derivation of the exact 
solution. 

II. CHARGED PARTICLE GUIDING-CENTRE AND TRAJECTORY ApPROACHES 
TO PLASMA RADIAL COMPRESSION 

As is well known, drift analysis is primarily concerned with the motion of the 
guiding centre of a spiralling charged particle, whereas the trajectory approach seeks 
to determine the classical path traversed by the charged particle. For the magnetic 
field specified in Section I, we consider the above approaches separately. 
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(a) Guiding-Centre Approach 

The geometry of interest is that of a long, straight solenoid through which is 
passing a current that varies with time. Within the solenoid, clear of the ends, 
the resulting time-dependent magnetic field possesses axial symmetry, and is 
simply B(t) = kBz(t), in the usual notation. Accordingly, it is plausible to 
assume that the induced electric field, E, has circular field lines, concentric with 
the longitudinal axis of symmetry of the solenoid. To calculate Ea, we evaluate 
the line integral of E around a circular path P of radius r, bounding a surface S 
lying in a plane normal to the z axis of the solenoid. Employing electromagnetic 
units, we have from Maxwell's equation for the curl of E, and Stokes's theorem, 

(2.1) 

where dl is taken along the boundary of P. Since B has the same value at all points 
on the surface S, and also has the z direction of the unit vector k, (2.1) yields 

(2.2) 

where for convenience we omit the subscript z from B z• 

The effect of this induced electric field in the presence of the magnetic field 
is to produce a drift of a charged particle's guiding centre at a velocity 

(2.3) 

Since a tenuous plasma is under consideration, we assume, for a reasonably 
strong magnetic field, a collisionless approximation in which the charged particles 
spiral about the magnetic field lines and do not transfer from one magnetic field 
line to another. In other words, diffusion transverse to the magnetic field is absent 
in: this approximation, and typically, at some instant of time, guiding centres of 
certain plasma particles would be found lying on the path P of radius r, used in 
the calculation of Ea' In the dynamic situation encountered here the time rate 
of change of r must therefore be equated to the radial drift velocity Ea/B, to obtain 
the equation 

(2.4) 

with the solution 
Br2 = constant. (2.5) 

For the case of interest, B > 0, this result states that the total flux, cP = 7rT2B 
enclosed by a circle of radius r, concentric with the solenoid axis, is conserved as 
r shrinks, and guiding centres lying on this circle move inward in the axially 
symmetric time-dependent magnetic field. Graphically, the particle guiding centres 
stick to the surface of some collapsing flux tube of the time-dependent magnetic 
field. 

Bearing in mind the assumptions made above, one now wonders whether it is 
possible to demonstrate radial compression of the plasma under consideration by 
a non-drift analysis. 
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(b) Trajectory Approach 

Using cylindrical coordinates, the velocity of a particle at r, {}, z may be 
written as 

(2.6) 

where r 0' 00, k are unit vectors, and 

v. = z. (2.7) 

With similar resolution of E and B, and recalling that dro/d{} = 00, 

dOo/d{} = -ro, the non-relativistic equation of motion for a particle of charge q, 
mass m, 

mv = q(E+vxB) (e.m.u.), (2.8) 

in which radiation damping has been permissibly neglected, yields the component 
equations 

r-rB2 = (q/m)[Er+(rBB.-zBe)], 

2fB+rfJ = (q/m)[Ee+(zBr-fB.)], 

z = (q/m)[E.+(fBe-rBBr)]. 

(2.9) 

(2.lO) 

(2.11) 

To facilitate analysis, the current in the solenoid may be reasonably approxi­
mated as j = 00 je' whereupon symmetry considerations (see, for example, Smythe 
1950) suggest that the magnetic vector potential is simply 

A = OoAe. (2.12) 

Then, neglecting contributions to E from the scalar potential cp in 

E = -A-vcp, (2.13) 

we obtain (cf. Seymour 1963, pp. 437-9) 

(2.14) 
and 

as in (2.2), (2.15) 

by means of a proof which shows formally that the induced electric field lines are 
circles concentric with the z axis of the solenoid. The result (2.14) depends on 
the fact that B. has no spatial dependence here, as can be deduced from the Maxwell 
field equations 

divB = 0, 

curlB = 0, 

(2.16) 

