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Summary 

The Chapman-Enskog method of solving the Boltzmann equation is presented 
in a simpler and more efficient form. For this purpose all the operations involving 
the usual polynomials are carried out in spherical polar coordinates, and the 
Racah-Wigner methods of dealing with irreducible tensors are used throughout. 
The expressions for the collision integral and the associated bracket expressions of 
kinetic theory are derived in terms of Talmi coefficients, which have been extensively 
studied in the harmonic oscillator shell model of nuclear physics. These expressions 
are most convenient for exhibiting some formal properties and can be programmed 
for machine computations in the most general form. The Chapman-Enskog 
linearization leads to linear matrix equations whose solutions can be expressed 
compactly in matrix notation. Calculations of transport coefficients up to any order 
can be performed almost automatically, without requiring the elaborate manipulations 
in each new. order as is the case with the usual theory. The simple gas is treated 
in detail, and the treatment for the case of a gas mixture is outlined. 

All calculations have been carried out without reference to the theory 
of integral equations. The role of summational invariants and of the subsidiary 
conditions becomes more transparent in this presentation. The relationship of the 
formulation to the usual one is also discussed. 

I. INTRODUCTION 

The best-known method for solving the Boltzmann equation is the Chapman­
Enskog method (Enskog 1911a, 1911b; Chapman 1912; Burnett 1935a, 1935b; 
Chapman and Cowling 1939, 1952)-for calculating the transport coefficients of a 
gas from the knowledge of intermolecular interactions it is practically the only 
method available. The solution that is obtained by this method is a special, the 
so-called "normal", solution. It has often been thought that this solution is of an 
asymptotic nature and that it is related to the existence of relaxations of different 
characteristic times in the system. The latter circumstance' is related to the con­
traction in the description of the temporal development of the system. Among 
others, Uhlenbeck (Uhlenbeck and Ford 1963, p. Ill) has maintained that it is 
a "very fundamental insight" and has stressed the similarity between the Chapman­
Enskog assumptions and those used by Bogoliubov (1962) (see Uhlenbeck and Ford 
1963, p. 123) in solving the Liouville equation. However, there is no universal agree-
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ment on these points, and doubts have often been expressed regar~g the meaning 
and interpretation of this method. On the basis of an extensive investigation of the 
fundamental questions with the aid of certain models and alternative procedures 
Ikenberry and Truesdell (1956; see p. 8) concluded that " ... the results of this 
[their own] research divest the classical approach to the kinetic theory, as presented 
for example in Boltzmann's lectures and in the treatise of Chapman and Cowling ... , 
of most of the relevance it. was once fancied to have". While stating that "little 
toward solving problems of flow can be expected from the Chapman-Enskog method", 
they nonetheless concede that the "formula which the Chapman-Enskog method pro­
duces for viscosity in terms of the molecular models may be correct" (Ikenberry and 
Truesdell 1956, p. U8). A part of this uncertainty about the mathematical status of 
the method is no doubt due to its great algebraic complexity, because of which 
calculations even in the third approximation, which is in fact only the second signi­
ficant approximation, become quite difficult and have never been fully. carried out 
(see, however, Burnett 19300, 1935b and Chapman and Cowling 1952). 

It is evident that any reduction in the algebraic work associated with the 
Chapman-Enskog procedure would not only benefit those interested in the computa­
tion of transP.ort coefficients but may also bring some further lucidity in the dis­
cussion of the fundamental questions. 

The first step towards. simplifYing the calculations was taken by Burnett 
(1935a, 1935b), wh.o noted the peculiar appropriateness of the use of the Sonine 
polynomials in the treatment of transport problems. Since then these polynomials 
have been widely used in kinetic theory (Chapman and Cowling 1939,1952; Wang­
Chang and Uhlenbeck 1952; Hirschfelder, Curtiss, and Bird 1954; Waldmann 
1960; Uhlenbeck and Ford 1963; Louc~ and De Vault 1964). In connection with the 
present work the use of spherical polar coordinates by Wang-Chang and Uhlenbeck 
(1952) (see also Louck and De Vault 1964) and, in a different context, the use of the 
considerations of irreducibility and of the vector coupling coefficients by Waldmann 
(1960, 1963) is noteworthy. 

Further algebraic simplifications arise out of the following three main 
observations. 

The first is that the most effective way of exploiting the irreducibility properties 
is to use spherical polar coordinates along with the algebra of irreducible tensors 
as developed in connecti.on with the quantum mechanical pr.oblems .of angular 
m.omentum coupling, which is enc.ountered in at.omic and nuclear physics and is 
mainly ass.ociated with the names .of Wigner and Racah. Our standard reference .on 
this topic will be the b.o.ok by Fan.o and Racah (1959). In checking the details .of 
calculati.ons it may als.o be useful t.o C.onsult s.ome b.o.oks .on the the.ory .of angular 
m.omentum (Condon and Sh.ortley 1953; Edm.onds 1957; R.ose 1957; Brink and 
Satchler 1962). 

The sec.ond .observati.on arises .out .of the w.ork .on the harmonic oscillator shell 
m.odel .of nuclear physics. It was noted by Talmi (1952) that a product of the harm.onic 
.oscillat.or wavefuncti.ons of two particles, if;(rl) if;(rz), CII-n be expressed as a sum of 
the products .of similar wavefuncti.ons, if;(R) if;(r), ba,Sed .on the centre-.of-mass and 
relative c.o.ordinates .of the tW.o particles. The c.onstant c.oefficients of this trans-
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formation are called Talmi coefficients and have been extensively studied and tabu­
lated (for references, see Appendix I). Now, in the Burnett expansion (Burnett 
1935a, 1935b; Chapman and Cowling 1939, 1952) of the distribution function the 
Sonine polynomials always occur multiplied with a spherical harmonic; this product 
is the same as the coefficient of the exponential term in harmonic oscillator wavefunc­
tions and, therefore, undergoes the Talmi transformation with the same coefficients. 
The structure of the collision integral can therefore be simplified by a Talmi trans­
formation to separate the dependence on the centre-of-massand relative velocities 
in the integrand. 

Both in nuclear physics and in kinetic theory it is the practice to separate the 
three-dimensional polynomials into their one-dimensional parts using either polar or 
Cartesian coordinates. The only exception is a work like that of Grad (1949a, 1949b, 
1960), in which three-dimensional polynomials have been used. However, no special 
advantage is gained in his work, because he still uses the Cartesian system and the 
polynomials do not form a minimal set. As a supplement to the second observation 
one may note that many calculations, both in nuclear physics and in kinetic theory, 
can be performed without separating the radial and angular parts of the polynomials. 
This point has been demonstrated in connection with the calculation of Talmi 
coefficients (Kumar 1966b), and further examples occur in Appendix III of the 
present paper. 

A part of the difficulty of the Chapman-Enskog procedure lies in the fact that 
the initial discussions are always made in terms of the usual integro-differential form 
of the Boltzmann equation. The streaming and collision terms are analysed to make 
a successive approximation scheme possible, and the complexities introduced by the 
existence of the collision invariants are handled by invoking the theorems on integral 
equations. The final results are, however, expressed in terms of infinite determinants, 
which shows that in fact, as far as the velocity dependence is concerned, a matrix 
inversion is involved. Therefore, the third observation is that the presentation of the 
method would be simplified if from the very beginning the problem were discussed 
in a matrix form. Contrary to the impression created by the usual presentations, it 
is not necessary to put the problem in the form of an integral equation in order to deal 
with the successive approximation procedure or the subsidiary conditions associated 
with the occurrence of the collision invariants. With appropriate choice of notation 
and proper use of the irreducibility considerations all these things can be handled 
in a fairly compact matrix form. The elements of these matrices are, of course, 
functions of operators depending on the position and time variables, and the develop­
ment of the system in the configuration space is governed by the matrix-differential 
equations that are thus obtained. 

In the present paper we wish to recast the Chapman-Enskog procedure in the 
light of the above observations. The appearance of our formulae and manipulations 
becomes quite different from what is familiar in kinetic theory. In fact, it may 
appear more familiar to those who have worked on the harmonic oscillator shell model 
of nuclear physics. Therefore, it seems appropriate to present this work in such a 
way that both types of specialists may be able to understand the basic problems-
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for nuclear physicists it is the problem of applying familiar methods to a new and 
perhaps more complex physical situation, and to the kinetic theorist it is the problem 
of seeing the old method put into a new form. The scope of the paper is therefore 
limited to an exposition of the Chapman-Enskog method and the related scheme 
for the calculation of the transport coefficients, which suffices to exhibit various 
features of the new formulation and at the same time has some practical utility. 
We do not here enter into any discussion of the type of questions that were mentioned 
in the beginning of this introduction . 

. The main body of the paper is divided into three parts, which constitute Sections 
II, III, and IV. In Section II we introduce the polynomial expansion of the distribu­
tion function and the mathematical forms for physical quantities of interest. Here 
we also discuss the main integrals associated with the collision term of the Boltzmann 
equation. 

Section III contains a discussion of the simple gas and the general scheme of 
the Chapman-Enskog method in terms of matrices. The reduction of the Boltzmann 
integro-differential equation to a nonlinear algebraic-differential equation for the 
coefficients in the expansion of the distribution function, with which that section 
begins, is, of course, independent of any approximations and may be used as a 
starting point in methods other than those of Chapman and Enskog. 

Section IV is intended only to indicate the modifications necessary for handling 
the problem of gas mixtures. 

Further indications about the presentation may be seen in the table of contents. 

In closing the Introduction it should be said that since the subject is complicated 
there will be some complicated derivations and formulae even in this paper. They 
may also appear difficult to those not familiar with the algebra. In deciding upon the 
utility of the method the psychological feelings generated by lack of familiarity 
must not be allowed to intrude. There is an objective simplicity behind the appear­
ances, which is related to conceptual simplifications in enumerating the tensorial 
quantities. The number of indices may be large, but the pattern of their occurrences 
is determined by simple rules. The preparation takes perhaps a bit longer than for 
Cartesian .tensor analysis, but the final formulae are of greater generality; they 
include more detail and can be surveyed in a way in which the older formulae cannot. 

II. CONSTRUCTION OF IRREDUCIBLE TENSORS AND COLLISION INTEGRALS 

(a) Expansion of the Distribution Function 

(i) Irreducible Ten80r8 

In kinetic theory we wish to analyse the distribution function f(c, r, t), which 
is a scalar function of velocity and position vectors c and r. Such a function can be 
formed from sums of scalar products of tensors formed from c and r separately. 
It is evident that to achieve greatest economy one must use a set of tensors based on 
c and on r that has the least possible number of members and is complete. This is 
the origin of the consideration of irreducibility in our context. The irreducible tensors 
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are defined with respect to rotations of a three-dimensional coordinate system. They 
can be standard or contrastandard (Fano and Racah 1959). A contrastandard, 
irreducible tensor of rank l is a set of (2l+ 1) objects that transform like a spherical 
harmonic of rank l under rotations and are denoted by a superscript l in square 
brackets indicating the rank and a subscript m indicating a particular member of 
the set. For a given l we have m = l, l-I, ... , -l+I, -l, while l takes on the 
values 0, 1,2,3, .... According to the phase convention of Fano and Racah (1959) 
a spherical harmonic is defined as 

m[1] (B ) = .l(_)t<m+lml) {(2l+I)(l-lml)!}tplml( B) Imq> 
±I m ,rp 1 47T(l+ 1m!)! I cos e , (Ia) 

with 

Iml (_)1 dl+lml 2 Z 
Pz (cosB) = --(sinB)lml (I-cos B) 

21l! (dcosB)I+lml 
(Ib) 

The corresponding standard tensors are denoted by a superscript in round brackets 
and in the present convention are related to the contrastandard sets by 

ID(l)m = ID[ll* m = (_.)l-m ID[ILm. (2) 

We have the normalization 

f ID(l)m(B, rp) ID[llm(B, rp) d(cosB) drp = Ow omm'. (3) 

It is convenient to have another normalization of the spherical harmonics with a 
different notation 

[I] ( 47T )t [ll 
(£ m(B, rp) = 2l+I ID m(B, <p). (4) 

To distinguish between tensors of the same rank and standardization a further 
index may be included with the superscript. Thus, for example, we deal with 
irreducible tensor polynomials of the velocity .p[vl]m(C), 

.p(vl)m(C) = .p[vll· m(C) = (- )l-m .p[vll_m(C) . (5) 

In this notation the components of a Cartesian vector C are written as 

C[l] = C(l)* _ =FiC1+C2 _ T~C . B ±iq> } 
±l - ±l - ~ 2 - .-~ 2 SIll e '. 

d 1lo = C(1)*0 = iC cos B. 
(6) 

The angles of the vector C are abbreviated as C and an element of surface by dC, so 
that the volume element is 

dC = C2 dCd(cos B) drp = C2 dCdC. (7) 
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The corresponding components of the gradient operator associated with C will be 
denoted as follows: 

[1] 1(.00)) oe ' ±l = ~ 2~ 1=1 001 + 802 ' 

[1] • 0 oe 0 = 1 803 . 
(8) 

(1) Ooupling rule.-Any two irreducible tensors a(f')m, and b(i%)m2 may be 
combined to form another irreducible tensor of rank j according to the formula 

[aU')Xb U2)]U)m= I: (j1jdmlj1md~2)a(jl)m,bU2)m2. (9) 
m.,m2 

The coefficients on the right-hand side, which are known as Clebsch-Gordan orWigner 
coefficients, are real numbers. The symbol is written in many forms and variously 
abbreviated 

(j1h jm I j1m1 j~) = (j1m1 j2m2 I j1j2 jm) = (j1m1 j~2 I jm) 

= (m1m21 jm) 

= (jm I m1~). (10) 
These coefficients vanish unless the indices j1,j2,j are related by the triangular 
conditions j1 +h ~ j ~ Ij1-j21 and similar inequalities obtained by permuting the 
indices. The indi.ces m satisfy the relation m = m1 +m2. For other properties we refer 
to the textbooks (Edmonds 1957; Rose 1957; Fano and Racah 1959; Brink and 
Satchler 1962). 

(2) Wigner-Eckart theorem.-This theorem plays an important role in quantum 
mechanical calculations. In kinetic theory calculations, also, it is foun.d to be of 
great importance as the guiding principle in determining the form of the integrals 
and in their classification. We state the theorem in a form adapted to our needs and 
refer to the book by Fano and Racah (1959) for a discus.sion in the context of quantum 
mechanics. The theorem is as follows: 

If the tensors c/><vl)m and c/>[v'l']m' are irreducible polynomials in C, and if the 
tensor ,9"TA]p,depends only on C and the differential operators be, and if w(O) 
is any scalar function, then the following formula holds: 

fW(O) c/><vl)m(C) Y[A]p(C, be) c/>[v'I'lm'(C) dC = (lm Il'm' Aft) (vl IIY[A] II v'l'). 
. (11) 

This formula shows that for given vl, v'l', and ,\ the ratios of integrals for different 
values of m, m', and ft are independent of v, v', and the nature of the operator Y[Alp. 
At the same time it provides a definition of the second symbol on the right-hand side. 
Following the practice in nuclear physics we call this quantity the reduced integral. 
We have not tried to develop the analogy with quantum mechanics to the extent of 
expressing the integrals exactly in the form of a transition amplitude and to interpret 
them as such, although it is quite possible to do so. We have preferred to stay close 
to'the usages of kinetic theory and simplify only the mathematical organization. 
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(ii) Polynomials 

The polynomials used here for expanding the distribution function are basically 
the same as those used by Burnett (1935a, 1935b), Chapman and Cowling (1939, 1952), 
Wang-Chang and Uhlenbeck (1952), Waldmann (1960), and others. However, it is 
economical to introduce them by means of a generating function 

where 

G(a,CN2) _ exp{-a2+2a,(CN2)} 

00 00 I 

~ ~ ~ NvIX(vl)m(a) c/>[Vllm(C) , 
V~O I~O m~-l 

2 21T3/2 r(v+l) 
Nvl = r(v-' 7 , ., , 

X(VI)m(a) = ( r a2V+l\D(I)m(a). 
v. 

(12) 

(13) 

(14) 

Equations (12)-(14) define the polynomials c/>[vl1m(C), whose explicit form may be 
obtained by expanding the exponential in terms of Bessel functions and using the 
corresponding generating function for Sonine or generalized Laguerre polynomials 
(e.g. Erdelyi et al. 1953, p. 189, equation (18); see also Kumar 1966b) 

c/>[vl1m(C) = Nvz(Cj.,j2)1 S(v)l+!(to2 ) \D[llm(B, cp) 

= Rvl(C) \D[llm(C) 

_ c/>[vl(C). (15) 

The la~ two equations respectively define the radial part Rvl of the polynomial 
and an abbreviated notation. The polynomials satisfy the orthogonality relation 

f W(IX, C) c/>(vl)m(IXC) c/>[v'I'lm'(IXC) dC = avv ' all' amm, = avv', (16) 

where the weight function W is given by 

W(IX, C) = (1X2j27T)3/2exp(-tIX2C2), 1 
f W(IX,C) dC = 1. 

(17) 

This polynomial system depends on five parameters. Four of these are associated 
with the weight function and serve to fix the system in its essentials. Of these four, 
one is IX and the other three are hidden in the choice of the origin of the coordinate 
system in the velocity space. The fifth parameter is related to the normalization and 
can be variously fixed. In our case it is done through (16) and (17). 

The first few polynomials are 

c/>[OOlO(IXC) = 1, 

c/>[Ollm(IXC) = IX C[llm, 

(18) 

(19) 
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.p[021m(ocC) = (1/.,)3)oc20 2 (£[21m, (20) 

.p[101o(ocC) = (1/.,)6)(3-oc20 2 ), (21) 

.p[lllm(ocC) = (1/.,)1O)(5-oc20 2) oc 0[11 m . (22) 

(1) Transformation to centre-of-mass and relative velocities.-We take 

oci = m l /kT, oc~ = m2/kT, (23) 

r 2 = oci+oc~ = (ml +m2)/kT , (24) 

y-2 = oc12+ oc22, or y2 = (OCI OC2/r)2 = ml m2/(ml +m2)kT , (25) 

where ml and m2 are the masses, T is the temperature, and k is Boltzmann's constant. 
Then the transformation in question is (C1, C2) --+ (G, g): 

r2G = OCiCI + OC~C2' g = C1-C2, 

C1 = G+ (OC2/r)2g, C2 = G- (OCl/r)2g. 

(26) 

(27) 

In a collision the velocities change: (C1, C2) --+ (Ci, C2). There are equations 
corresponding to (26) and (27) which relate (C]., q) to (G', g'). 

Conservation of energy and momentum give respectively 

G=G', g2 = g'2. (28) 

Under the transformation of coordinates to the centre-of-mass and relative 
velocities a product of .p functions undergoes a Talmi transformation 

.p[v,l,J m, (OCI C1) .p[P2121 m2(OC2 C2) 

L T((r) NLM I (OCl) vlhml\ .p[NL1M(rG) .p[Vllm(yg). (29) 

NLM,vlm (y) vlm (OC2) v2l2mJ 

The chief merit of this transformation is that for given VI h ml, V2l2 m2 the con­
stant coefficients T have nonvanishing values only for a limited set of values of 
N LM and vlm. This set is easily determined. Some properties of these coefficients 
and references to the literature and to tables of these coefficients will be found 
in Appendix 1. 