(2.17) 

the latter equation applying inside the solenoid, where it is assumed that the 
displacement current may be neglected, and that the charged particle motions do 
not contribute to the magnetic field, so that B(t) = kB.(t) has je(t) alone as its 
source. 
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If we now specialize the equations of motion (2.9), (2.10), and (2.11) to accord 
with the fields 

E = (0, -irE., 0), 

B = (0,0, B.), 

we obtain, for the solenoid problem outlined, 

r-r82 = (q/m)B.r8, 

2f8+rB = -(q/m)(!rE.+fB.), 

z =0. 

Equation (2.21) immediately yields a first integral 

8 = wdt)+Or-2 , 

where wdt) is the Larmor angular frequency 

wdt) = -(q/2m)B.(t), 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

and 0 is a real constant. Elimination of 8 from equation (2.20) by means of (2.23) 
gives the differential equation governing the behaviour of r, 

r+ wi r -02r-a = O. (2.25) 

From (2.22) it is seen that the z-direction motion is trivial in this case, v. 
being constant. The significant results representing charged particle motions in 
this particular time-dependent magnetic field are therefore the integrated form 
of (2.23), 

It It dt' 8 = WL dt' + 0 """"2 +80, 
o 0 r 

where 80 is the value of 8 at t = 0, and the solution of equation (2.25) for r. 

III. SOLUTION OF THE r EQUATION AND MODIFICATION 

OF THE 8 EQUATION 

(2.26) 

To obtain the general solution of equation (2.25), we commence with the 
ansatz 

f = M(t) r + N(t) r-l, 

where M and N are functions of time to be determined, so that 

r = (M2+11f)r+Nr-1-N2r-a 

(3.1) 

(3.2) 

contains terms in r of the type appearing in (2.25). In fact, for (3.2) to assume 
precisely the form of (2.25), we see at once that the relationships 

N=O, 

(3.3) 

(3.4) 

(3.5) 
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must hold. The last two equations are consistent, and give 

N = ±iO, (3.6) 

where, from equation (2.23), 0 is a real constant. 

Equation (3.3) is a particular form of Riccati's differential equation. The 
introduction of a new variable sit), such that 

(Ins)" = M, (3.7) 
transforms (3.3) to the form 

8+W~S=0. (3.8) 

To express r in terms of s, where s is determined by equation (3.8) for chosen 
forms of wdt), we integrate (3.1), modified by insertion of N = +iO, say, and M 
from equations (3.6) and (3.7) respectively, by use of the integrating factor S-2, 

to obtain 

r = s( A+2iO I: ~~r. (3.9) 

from which it is evident that, in general, s(t) and the integration constant A are 
complex. quantities. Clearly, the form of this equation can be simplified by the 
introduction of a further complex variable 

u(t) = Ats(t). (3.10) 
Then (3.9) becomes 

( It dt')! 
r = u 1 + 2iO 0 u 2 ' (3.11) 

and (3.8) transforms to 

u+w~u =0. (3.12) 

Equation (2.25) is now represented by the pair of equations (3.11) and (3.12). 
The integral appearing in equation (3.11) can be performed in some cases of interest 
(an example will be given in Section VI), but in fact it can be avoided by developing 
an alternative form of solution for r. The equation 

. 8 iO 
r=-r+-, 

s r 
(3.13) 

which led, through the use of the integrating factor S-2, to (3.9), can also be 
rearranged to the form 

iO 
r u 

where (3.10) has been used to eliminate s(t). 

(3.14) 

Equation (3.14) immediately yields by integration the inverted form of 
(3.9) 

( It dt') 
u = r exp - iO 0 72 ' (3.15) 

where the multiplicative constant of integration can be seen to be unity by com­
paring (3.15) with (3.11) at t = O. 
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Since r, 0, and t are real quantities, we see at once that 

r = (uu*)', r ~ 0, 
where the equation 

( It dt') 
u' = rexp iC 0-;:2 

corresponds to the choice N = -iC in equation (3.6). 