In abbreviated notation (29) is written as 

.p[V,J(OCI C1) .p[V21(OC2C2) = ~ T(N, v I (OCl) VI, (OC2) V2) .p[Nl(rG) .p[Vl(yg). (30) 
N,v 

The special case of one function plays an important role in our work: 

.p[V,l(OCI C1) = ~ T(N, V I (OCl) VI , (OC2) 0) .p[Nl(rG) .p[Vl(yg). (31) 
N,v 

When no confusion is likely one may also drop the scale parameters OCl and OC2 in T. 
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In view of (28) it follows that if in (30) and (31) C1 and C2 are replaced respec­
tively by q and C2 then the only change in the formulae would be to replace g on 
the right-hand side by g'. 

(iii) Expansion 01 the Distribution Function 

The purpose of this expansion is to separate the velocity and space dependence 
of the distribution function. The parameters that determine the expansion can be 
functions of rand t, that is to say, the polynomial system used for the expansion is 
allowed to change from point to point and instant to instant through a variation in 
its parameters. These parameters will be called n = n(r, t), Co = co(r, t), IX = (X(r, t). 
We take the origin of the coordinate system of velocities at Co and thus deal with 
the peculiar velocity C = c-Co. The distribution function, which is actually 
I(r, c, t) = l(r,C+co, t), will be written in the following equationsas/(r, C, t) acco~ding 
to the usual convention of kinetic theory (Chapman and Cowling 1939, 1952, p. 27). 
We then have 

00 00 I 

l(r,C,t)=nw((X,O) ~ ~ ~ ~(Pl)m((X,r,t)c/>[Pllm(IXC), (32) 
p=o 1=0 m=-l 

~(Pl) m(lX, r, t) = ~J c/> (,,1) m(IXC) I (r, C, t) dC . (33) 

If we choose 

n=n(r,t) = fl(r;c,t) dC, (34) 

we have the simple result that the coefficients of the expansion in (32) are the average 
values of the polynomial tensors 

~(v/)m((X, r, t) = <c/>(v/)m(IXC). (35) 

The left-hand side here is a linear combination of moments of maximum degree 
2v+l. In obtaining the Chapman-Enskog hierarchy of equations it is convenient to 
introduce a small parameter € in terms of which the distribution function is expanded, 
thus, /= ~ €r Ir. Although no mathematical significance may be attached to the 
orders defined by the powers of €, it nonetheless remains a most convenient way of 
stating the procedure to be followed. Corresponding to this we have 

(,,/) ( ) ~ r r (pi) ( ) ~ m (x, r, t = """ € ~ m IX, r, t . (36) 
r=O 

When molecules of different species are involved we distinguish the quantities 
that depend on the nature of the molecules by using a subscript. Thus, we have 
m8 , (X8, Ca, c8,/8' and n8• Accordingly, 

r~(vl)m((X8' r, t) = r<c/>(v/)m(lXs C8)8 

= r~(")(s). (37) 

In addition to the one above, other abbreviations will be made in particular instances 
by dropping inessential indices. 
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(b) Local Equilibrium. 

(i) Parameters that Define Local Equilibrium 

In a gas mixture the distribution functionj8(r, Cs, t) for each species is different 
and requires five parameters for the specification of its expansion. As we have seen, 
if n8(r, t) is the number density for the species s, then, from (32)-(34), 

iY(OO)o(s) = 1. (38) 

The total number density is 

n = L n,. (39) 
B 

The temperature is defined by the mean kinetic energy density: 

(lin) L ";'8m8 <0:), = 3kT; T = T(r,t) . (40) 
. B 

If the parameters IXs are required to satisfy IX~ = mslkT, then, by (21) and (35), since 

(10) /1 202 
iY o(s) <== \f 6 «3 - IXs ,»", 

we have 

L ns iY(lO)O(s) = O. (41) , 
From (19) and (35), 

(01) (1) 
iY m(s) = IX, <08 m), • (42) 

Since Cs = Cs-CO, and Co is to be chosen equal to the mass average velocity 
defined by 

pCo = L ps <C')8, (43) 

where the mass densities P8 for the species s and the total mass density p are given by 

then, 

It. follows that 

ps=nsms; P=LP8; 

L nsIX~ <Cs), 
8 

Co= 2 
Ln,cc, 
8 

"'" . (01) 
~nBIXsiY m(s) =0. 
B 

These three equations may be regarded as a definition of Co. 

For a simple gas (41) and (46) reduce to 

iY(10)0 = iY(Ol)m ~ O. 

(44) 

(45) 

(46) 

(47) 
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(ii) Pressure Tensor 

Consider first a simple gas. If the Cartesian axes are denoted by subscripts 
i, j (= 1, 2, or 3), then the pressure tensor has the form 

Pij=P<OiOj), 
3 

P == t ~ Pit = nkT, 
i~l 

(48) 

where P is the kinetic or hydrostatic pressure. Equation (48) may be put in the 
irreducible tensor notation by using the relation 

2 

OiOj = tc2 8ij+! ~ (ij 12m)*02(£:[21m . 
m~-2 

The coefficients (ij 12m) are easily calculated and are (see Kumar 1966a) 

lijl20)~~~: 

Hence, from (20), 

Alternatively, since 

from (20) and (48) 

o 01 
1 0, 

o -2 

Ii; 12±1) ~ J~ r : 
l±l 

(ij 12±2) ~ J~~ ;~ 
2 

Pij!p = aij + ~~ ~ (ij I 2m)* I}[021m • 
m~-2 

3 

0 2 (£:[21m = ~ (ij 12m) OiOj, 
i,j~l 

3 

I}[021m = ~ t ~ (~j 12m) Pij!p. 
i,j~l 

o ±11 o i, 

o 

=fi 

1 

o :1-

(49) 

(50) 

(51) 

(52) 

(53) 

The isotropic part p of the pressure is always equal to nkT. The tensors I}(02)m 

represent that part ofthe second-order tensor Pij which is involved in the phenomenon 
of viscosity. 

In the case of a gas mixture the partial pressures are denoted by Ps = ns kT 
and I}[021m(s) defined in terms of averages of Cs in the manner of (53). The total 
pressure in that case is 

Pij = ~ Pij(s) , p = ~ Ps , } 
s s 

Pij = P bij + ~~ m~-2 (ij I 2m)* (7 Ps I}[021m(S)). 

(54) 
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(iii) Thermal Flux Vector 

The molecular energy E = tm02 at any point r determines the corresponding 
thermal energy density 

Q = E = tnm(02) = !nkT = !p . (55) 

With proper interpretation this equation holds for the simple gas as well as for 
the gas mixtures. It is related to the definition of as and the equation (41). The 
thermal flux vector in the simple gas case is defined as 

q = EC = tnm<02C) . (56) 

Writing the components as in (6) and using (22) we have 

iY(ll) m = -J~.L q(l) m = -J~ ~ q(l) m 
5mn 5p' 

(57) 

since iY(OI)m = O. 

For a gas mixture the heat flux due to each component is to be added up: 

(1) ~ (1) 1 ~ 2 (1) 
q m = k.J q m(S) = 2" k.J nsms <Os Os m)s. (58) 

s s 

From (6) and (22) this becomes 

q(l) m = ~ ~ ~ (pslas)(~~ iY(OI) m(s) - iY (ll)m(S)). (59) 
s 

(c) Distortion of Local Equilibrium 

The parameters that define the expansion of the distribution function are 
obtained by performing velocity averages at any given point (r, t) of space and time. 
Because of the free movement and of the collisions of molecules these parameters 
undergo changes from point to point. The rates of change of the parameters can be 
classified according to their tensor character. 

(i) Time Derivatives 

The time derivatives always occur in certain combinations with other factors. 
It is convenient to define related quantities, which all have the dimensions of 
(time)-l: 

Change in number density 
Ion 

(60) N=--
not' 

Change in temperature A =! Oa 
a at ' (61) 

Change in local mass-average a 
velocity S = a -;::-Co • (62) 

ot 

Components ofS according to (6) are S[11p. From (62) we have, since C = C-Co, 

a 
S = - a at C . (63) 



218 KAILASH KUMAR 

(ii) Space Derivatives 

The gradient operator with respect to space coordinates will be denoted by 
b and its components according to (6) by i)[1)p etc. We then have the related 
quantities 

Since rx 2 = mjkT, 

Density gradient 
- 1 

.AI = -bn, 
rxn 

Temperature gradient: ..d = ~ brx . 
rx 

..d = -t(kTjm)! b(logT) . 

(64) 

(65) 

(66) 

The gradient operator acting on the vector Co produces three irreducible tensors 

[I) '" l ) r [1) [1) Y m = ~ (1 fA. 1 m-fA. I m iJ p Co m-p 
p 

,-, 1 Il ) ~[1) e[l) =-~(IfA. m-fA. mo p m-p, 
p 

(67) 

corresponding to the three allowed values of l = 0, 1, 2. In addition to these a 
vector 

ri = rx(co'b)co (68) 

is needed. All these script symbols involve differentiation with respect to r and have 
dimensions of (time)-1. 

For l = 0, equation (67) gives the scalar 

y[O) = ~ (1 fA. I-fA. I 00) o[1)pco[1)_p 
p 

=~! divco. (69) 

(1) Rate-oi-shear tensor.-In Cartesian coordinates the rate-of-shear tensor 
is of second order and traceless: 

Sij = !(~COi + OCOi) _!:( f ~COk) 8ij . 
2 OXj OXi 3 k=1 OXk 

(70) 

The corresponding quantity in the present notation is the irreducible tensor 
Y[2)m' That it is symmetric with respect to the three axes is seen from the fact that 
(1 fA. 1 v [2 fA.+v) = (1 v 1 fA. [ 2 fA.+v). By substituting specific values in (67) it can 
be shown that 

3 

y[2)m = ~i ~ (ij 12m) t(OiCOJ + OjCOi) 
i,j=l 

3 

= ~i ~ (ij 12m) Sij. 
i,i=l 

(71) 
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The inverse relation is 

2 

S11 = ~i :I: (ij I 2m)* ,9'[2] m. 
m=-2 

(72) 

With (48), (53), and (69) this gives 

f'~l P'l1 Oj C01 = p( ~2 m~-2 ,9'(2)m \y[02]m + ~3 ,9'(0»). (73) 

(2) Vortexvector.-Because oftherelation (1 p, 1 v 11 p,+v) = -(1 vIp, 11 p,+v), 

[1] ~ ( ) (A[l] [1] ,,[1] [1] ) 
,9' m = t ~ 1p, 1 m-p, 11m 0 # Co m-# - 0 m-p, Co· # • (74) 

# 

This is equivalent to the vorticity vector, which in Cartesian coordinates is expressed 
by t curl CO· 

(d) Some Integrals 

We consider now the integrals associated with the collision integral and bracket 
expressions of the kinetic theory (Chapman and Cowling 1939,1952, Sections 3.54 and 
4.4). These integrals are over eight variables, six of which are the velocity components 
of the colliding pa.rticles, before and after the collision, and the remaining two express 
the relation between the velocities before and &fter. There are various ways of 
choosing the last two variables. The most common choice is that given in the book 
by Chapman and Cowling (1939, 1952), in which the two variables are taken to be 
the directions of the apse line of the orbit. If the unit vector in the direction of the 
apse line is denoted by k, then the eight-dimensional volume element is denoted by 
dkdc1dc2 (see Chapter 3 of Chapman and Cowling). On the other hand Waldmann 
(1960) has used the unit vector in the direction of the final relative velocity e' in place 
of k, so that his volume element is de' dC1 dC2. In either case, to give meaning to the 
integrals one has to make a change of variables to integrate over the inverse collisions. 
In our notation ~ = e, ~' = e', and we observe that, in view of the conservation 
relations G = G' and g = g', the volume elements of Waldmann can be written in 
the form 

d~dg'dG = d~'dgdG 

= g2dgdg'd~dG. (75) 

In the last form no tacit understanding for changing the volume elements for direct 
and inverse collisions is necessary. 

The angle X between the initial and final relative velocities is given by 

cos X = g.g'. (76) 

When the intermolecular potential is spherically symmetric all integrals involve a 
factor gu(g, X), where the functional form of u is determined by the nature of the 
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potential. This function may be expanded in terms of spherical harmonics to separate 
the dependence on the angles of g and g': 

00 A 
C'O [AJ A (A) A 

a(g, X) = 2: 2: a A(g) ID Il(g) ID Il(g'), (77) 
A~O Il~-A 

a A(g) = 217 J a(g, X) P A( cos X) d( cos X) . (78) 

The procedure for determining a A(g) from the intermolecular potential and its con­
nection to the quantities used in the previous works is given in Appendix II. Here 
we note that the function a always occurs in the following combination with the volume 
elements: 

dm = a(g,x)g3dgdg' dgdG. (79) 

Consider the integral 

J w(r, G) w(y, g) 1>(V3 )(IXI CI) 1>[V,J( IXI Ci) 1>[V2J(1X2 C2) dm. (80) 

From the formulae (30) and (31) this becomes 

2: T(rN, yv IlXlv3, 1X20) T(rN', yv' IIXIVI, 1X2V2) 
N,N',v,v' 

x J w(r, G) w(y, g) 1>(N)(rG) 1>[N'\rG) 1>(V)(yg) 1>[V'J(yg') dm. 

The integration over the centre-of-mass velocity gives 8NN, from (16), and the 
integral over relative velocities becomes 

J w(y, g) 1>(v)(yg) 1>(V')(yg') a(g, X) g3 dg dg' dg. 

Using (15), (77), and the orthogonality of the spherical harmonics this reduces 
to (Kumar 1966a) 

811' 8mm, f w(y, g) Rvl(yg) al(g) Rv'l(yg) g3 dg - 811' 8mm, (vlll gal II v'l) , (81) 

so that, finally, the integral (80) becomes 

2: T((r) NLM I (IXI) V3l3m3) T((r) NLM I (IXI) Vlhml) (vlll gal II v'l). 

N LM,vlm,v' (y) vlm (1X2) 000 (y) v'lm (1X2) V2l2m2 

(82) 

Since formally the sum goes over all values of v and v' it follows that (82) is 
also equal to the integral 

f w(r,G)w(y,g) 1>(V3)(IXI C1) 1>[vtl(IXI CI) 1>[V2J(1X2C2) dm. (83) 



CHAPMAN-ENSKOG SOLUTION OF BOLTZMANN EQUATION 221 

On the other hand 

f w(r, G) w(y, g) cf/"3)(1X1 C1) c/>[II'](1X1 C1) c/>[Vz](1X2 C2) d5B 

2 T((r) NLM I (1X1) val3ma) T(r) NLM I (1X1) v1hm1\ 

NLM,vlm,v' (y) vlm (IXZ) 000 (y) v'lm (1X2) vzl2mJ 

x (vlll gao II v'l) • (84) 

From (82) and (84) 

f c/> (113) (1X1 C1) (/1 h - Ii I';') d5B 

2 T((r) NL.1v! I (1X1) valam3) T(r) NLM I (1X1) V1hm1) 

= n1 n2 v,,"z,N,v,v' (y) vlm (1X2) 000 (y) v'lm (1X2) vzlzmz 

X V~v' !Y("')(1X1) !y(Vz) (1X2) , (85) 

where 

V~V' = (vlll g(ao-al) II v'Z) 

= f w(y,g) R"l(yg) RV'I(yg){ao(g)-az(g)} l dg, (86) 

and it = I (C1), 12 = I (q), etc., and we have used the expansion (32) for the 1's . 

. From the equality of (80) and (83) with (82) we can replace eMit iz - Ii I.;) by 
c/>'(/U.;. - Id2), so that we have the usual result 

t f {c/>("3)(1X1 C1) - c/>(V3)(1X1 Cn }(ft iz - IU.;.) d5B 

= f c/>(v3)(1X1 C1) (ftiz - IU.;) d5B. (87) 

The replacement of C1 by C2 in c/>(V3) of (85) leads only to an interchange of indices 
in the last column of the Talmi coefficient, hence we have 

t f [c/>(1I3)(1) + c/>("3)(2) - c/>(V3) (1') - c/>(V3)(2')] (/dz - IU.;.) d5B 

2 [T(r) NLM I (1X1) v3l3m3) + T(r) NLM I (lXl) 000 )] 
= n1 n2 v"vz,N,II,I" (y) vZm (1X2) 000 (y) vlm (1X2) valam3 

X T((r) NLM I (lXl) Vlhml) v!", !y(V')(1X1) !y(IIZ)(1X2) . (88) 

(y) v'lm (1X2) V2lzm2 
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If we have the functions 

'h(CI ) = ~ "'1(V3)(CXI) cfo[V31(CXI C I ), 
"3 ) (89) 

"'2(C2) = ~ "'2(013) (CX2) cfo[V31(CX2 C 2) , 
013 

then in an integral similar to (88) the first Talmi coefficients would be multiplied by 
"'(V3)(CXl), and using equation (AI4) (Appendix I) we obtain 

t I ("'1 +"'2-"'i -"'?) (II h - Ii 12) d[l 

= I ("'1 + "'2-"'i -"'2) !I 12 d[l 

= nln2 ~ (v31 J("'f) I CXlVI, CX2V2) !J(V')(CXl) !J(V2)(CX2), (90) 
"1,,":11"3 

where 

(V3 I J(", f) ! CXIVI, CX2V2) 

= ~ ["'1[V 31( CXI) + (- )1(CX2/CXI)2N+L-2v-1 "'2[V,l(CX2)] V~v' 
N 1v1,,' 

x T((r) NLM I (CXI) V3l3ma) T((f) NLM I (CXI) Vlhml) (91) 

(y) vlm (CX2) 000 (y) v'lm (CX2) v2l2m2 • 

(i) Summational Invariants 

This is not proposed as a simple method of obtaining the summational invariants 
but serves to introduce the way in which the calculations are to be carried out. We 
investigate the influence of the existence of these invariants on the structure of (91). 

For a given set of values of (V3l3m3) the first T-coefficient in (91) can take 
nonvanishing values only for a certain set of values of the indices (NLM, vlm) according 
to the rules given in equa~ions (A4)-(A7) (Appendix I). We observe further that, 
from (86), 

o 
Vvv' == O. (92) 

The summational invariants then arise as follows. 

(1) For (V3l3m3) = (000) the only allowed set of (NLM, vlm) is (000,000); hence, 
from (92), 

(000 I J("'I) I CXlVl, CX2V2) = 0, 

and (91) vanishes for", = constant. 

(93) 

(2) For (V3l3m3) = (Olm) there are two allowed sets (Olm, 000) and (OOO,Olm). 
The contribution of the first vanishes because of (92), and that of the 
second vanishes if 

"'1 [Ollm(CXl) - (CXl/CX2) "'2[Ollm(CX2) = 0 . 
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If this were the only coefficient in I/; then, from (19), (90) would have 
vanished for 1/;1 = cx~ Cl, 1/;2 = CX~ C2, or, symbolically, I/; = mC. That is, 

(Olm I J(mC,f) I CXlVl, CX2V2) = O. (94) 

This is the expression for momentum conservation. 