Writing 
u(t) = a(t) +ifi(t) , 

where a and fi are real quantities, we have from (3.15) 

It dt' o 2" = -tan-1(fifa). 
o r 

Hence the expression for (:J given by (2.26) becomes 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

A useful identification of the constant 0 is obtained as follows. Insertion of 
(3.18) into (3.14), use of (3.16), and equation of imaginary parts shows that 

W(a,fi) = -0, (3.21) 

where W(a,fi) is the Wronskian determinant I: ~ I· 
Let now 11(t) and 12(t) be linearly independent, real solutions of equation 

(3.12), such that 

the aii being arbitrary real constants. Then (3.21) gives 

From (3.18) and the form of a and fi, 

where 

and so (3.16) gives, as the general solution of (2.25), 

where, from (3.24), 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 
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Further, in view of (3.22) and (3.23), 0 of (3.20) can be written as 

0= It WL dt' -tan-1 { 1!1-1 I 1sin€1 + Ipl I 2Sin€2} +00, 
o 1!1-1 11 cos €1 + Ipl 12 cos €2 

(3.28) 

Although these results for rand 0 are of complicated appearance, they can, 
in fact, be interpreted in a simple manner. From (3.26) we see that at any instant 
of time r can be regarded as the resultant of two vectors, of lengths 1!1-IIl(t) and 
IpII2(t), having a constant angle €1 -€2 between them. If we now set 1!1-IIl at 
angle €1 (€1 > €2' say) to an axis moving in the rO-plane with angular velocity WL(t) 
about the z axis, and set IplI2 at angle €2 to this moving axis, then it is readily 
verified that the angle between the resultant r measured relative to the moving axis 
is the second term on the right-hand side of (3.28). The general solution for the 
charged particle motion in the rO-plane is thus pictorially represented by the vectors 
of lengths 1!1-IIl and IpII2' with constant angle €1-€2 between them, moving about 
the origin of coordinates at the angular velocity wdt). 

IV. PARTICULAR SOLUTIONS OF THE U EQUATION, AND CORRESPONDING 

FORMS OF rAND 0 

In this section we develop solutions for some simple time dependences of wdt). 

Oase (a) wL(t) Obeys the Power Law ±ytk , k =j:: -1 

If we adopt the functional transformation 

v(t) = t-! u(t), 

equation (3.12) assumes the form 

which bears some resemblance to Bessel's differential equation 

Y"+~+(1_P2)y = 0 
X x2 ' 

(4.1) 

(4.2) 

(4.3) 

where the prime denotes differentiation with respect to x. Comparison of (4.2) 
and (4.3) suggests a further transformation 

y(x) = v(t), 

where the new variable x = x(t). Then (4.2) becomes 

~~ y" + ~¥, (x+ ~)Y' + (1- 4t21w¥,)Y = 0, 
and this assumes the Bessel form if 

P 1 -=±-. 
X 2twL 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 
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From (4.6) and (4.8) we find that 

x =_Y_tk+1 

k+l ' 
(4.9) 

where y and k are constants, withp = t(k+l)-l. From (4.6) it follows immediately 
that 

(4.10) 

so that W L obeys a simple powerlaw here, and x = ±wL t(l+k)-l. We note that (4.7) 
is consistent with (4.9) and (4.10). 

In terms of the real cylindrical functions Jp(x) and Yp(x), the Bessel functions 
of the first and second kind respectively, of order p and real argument x, the solution 
of (3.12) may be written, by use of (4.1) and (4.4), as 

(4.11) 

where, in general, ,\ = 1,\1 expi!fl and a = lal expi!f2 are complex constants. Since 

Y (x) = J p(x) COS'p1T - J _p(x) 
p slnp1T' (4.12) 

we recall that, when p is not an integer, Yp(x) in (4.11) can be replaced by J_p to 
again give the general solution. However, when p = n, an integer, I n and J_n 

are no longer linearly independent, being related by 

(4.13) 

and so we retain the form (4. 11), modified by introduction of J nand Y no where 

Yn(X) = lim Yp(x). (4.14) 
~n 

Considering, for example, non-integral p, (3.16) and the appropriate form of u 
described above give 

(4.15) 

The associated angle, (J, is obtained from (3.20), (4.10), and the appropriate u as 

(J = ± .....'r...tk+l-tan-l( 1,\1 Jpsin!fl + lal Lp sin !f2) (J 
k+l 1,\1 JpCOS!fl + lal J_pCOS!f2 + o· 

(4.16) 

Similar results are obtained for p an integer. 