(3) For (V3l3m3) = (100) the possible sets are (100,000), (000,100), and 
(OIM, 01 m3-M). The contribution of the first two vanishes from (92). 
That of the last one also vanishes if 

1/;1[1O]O(CXl)-1/;2[lO]O(CX2) = 0, 

that is, if 
1/;1 = <I>[lO]O(CXl Cl ) = 1/;2 = <I>[lO]O( CX2 C2) . 

From (21) the significant part here is seen to be cx~ O~ ,....." ml O~, which corres­
ponds to the energy conservation 

(100 I J(m02,f) I CXlVl,1X2V2) = O. (95) 

It is convenient to use the symbol v* for the five sets of v for which the 
above quantity vanishes:t 

v* = 000 or Olm or 100. (96) 

(ii) Bracket Expressions 

We refer here to the bracket expressions that occur in the later stages of a 
Chapman-Enskog calculation. The most general bracket is defined as (Chapman 
and Cowling 1939, 1952, Section 4.4, equation (9), p. 86) 

[1/;1 +1/;2, 'l'\ +'f'2h2 = i f WI W2 (1/;1 + 1/;2-l/;i-1/;2)('f'l +'f'2-'f'i-'f":f) d5ll. (97) 

This quantity arises if in (90) we substitute for!1 and 12 expressions of the form 

!1(Cl) = nl WI {1+el/;l(Cl J}, 

and collect the terms linear in e. 

Using an expansion of the form 

.1. "'" .1. (v) ..L[v] C 'f'l = ~ 'f'l 'f' (CXl 1), 
l' 

~e get from (90) and (91), with v' . (v'lm), 

[1/;1+1/;2, 'f'l +'f'2h2 = 2 ~ [1/;1 (v,) + (- )l(CX2/CXl)2N+L-2H 1/;2(V,)] 
. "'l,vl ,N,v,v' 

X ['f'l ["2] + (- )1(CX2/CXl)2N+L-2J1'-1 'f'2["a]] 

X Vtll' T(rN, yv I CXlVl, CX20) T(rN, yv' IlXlV2, 1(20). 
(98) 

t Note the UBe of the five-pointed star in this context. 
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By specialization from this, all other brackets can be obtained. For instance, 
when the particles have the same mass, 0( = 0(1 = 0(2, another bracket expression is 
defined by (Chapman and Cowling 1939, 1952, Section 4.4, equation (11)) 

[if,'Y]l = [ifl,'Yl+'Y2]12. (99) 

According to (98), then, 

Lif, 'Yh = ~ if(V i ) 'Y[v21 {1+(_)1}2 V!.' T(rN,yv I O(Vl,O(O) T(rN,yv' I O(V2,O(O). (100) 

The importance of the relations (98) and (100) should be noted. They represent 
a complete working out of these bracket expressions, in the sense that using these a 
machine could evaluate the brackets. For comparison recall that in Chapman-Cowling 
techniques the bracket expressions have to be further reduced to the sums involving 
the integrals Ol(s). In order to determine which Ql(s) occur with what coefficients, 
Chapman and Cowling have to work out particular bracket expressions separately. 
Chapter 9 of their book is devoted to working out a certain number of bracket 
expressions. Here in (98) we have obtained the corresponding expression for the 
most general bracket. As shown in Appendix II, the vt .. are related to Ql(s), the 
quantities if(v) and 'Y(v) are expansion coefficients which would be needed in any case, 
and the T's are the Talmi coefficients for which formulae are given in Appendix I. 
The sum on the right-hand side can be formed mechanically. 

III. THE SIMPLE GAS 

(a) The Boltzmann Equation and the Chapman-Enskog Hierarchy of Equations 

The simple gas is characterized by a single mass parameter so that in the 
Talmi coefficients 0(1 = 0(2 = 0(, and they are then independent of 0( (Appendix I). 
The velocity variables inside a double integral are then represented by C and C l 

rather than Cl and C2. The Boltzmann equation in this case is written as 

Pfif = -J(ffI) , (101) 

where 

o 0 of 
Pfif = -f + c·-f + F·-ot br bc' 

(102) 

J(ffI) = f (ffI - l' fi) g a(g, X) dg' dCl. (103) 

These definitions are the same as in the book of Chapman and Cowling. The 
vector F is the force due to an external field; it depends on rand t but not on c. 
Equation (101) may be converted to an equation for the coefficients 0: in the expansion 
of the distribution function by using the expansion (32), multiplying from the left 
by 1>(v,)(O(C), and integrating with respect to C: 

~ (va I Diva) o:(V~) = - ~ n (Va I J I VI, V2) o:(V,) 0:(V2\ (104) 
, 1.111.12 

V3 
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where (Va I D I va) = ~ f cp(V,) (~nW(IX, 0) cp[V~l) dC, (105) 

and the matrix J has been defined to be symmetric in VI and V2: 

(Va I J I Vb V2) = t f W(IX, 0) W(IX, 01) cp(v3)(IXC) 

X [cp[Vtl(IXC) cp[V21(IXC1) - cp[Vtl(IXC') cp[v21(IXC]) 

+cp["21(IXC) cp[Vtl(IXC1) - cp["21(IXC') cp[Vtl(lXq)] d5}3 • (106) 

In (105) the differentiations with respect to C are completed, but those with 
respect to rand t are left uncompleted. For instance, we write 

o on 0 
&t= ot+not' 

so that the matrix element (val D I va) contains differential operators. Hence, in 
(104) it is important to keep it to the left of the coefficients ~(v)(r, t) on which it acts. 
Details of the structures of D and J will be discussed in the following sections. 

To obtain the Chapman-Enskog hierarchy in terms of ~, set, as in (29), 

~(V) = ~ / 8~(v) • (107) 
8 

As usual also replace J by c1J, and separate the equations according to the 
powers of e: 

o = ~ (va I J I V2, VI) O~(V2) O~(Vl) • 

"1,"2 

~ (va I D I Va) O~("~) = - ~ 2n (val J I V2, VI) O~(V2) l~(Vl) . 
, "1,"'2 

"3 

~ (Va I D I Va) l~(V;) + ~ n (va I J I V2, VI) 1~(V2) l~(Vl) 
, 

"3 

~ (va I D I va) (r-l)~(v~) 
, 

"3 

" 1,"2 

~ 2n (Va I J I V2, VI) O~(V2) 2~(Vl) • 

11 1 ,'112 

(108) 

(109) 

(110) 

+ ~ n (val J I V2, VI) [(r-l)~("2) 1~("1) + (r-2)~(V2) 2~("1) ... + 1~(V2) (r-l)~("I)] 
"1,"2 

= _ ~ 2n (val J I V2, VI) O~("2) r~("I) • (111) 
11 1 ,'112 
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This is entirely analogous to the corresponding integro-differential equations 
and may be directly obtained from them. The first of these equations, (108), is 
nonlinear but has a simple solution, as will be seen in subsection (c) following. All 
others are linear algebraic equations for the successive coefficients r~ and are to be 
solved one after another. 

Three special features of the problem are to be noted. 

(1) In each order of approximation the matrices are of infinite dimension, but 
we handle them as if they were finite matrices. This is justifiable to the same 
extent as are the usual manipulations of determinants in the last stages 
of calculation of transport coefficients. 

(2) The coefficients ~ are subject to five subsidiary conditions arising from the 
choice of local equilibrium in Section II(b), namely, 

~(OO)o = 1, ~(OI)m = ~(lO)O = o. 
Without loss of generality we may put O~(OO)o = 1, then 

8~("*) = 0 except for 8 = 0, v* = (000). 

(112) 

(113) 

(3) In view of the existenc~ of the summational invariants, certain rows ~nd 
columns of the matrix J vanish, and a procedure has to be specified to link 
this circumstance to the restrictions in (2) above and to devise a scheme 
for solving the equations. 

(b) Structure of the Collision Matrix 

Using (30) and (31) in (106) with v = v,l,m and v' = v',l,m and suppressing 
some indices we get 

(Va I J I V2, VI) = ~ T(N, V I Va, 0) [T(N, V' I VI, V2) + T(N, V' I V2, VI)] V;v'. (114) 
N"v,v' 

From equation (A3), the quantity in the square brackets in the summand may 
be multiplied by (_)1 without changing its value, then using equation (A14) we get 
the more symmetric form 

(Va I J I V2, VI) = i ~ [T(N, V I Va, 0) + T(N, V I 0, va)] 
NJv,v' 

x [T(N, v' I VI, V2) + T(N, V' I V2, VI)] V~v', (115) 

from which, following the discussion of Section II(d)(i), we recognize the existence 
of the summational invariant for a simple gas in the form 

(V* I J I V2, VI) = o. (116) 

For other values of Va this quantity in general does not vanish. In that case, 
considered as a matrix on VI and V2 it is symmetric: 

(Va I J I VI, V2) = (V3 I J I V2, VI) . (117) 

The matrix elements corresponding to VI = 0 and V2 = v* vanish by the same 
argument as for (116). Hence, for a given Va -=F v* we have the structure shown in 
Figure 1. 
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V2 0 0 0 0 
12 0 1 1 1 0 
m20 +1 0 -1 0 

vI, ii, ml 
0, 0, 0 
0, 1, +1 
0, 1, 0 
0, 1, -1 
1, 0, 0 

o 0 0 0 0 X X X 
o X X X X X X 
OXXXXXX 
OXXXXXX 
o X X X X X X 
XXXXXXX 
XXXXXXXX 
X 

Fig. I.-The quantity (V3 I J I V2, Vl) considered as a matrix on Vl and V2 for V3 oF v*. 
The matrix is infinite· dimensional. The elements that necessarily vanish because of the 
existence of summational invariants are marked O. Other elements X mayor may not 

vanish. 

The special case in which one of the symmetric indices, say V2, is equal to zero 
plays an important role in solving the equations (109)-(111) of the Chapman-Enskog 
hierarchy. It is convenient to introduce a new symbol 

, 
JV,v, =2 (V3 I J I Vl, 0) . 

From (115) this matrix is seen to be symmetric: 

, , 
JV,v, JV,V, ; 

and the five rows and columns corresponding to V3 = VI = v* vanish: 

J~*V = o. 
It is shown in Appendix I that the products of type 

T(N, V I Vb 0) T(N, Vi I V3, 0) 

(lIS) 

(119) 

(120) 

yield a factor FIl , l 3 0m,m, when summed over the numbers M and m. Hence, from 
(lIS) and (115) we may write 

J' - J' 0 0 
1J3 V1 - '3 13'''lll l3 l 1 m 1m3 • (121) 

The matrix J' thus breaks up in blocks along the diagonal characterized by 
values of 1 and m. Since the m-dependence is contained entirely in the 0 functions, 
for a given 1 the same block of values is repeated along the diagonal (21+ 1) times, 
for m = -1, -1+1, .. . ,1-1,1. In each block the v values range from 0 to 00. In the 
block is = h = 0 the elements in the first two rows and columns corresponding to 
V3 = Vl = 0 and 1 vanish, and, in the blocks 13 = h = 1, m = ±1, 0, elements in 
the first rows and columns corresponding to V3 = VI = 0 vanish. It is convenient to 
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collect all the rows and columns with vanishing elements at the beginning of the 
matrix and arrange only the nonvanishing elements in (l,m) blocks. The non­
vanishing part of Jt v will be denoted by Jv v' Then 

3 1 3 1 

J - J l 3 0 0 
V 3 V l - "3"1 l3 l • mJm., (122) 

where the matrices Jtp, can be inverted with respect to the indices v, to give finite results. 
The structure of these matrices and their relationship to each other are shown 
schematically in Figure 2. 

~ ~Im-O 0 0 

I"" o 1 +1 
I~ 010 

~ o 1-1 
~ 1 0 0 ---

m 

o 0 o 0 ~ ~ v~2 00 o 1 1 1 
o +1 o -1 o .~'~ 

1= 0; m= 0 

J~v 
00 

v' 

I' 

v=1 00 

v'= 1 

~ 1=1; m = ±l, 0 

00 

V~O 00 

v'= 0 

~ 1=2; m = ±2, ±I, 0 

00 

Fig. 2.-Structure of the matrix J~, ,v' The matrix Jv'v is obtained by omitting the 
first five rows and columns that have vanishing matrix elements. The nonvanishing 
elements are arranged in blocks along the diagonal. Each block is an infinite-dimensional 

matrixJh· 

From (114), (118), (121), (A14), and (A15) 

J v313 ,v,l, 0131, == Jt~,v, 0131, 

-2 - -
= 47TOl,l, ~ (_)82-(P+p+v'+l)N NLNvINp'l 2 I 

NL,vl,v' N N a (lLh) Vvv', v,l, v,l, 
(123) 
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where s = v+v' +VI +V3 and the indices N L, vl, Vi are restricted by equations 
(A4)-(A7) of Appendix I according to the Talmi coefficients in (114). 

From (100), (115), (I1S), and (121) we obtain the result that 

[cp (v,), cp[V21] = 2 (VI I J I V2,0) 

• • = JV,v2 = J p,l .. v212 81,12 8m , m2 . (124) 

(c) First Approximation 

This is obtained by solving equation (108), in which the two factors oiJ{V) may 
be regarded one as a row matrix and the other as a column matrix sandwiching 
between them the square matrix of Figure 1. Such a product can vanish only if 

OiJ{V) = 8",0' (125) 

The normalization constant is chosen in accordance with (112) and (113). This, of 
course, corresponds to the Maxwell-Boltzmann distribution (see equations (25), 
(IS), (15)): 

( )
3/2 (m02) 

f{O) = nw(ct, 0) = n 2:::CT exp - 2kT . (126) 

However, the functions n, ct, and Co are quite arbitrary at this stage and need not 
refer to the local equilibrium. They can be made appropriate to the local equilibrium 
only by imposing some further restrictions. Such restrictions arise when one goes to 
the equations of the next order. 

(d) Structure of the Matrix (v I D I Vi) 

In evaluating the expression (105) we first express the scalar operator q; in 
terms of Co and C. Since c = co+C, 

r,;, 0 0"L' 0 
;;z; - ot + c· br + .r . bC 

000 0 
= -+co·-+C·-+F·-. ot br br bC 

(127) 

Acting upon the functions n, w, and cp in (105) thi" operator generates the tensor 
functions of rand t, which were introduced in Section II(c). The tensor of the highest 
rank is generated by differentiation of Co with respect to r and is in fact the tensor 
g'(2)m. The operator q; then is a scalar product of tensor operators based on C and 
those based on rand t. The maximum rank of the tensors is 2. 

From the Wigner-Eckart theorem (11) the integral (105) may be written in 
the form 

2 A 

(v i D I Vi) = ~ ~ n(A) /t(ct, r, t; vl, v'l' ) (lm Il'm' AIL). (12S) 
,\~O /t~-A 

It is seen by the coupling rule (equation (9)) of irreducible tensors that the 
quantity ~v' (v I D I Vi) iJ(v') is an irreducible standard tensor of rank l, as required. 
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Unlike the matrices J of Section III(b), the present matrix is neither symmetric 
nor does it break up into blocks along the diagonal. Its elements are, in general, 
functions of rand t and their differential operators. In view of the Wigner coefficient 
involved, the matrix elements vanish unless [l-2[ ~ l' ~ (l+2). Because of the 
orthogonality of <fo functions the v values are also restricted, but these restrictions 
cannot be stated as conveniently. 

The explicit form of the matrix is obtained by a straightforward calculation. 
We give the calculation of the alat part as an illustration and then outline the deriva­
tion of other parts. 

Using the definitions from Section II(c)(i) we have 

f <fo(V) (ceC) ~{nw(ce, 0) <fo[V'l(ceC)} dC 

= (fnw<fo(V) <fo[v'l dC)~ + f<fo(V){(Nn~ + Ace~ - s.!~) nW<fo[V'l} dC, (129) 
at an oce ce bC 

or, since 

a - (3 202 )-1Xa:» = -ce w, a - ( 2c)-
~= -(l( W, (130) 

the second term of (129) becomes 

f nW<fo(V){N + A (3-ce20 2+ce:J + I SIt(1)(ceo,P1- ~oJ111t)}<fo[V'1 dC. 

It 
From the Wigner-Eckart theorem (11) and the orthogonality relation (16) 

the whole integral (129) then becomes 

n(~+N )Ilvv' + nA Illl' Ilmm' (vlll (3_ce20 2 +1X8Iace) II v'l) 

+ ~ n 8(1) It (Zm IZ'm' 1 fL) (vl IllXd11 - (l/lX)ac[l] II v'Z'). (131) 
It 

The first two terms yield a part of D(O)o and the last term a part of D(l) It. The quantities 
n, N, A, and S[l]1t are functions of rand t. The operator al8t acts on the quantities !y, 

which must therefore stand to the right in the sum. The double-barred quantities 
are the reduced integrals defined in equation (11). 

It is convenient to introduce the following velocity-dependent operators: 

K [l] _ 0[1] 1 a [11 It- ce It-- C It, ce 
(132) 

W [).] '" [11 [1] It = ~ (AfL 11 v 1 fL-v) ceO v K It-v· (133) 
v 

By using explicit values of the coefficients it can be seen that 

1{22 a} 
w[O]o = ~ 3 ce 0 - ceC· b(ceC) (134) 
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and ( 
0 )[1] 

W[I] - ~ CX"'C . 
/1- ~2 .. /I 

(135) 

Usually W[O]o operates to the right upon cp[v](aC), hence in (134) we may put 
aC 'o/b(aC) = a%a = 0 0/00. The second-order tensor W[2]/I can be split into 
a spherical harmonic and a differential operator. However, except for purposes of 
orientation with respect to more familiar things, it is unnecessary to analyse the 
tensors in this way, and calculations can be performed directly with (133). 

Using the definitions introduced in Section II(c) we can now write 

(co'bcnibcp) = nw[ aCo' Y + aco·cd(3-~ 3W[O]) + ~. K]cp, (136) 

(C'bcnwcp) = nw[ Y 'aC + cd 'aC(3-~ 3W[O]) 

since, from (67) and (133), 

2 A 
+ ~ ~ ,9"(A) /I W[A]/I]cp, 

.<~O /I~-A 

2 A 
~ 0 ~ ~ (A) [A] 

a",", iKjoCiCOj = "'"' "'"' ,9" fJ, W /I' 
i,j A~O /I~-A 

Similarly, due to external force (from the last term in (127)), 

F·bc(nw.p) = -nwaF·(aC-bc)cp. 

(137) 

(138) 

(139) 

In these equations the velocity-dependent parts are clearly separated, and the 
integrations can be performed as in the example of %t terms. Collecting all the terms 
arising from the use of (129), (136), (137), and (139) in (105) and comparing with 
(128) the expressions for D(J..)/I are obtained: 

D(O)(a, r, t; vZ, v'Z') 

= ovv' oll'{N + aCo' Y + 3(A + aco'cd) + %t + cO'b} 

- .)3 (vZII W[O] II v'Z') {A + aco'cd -.)t ,9"(O)}. 