When k = -1, we see from p = t(k+l)-l that the Bessel functions are of 
infinite order. In this case we proceed as follows. 

Case (b) wL(t) Varies Inversely with the Time 

For k = -1, equation (4.10) gives 

WL(t) = ±y/t, 

and hence equation (3.12) becomes 

t2ii+y2u = 0, 

(4.17) 

(4.18) 
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a simplified form of the Euler-Cauchy equation. The usual procedure here is to let 

u(t) = v(x), (4.19) 
where 

x = lnt, (4.20) 

whereupon (4.18) transforms to the second-order linear differential equation with 
constant coefficients 

V" -v' +y2v = 0, 
with characteristic equation 

The general solution of (4.21) is, of course, 

v = K 1 expq1 x+K2expq2 x , 
where 

with 
7] = (i_ y2)!. 

Using (4.19), (4.20), and (4.24), equation (4.23) becomes 

u = t!(Klt"l +K2 t--11), 

where Kl and K2 are, in general, complex constants. 

Three particular forms of (4.26) must now be considered:' 

(i) t > y2, 7] > O. 

Equation (4.26) applies as it stands. 

(ii) t = y2, 7] = O. 

Equation (4.26) assumes the form 

u = tt(Ka+ K 4 Int), 

where K3 and K4 are complex constants. 

(iii) ! < y2, 7] = i7]o, where 7]0 = (y2_!)t > O. 

Equation (4.26) here becomes 

u = tt{Kscos('r)olnt) +K6sin(7]0Int)}, 

where Ks and K6 are complex constants. 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

The forms of rand 8 associated with (i), (ii), and (iii) above are readily obtained 
from (3.16) and (3.20) respectively. As can be seen, the charged particle motions 
in each instance are markedly different. 

Case (c) wL(t) Varies Exponentially with the Time 

In this case we first transform (3.12) by assuming 

u(t) = v(x), 
where, with D and G real constants, 

(4.32) 

(4.33) 
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The result, 
G2(X2V" +xv') + wE v = 0, (4.34) 

can then be converted to the form of Bessel's equation (4.3), by a particular choice 
of WL' namely, 

wE = G2(X2_p2). (4.35) 

Then, for G =1= 0, (4.34) yields the required form 

(4.36) 

and so from (4.32) the general solution of (3.12) for WL varying exponentially as 
in (4.35) is 

(4.37) 

where JL and p are complex constants. For p not an integer the solution for r here is 

(4.38) 

III the notation of Case (a) of this section. Correspondingly, the equation for e 
becomes, from (3.20), (4.33), and (4.35), 

(4.39) 

after the performance of an elementary integration to obtain the first two terms 
on the right-hand side. Proceeding as in Case (a), we similarly obtain rand e here 
for p = n, an integer. 

v. DISCUSSION OF RESULTS 

When p = i, the Bessel functions J p and J~p become simply 

J. = ~ sIn X, (2)! . 
- 7TX 

(5.1) 

and 

( 2 )! J_! = TTX cosx. (5.2) 

From the hierarchy of charged particle motions covered by the results derived 
above, it serves our purpose here to restrict the discussion to results for p = t. 
Thus, in Case (a) of the previous section, k = 0, and so from (4.10) 

WL = ±y, a constant, (5.3) 

corresponding to a magnetic field B z independent of the time (cf. equation (2.24)). 
Further, from (4.9), 

(5.4) 

Thus, for charged particle motion in a constant magnetic field, expression (4.15) 
yields the required result 

r = {P+ Qcos(Wgt +4»P, (5.5) 

where P, Q, and 4> are constants, restricted by w;(P2_Q2) = 402, Wg being the 
familiar gyrofrequency given by 
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Further, from (4.16), 