D(I)/I(a, r, t; vZ, v'Z') 

= (vZ ll aO[I] II v'Z'){JV(I)/I + 3d(I)/I + a-1 0(1)fJ,} 

- .)3 (vZllaQ[l] W[O] II v'Z') d(l) /I 

+ (vZ II K[I] II v'Z') (8(1) fJ, +~(1) /I - aF(I) /I) 

+ (vZII W[I] II v'Z') ,9"(1)/1' 

D(2) /I(a, r, t; vZ, v'Z') 

= (vl II W[2] II v'Z') ,9"(2) fJ, • 

(140) 

(141) 

(142) 

The velocity operators occurring above have been defined in such a way as to 
make their reduced integrals dimensionless and independent of a. The operators 
themselves are also dimensionless but depend upon a. The evaluation of the reduced 
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integrals is carried out in Appendix III. With the present arrangement of various 
quantities the tensors D(A) f.I depend on rand t entirely through the quantities intro­
duced in Section II(c) and the external field vector F. In addition they contain the 
differential operators B/Bt and b. The expressions given above are quite general and 
may be used also for solving the Boltzmann equation by methods other than that 
of Chapman and Enskog. 

(i) General Form of the Hydrodynamic Equations 

The right-hand side of the Boltzmann equation (lO4) vanishes, according to 
(116), for V3 = v*. The equation then becomes 

~ (v* I D I va) \j(1I;) = o. (143) 
11' 

The five equations corresponding to five values of v* are the hydrodynamic 
equations. By using (140)-(142) and the explicit values of reduced integrals given in 
Appendix III (equations (A51)-(A67)) we get 

(1) the continuity equation, v* = (000), 

N + a: Co· Y + .J3 [/'(0) = 0; 

(2) the equation of momentum transfer, v* = (Olm), 

S(l)m + ~(1)m - a:F(1)m + a:p-1{B(1)mP} 

= - .J¥(a:/p)[B(1) X {p\j(02)}J(1)m ; 

(3) the equation of energy transfer, v* = (lOO), 

A + a: Co· oJ - .J! [/,(0) 

(144) 

(145) 

= (1/3p).J~ ~ [B[11m{(p/a:) \j(ll)m}J - .J~ ~ {[/'[21 m \j(02)m}. 

(146) 

By using the transformations (53), (69), (73), etc. these equations can be 
converted to the more usual Cartesian notation. In deriving these equations, apart 
from using the definitions given in Sections II(a)(i)(I), II(b), and II(c), we have used 
the fact that \j(00)0 - 1, \j(Ol)m _ \j(10)0 = 0, which is the case only when the 
parameters n, a:, and Co are appropriate to the local equilibrium. If on the other 
hand this condition was not required then the equations would also contain the 
coefficients \j(1I*) and their derivatives. 

(ii) Euler's Hydrodynamic Equations 

In the first approximation (Section III(c)) all coefficients of the expansion 
except the first, v = 1 = m = 0, vanish. Equation (144) remains unaltered while 
(145) and (146) become, respectively, 

S(l)m + ~(1)m - a:F(1)m + ocp-l{B(1)mP} = 0, (147) 

and 

A + a: Co . oJ - .Jl [/'(0) = 0 . (148) 
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Combining (148) and (144) 

3(A + ex Co . .A) = (N + ex co· f), (149) 

from which the adiabatic law (DjDt)(nT3/2) = 0 follows in the usual way upon 
substituting for the symbols from Section II(c). 

(e) Second Approximation 

The equation for this approximation is 

~ (V3 I D I va) 0\y(v') = - n ~ 2 (V3 I J I V2 VI) 0\y(V2 ) 1\y(v1) • (109) 
, 

v3 
V t 'V2 

By using the first approximation 0\y(v) = Dov and the matrix J' discussed in 
Section III(b), the equation to be solved for I\y(v) becomes 

(V3 I D I 0) = - n ~ J~3Vl 1\y(v1) , (150) 
V 1 

or, in matrix notation, 

{D} = - n [J']{\Y}, (151) 

where {D} and {\Y} are column matrices with infinite numbers of rows and [J'] is an 
infinite-dimensional square matrix. As usual, in practice we work with truncated 
matrices of finite dimensions. It is assumed that by enlarging the dimensions of the 
matrix one converges to a certain desirable result; no attempt is made to prove 
this. 

Now, from Figure 2 it is seen that, because of the vanishing of the first five 
rows of the matrix J', the first five members of the column of equations (150) are 

(V* I D I 0) = o. (152) 

In deriving the first-approximation solution in Section III(c) it was noted that 
the five parameters that define the polynomial expansion n, ex (or T), and Co remained 
undetermined at that stage. It is now seen that these may be determined by solving 
the five equations above, which are in fact the Euler hydrodynamic equations of 
subsection (d)(ii) above. The rest of the equations (150) can be represented as 

(v I D I 0) = - n ~ JVV1 1 \y(v1) v, VI of=. V* , (153) 
v1 

where the matrix J is related to J' as shown in Figure 2. The restriction on v and 
VI corresponds to the vanishing of the rows and columns of J'. 

These equations do not involve the first five members of the column {l \Y}, i.e. 
the coefficients I\y(v*). Hence, by solving only equation (109) the full column is not 
obtained. The first five members can be arbitrarily chosen without affecting the 
calculations. This corresponds to the well-known arbitrariness which arises in the 
solution of an integral equation when the kernel has vanishing eigenvalues. In the 
present discussions those theorems need not be invoked. The arbitrariness in the 
solution can be removed only by considering the matrix for the next approximation. 
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However, at this point it is already possible to calculate all of the coefficients 1 \J(V) , 

for v =1= v*, and to obtain results of physical interest. 

By using the reduced integrals (A55)-(A67) in (140)-(142) the left-hand side 
of (153) is seen to be 

(v I D I 0) = ,.)10 d(l)m 8pl 8ll +,.)2 g'(2)m 8po 8/2 v =1= v* . (154) 

In view of the block structure of the matrix J (equation (122) and Figure 2), 
the set of equations (153) separate in the following groups: 

0 - 19:(PO) 
- tJ 0 v =1= 1,0, 

'10 .J(l) :;: - n "" Jl 19:(p'l) 
V V4' m upl - - ""'" ",,' 0 m , 

,,'-1 

'2 ('.0(2) '" _ "" J2 19:(JI'2) 
'1/ J m opo - - n """ ''II' 0 m , 

1"=0 

0= l\J(I'/)m l ~ 3, all v and m . 

The solution of (156) and (157) can be written formally as 

- (1/n)~10(Jl)-lpl d(l)m = l\JM)m, 

- (1/n)~2(J2)-\0 g'(2)m = l\J(P2)m. 

(155) 

(156) 

(157) 

(158) 

(159) 

(160) 

It may be recalled that in the usual calculations of transport coefficients by 
the Chapman-Enskog method, as, for instance, in Chapman and Cowling (1939, 
1952), the final equations are expressed in terms of the bracket expressions, which 
are evaluated in terms of certain determinants. Within the first approximation 
one recognizes various orders of calculations depending on the dimensions to which the 
infinite determinants are truncated. The integrals involving the intermolecular 
potential are then expressed in terms of the quantities Ql(s) (Chapman and Cowling 
1939, 1952, p. 161). It is an important and time-consuming part of the usual theory 
to find the number of Ql(s) involved in the calculation of a given order and to deter­
mine their coefficients. The relationship of O/(s) and our interaction integrals V;v' 
is shown in Appendix II. The advantage of the present method is seen in the fact 
that one is able to exhibit the complete structure of the matrix to be inverted in 
terms of irreducible quantities. For any given order it is an easy matter to determine 
which of the interaction integrals Vt", would be needed by referring to equation 
(123) and the properties of the Talmi coefficients (equations (A4)~(A7)). With this 
it might be said that the formal calculation has been done to all orders. This would 
also be a suitable form for machine calculations. 

(i) Viscosity 

In Cartesian notation the coefficient of viscosity fL is defined by the equation 

Pi1 - P 8t1 = - 2fLSi1 . (161) 
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In the present notation from equations (51) and (72) this becomes 

p g;(02)m = -,J2 t-t g'(2)m' 

Comparing with (160) one gets 

t-t = kT (J2)-100. 

(ii) ThermalOonductivity 

The defining equation for the thermal conductivity A is 

8 
q = - A brT, 

which in the present notation becomes, from (57), 

Hence, from (159), 

g;(ll) m = J~ A,} 8(1) mT 
5mn 

= -2J~A::d(1)m. 

A = 5k (Jl)-lll. 
2ct.2 

(162) 

(163) 

(164) 

(165) 

To establish the equivalence with the results of Section 4.7 of Chapman and 
Cowling, we note that their quantity A can be obtained in our notation by comparing 
the vector parts of the first-order functionj(l) = j(O) <11(1). In our notation this vector 
corresponds to 

i,J5 ~ (J1)-1vl 4>(v1)m. 
v 

Hence, by using (124) we have 

[A, A] (Chapman-Cowling) = ¥(J1)-1 11 . (166) 

The equivalence of the viscosity formulae can be shown in a similar manner. 
The details of temperature and density dependence of these coefficients therefore 
need not be discussed here. It suffices to point out that apart from the already 
apparent factors such dependence is carried entirely in the functions V;v" which 
occur in Jt." 

(f) Oompletion oj the Second Approximation: N avier-Stokes Equations 

As remarked earlier, the coefficients 19;(v*) do not occur in the equations (1'50) 
of the second approximation and are, therefore, undetermined by it. For the first 
time they appear in the first five equations of the next, namely the third, approxi­
mation. From (110) these are 

~ (v* I D I v') 19;(v') = O. (167) 
v' 
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There are two ways of loolring at equation (167). 

(1) According to the first, which is related to the original Hilbert approach 
(Grad 1960), the quantities n, 0(, and Co occurring in (167) are supposed to be 
those given by the solution of equations (152). Since these are correct only 
up to the zeroth order in €, the restrictions (38) and (47) on ~ are fulfilled 
only to that order; that is, 

0~(00)0 - 1, 0~(01)m - 0~(1O)0 = o. (168) 

Equations (167) are, therefore, differential equations for 1~("*), to be solved 
by supplying suitable boundary and initial values. The solutions are in 
general nonvanishing. From these the first-order corrections to the quan­
tities n, 0(, and Co can be found. 