(J = ±.lw t -tan-1( lui sinljJ2 + 1"1 sinljJl tan(twgt)) +(J • (5.7) 
2 g lui COSljJ2 + 1"1 cosljJltan(tWgt) 0 

For p =!, Case (c) of Section IV is of particular interest, because the simple 
trigonometrical nature of the constant magnetic field solution is retained, but the 
time dependence of B. is not lost. From (4.33) and (4.38), 

(5.8) 

where L, R, and g are constants, restricted by D 202(L2_R2) = 0 2 ; and from (4.33), 
(4.39), and (5.6), 

(J - Wg =f 1 sec-112DeGtl _ tan-1 (lui sinljJ2 + 1"1 sinljJl tan(DeGt)) +(J (5.9) 
-20 "2 lui COSljJ2 + 1"1 cosljJ1tan(DeGt) 0' 

where, from (4.33), (4.35), and (5.6), 

(5.10) 

We see immediately from equation (5.8) that for 0> 0, corresponding to a 
magnetic field B. whose magnitude increases with the time, r decreases with time, 
thus supporting, for p = t, the drift theory hypothesis of radial compression of the 
plasma particles under such conditions. The approximate treatment given by 
Seymour (1963, p. 443) can be recovered from (5.8) by giving the constant Oa 
sufficiently small value. 

VI. ALTERNATIVE METHOD OF CALCULATING r 

As mentioned in Section III, r can also be obtained from equation (3.11) 

if the integral f dt' /u2 can be evaluated. As a consistency check, this calculation 

was carried out for the exponential-law WL' Case (c) of Section IV. Briefly, we define 
a quantity 

J: _ J'l) 
- u' 

where u is given by (4.37), and then calculate 

Since the Wronskian 

dJ: 
dx 

W(Jp(x), Y'l)(x)) = I JJp~ yY~ I = ~, 
P 1TX 

(6.1) 

(6.2) 

(6.3) 

where the prime denotes differentiation with respect to x, we obtain, with the help 
of (4.33), 

f dt' -..! f dx' __ ~ J p 

. u2 - 0 x' u2 - 20p u . (6.4) 
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Then, from equation (3.11), 

(6.5) 

Again writing fI. = 1fl.1 expi€1 and p = Ipl expi€2' we equate the imaginary part of 
(6.5) to zero to obtain real r, with the independent results 

Ifl.llpl sin2€1 - 7Tg COS(€I-€2) = 0, 

sin2€2 = o. } (6.6) 

Use of these results in the real part of (6.5) yields real r, of the general form given 
by (4.38). Thus we have a satisfactory consistency check in the exponential-law 
case, and a similar procedure confirms consistency in the case of power-law WL' 

VII. WRONSKIAN RELATIONSHIl'S 

From the equations (3.18), (3.22), (3.23) and, say, (4.11) for the power-law WL' 

it follows that 

II = tt(cn Jp + C12 Yp), 

12 = t!(C21 Jp +C22 Y p ), 

(7.1) 

(7.2) 

where the Cu are constants. Hence the Wronskian determinant in (3.24) can also 
be written as 

W(I1(t),12(t)) = Icul W(Jp(x), Y p(x)) it. 

With the help of (6.3), (3.24) and (7.3) can be combined to give 

t(ln x)' = constant. 

(7.3) 

(7.4) 

Integration immediately yields the form of (4.9), a useful consistency check. Similarly, 
if (4.11) is replaced by (4.37) of the exponential WL case, we obtain 

(Inx)' = constant, (7.5) 

the integral of which is in agreement with (4.33). 

VIII. CONCLUSIONS 

In this analysis we have provided the general form of solution for the motion 
of a charged particle in the time-dependent magnetic field within a long solenoid, 
together with a simple pictorial interpretation. However, the particular examples 
we have discussed do not include the following important cases. First, approximation 
of the exact solution for quasi-static variation of the magnetic field, with the object 
of identifying the associated adiabatic invariants; secondly, examination of the 
case corresponding to harmonic variation of WL with time. These cases will be 
covered in a paper shortly to be published by one of the present authors (P.W.S.). 
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