(2) In the Chapman-Enskog method the conditions (38) and (47) on ~ are 
supposed to be fulfilled as identities at each stage of calculation. In addition, 
since no loss of generality is involved, (168) are also to be satisfied, so that 

1~("*) = o. (169) 

The equations (167) then have the same form as the hydrodynamic equations 
(144)-(146), with ~(ll)m and ~(02)m replaced by the corresponding second-approxi­
mation quantities which have already been determined. Obviously both (152) and 
(167) cannot be satisfied by the same functions n, 0(, and co; nor is this required. 
Equations (152) determine the zero-order quantities n(O), 0(0), and co(O), and (167) 
determines the first-order corrections n(1), 0(1), and co(1), whence the total quantities 
at this stage are n = n(0)+€n(1), etc. 

The equations (167), looked upon as equations for n, 0(, and Co, are the Navier­
Stokes equations. 

(g) General Scheme of the Chapman-Enskog Method 

All elements of the method have already been illustrated. For the (r+ 1 )th 
approximation the matrix equation from (HI) is 

~ (va I D I va) (r-1)~("~) 
, 

", 
+n ~ (val J I V2,Vl)[(r-l)~("2) 1~("1) + (r-2)~("2) 2~("1) 

'1'1'1'2 

+ ... + 1~(V~) (r-l)~("I)] 

= -n ~ 2 (val J I V2,O) r~("2). (170) 
"2 

The first five of these equations are 

~ (v* I D I va) (r-l) ~(V;) = o. 
, 

"3 

(171) 
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With (r-l)tr(v*) = 0 these become the equations for the corrections n(r-l), a(r-l), and 
co(r-l). The remaining equations (170) are for the rth-order terms rtr(v) (v -=F v*). 
The matrix to be inverted is again J",v', which is the same in all orders. The only 
difference from order to order comes from the fact that the left-hand side involves 
tensors of higher and higher ranks. The maximum rank of tensors occurring in the 
(r+l)th approximation is 2r, since the maximum rank of tensors in (v I D I v') is 2. 

On the left-hand side of (170), the five quantities n, a, and Co must be taken cor­
rect to the (r-l)th order. That is, in solving for rtr, (171) must be taken into account. 
The Chapman-Enskog prescription for doing this is to consider (171) as the identity 
to be satisfied between the time and space derivatives of n etc., and then to use 
this to eliminate the time derivatives of these quantities in the equations for rtr, 

which are consequently obtained as functionals of n, a, Co, and their space derivatives. 

It is now possible to write a formal expression for rtr that has a fairly straight­
forward structure in terms of the D matrix and the inverse of J. Since there is no 
immediate use for such an expression it will not be given here. It is evident that the 
method would be suitable if the space derivatives of n, a, and Co are small. 

In the present reformulation some formal features, especially those connected 
with the tensor character of the solutions, are brought out in clearer relief. Being 
a reformulation it cannot resolve any important fundamental difficulties. However, 
it may be noted that the Chapman-Enskog procedure does not appear to be very 
convenient for demonstrating the existence of different "time scales" for relaxation. 
The ideas about "contraction of description of the system" seem to be mere verbal 
accompaniments of the mathematical scheme, although they are perhaps useful in 
its physical interpretation. A proper clarification can come only by considering the 
original Boltzmann equation in some other way. 

IV. GAS MIXTURES 

(a) First and Second Approximations: Formal Structure 

The Boltzmann equation for the distribution function of the ith component 
is written as 

~di = - 2. JUdj)· 
j 

By using the expansion (32) for all functions Ji one gets 

(172) 

2. nt{v3 I Di I va) tr(V;)(ai) = - 2. 2. ni nj (cQV3 I Jij I ajV2, aiVl) tr(V2 )(aj) tr(Vl)(ai), 

,,~ V'V2 j (173) 

where 

(aiV3 I Jij I ajV2, aivl) = f </>(v3 )(ai Cil [.p[V2l(aj Cj ) .p[vtl(ai Ci ) 

- </>[v2l(aj Ci) .p[v,l(ai Gi) ] dmij. (174) 
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Equation (173) can be linearized by substituting the form (36) for (5'(<Xi). In the 
first approximation it is required that 

~ ~ (<XiVa I Jij I <XjV2, <XiVl) 0(5'(v2 )(<Xj) 0(5'(v,)(<Xi) = O. 
VlV2 j 

(175) 

Since (<XiO I Jij I <XjV2, <XiVl) = 0, (176) 

it follows, exactly as in Section III(c), that 

0(5'(V)(<Xj) = 8o,,,. (177) 

Although the right-hand side contains no reference to the indexj it is nonetheless 
present in the manner in which 1 was expanded. As explained in Section II(b)(i), of 
the five parameters needed to specify the expansion of I} only n} and <Xj bear the 
species index while Co is common to all species. The requirement of common tempera­
ture and local mass-average velocity Co imposes the condition (41) and (46) on the 
coefficients. 

As before we obtain the linearized equations for the second approximation 

(val Di 10) = - ~ ~ nj[(<Xival Jij I <XjVI, <XiO) l(5'(v')(<Xj) 
"1 1 

+ (<Xiva I Jij I <x}0, <XiVl) 1 (5'(v,) (<Xi)] . (178) 

Matrices on both sides can be calculated using the methods of previous sections. 
Following the work of Section III(b) it is seen that both matrices on the right-hand 
side give a factor 8131 , 8m3m1 and consequently break up in blocks characterized by 
values of land m, much as in Figure 2, with the exception that now only one row and 
one column has vanishing elements corresponding to (176). On the left-hand side there 
would now be more terms than in (154), because the conservation equations are no 
longer as simply related to these terms as in the case of the simple gas. However, 
as before, the terms separate in tensors characterized by (l,m), and therefore equation 
(178) breaks up into a number of tensorial equations analogous to equations (156)­
(158). The chief difference between these equations and those for the simple gas 
arises from the fact that (178) is a matrix not only with respect to the indices v but 
also with respect to the indices i and j denoting the species. In order to solve for 
(5'(<Xi) the matrices have to be inverted with respect to both indices. As for the simple 
gas this can be done for each block. The process can be schematically indicated as 
follows. Each tensorial equation of (178) can be written in the form (O'(vl)(<Xk) = (5'k(vl») 

d(l)(vk) = ~ f1pk,p'k' (5'k(vl) , 
v'k' 

(179) 

where the definitions of the relevant quantities can be extracted from (178). Then 
the solution is 

(5' k(vl) = ~ (fl)-lpk P' k' d (l)(v'k') . 
v' ,k' ' 

(180) 

The transport coefficients are obtained by picking out the coefficients of 
appropriate flux quantities on the right-hand side. 
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(i) OOnlJervation Equa,tionlJ 

From (173) and (176) we have 

I: (0 I Df I VI) lJ,(lI') == 0 . 
11' 

From (140)-(142) and Appendix m this gives 

N, + CZfCo·';v. + ~3 [1'(0) + ~3 L (.;Vpl", - .fIIPl", + CZf-1 c;£!l"')lJ(Ol)", 

'" 
== Nf + CZfCo·.iV, + ~3 ,9'(0) + .j3 b · {n'if(Ol)} = O. (181) 

nt OCt 

This is the usual equation of conservation of the number of molecules for each species. 
The equation for conservation of mass for the mixture as a whole is obtained by 
performing the mass average of the above equation and using the condition (46) on 
lJ(Ol)",(i) : 

L n, OCt lJ(Ol)",(i) = O. 
f 

(46) 

Other conservation equa.tions can be written down following the equations in 
Section 8.1 of Chapman and Cowling. 

(b) Structure oj (v I Of 10) and tke Role oj Subsidiary OonditionIJ 

In calculating the left-hand side of (178) by (140)-(142) and Appendix III, 
the first approximation to the conservation equation (181) maybe used to simplify 
the expression for use in developing the second approximation. The result is . 

(vlm I D, 1000) = 8,1810 8",0.J6{Af + CZf Co • .4, - (1/.J3) .9"(0)} 

+ 8,0 8u[ .;V,(l)", - 2 d,(l)", + S,(l)", + tti',(1)", - OCtFt(l)~] 

+ 8'1 8U.JlOd,(1)", 

+8,08'2.J2 .9"(2)",. , (182) 

For the simple gas the first and second terms vanished because of the conservation 
equation. In the present case this does not happen, but the existence of the conser­
vation equations implies that the quantities occurring in these terms are not linearly 
independent. Hence, the solutions (180) obtained from these will also not be linearly 
independent. Such a lack of linear independence is also required by the subsidiary 
conditions (equations (38), (41), and (46» which the solutions must satisfy. As in 
the treatments based upon the integral equations the number of linear relations 
between the quantities in (182), which arise from conservation equations, is exactly 
balanced by the number ofsubsidiary conditions «38), (41), and (46» which the solu­
tion is re<luired to satisfy. This balancing of constraints can be achieved within the 
framework of any polynomial expansion that requires at least five parameters for 
its full specification.' The special choice of polynomials here employed has the addi­
tional advantage of simplifying the calculation of the collision .term. 
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(c) Transport Ooefficients: Example of Binary Mixtures 

The formulation of the previous subsections is suitable for showing the symmetry 
properties of the solutions and therefore of the fluxes and the associated transport 
coefficients. In actual computation of these coefficients it is necessary to keep clearly 
separated the two matrix inversion problems, namely, inversion in the indices 
(i,j) referring to the species and the indices v,v' referring to the polynomial system. 
This can be done in various ways. Perhaps the most practical method would be 
first to invert the matrices on the indices v by truncating them to the desired order 
and then to invert them with respect to indices of species. 

As an illustration consider the vector part of the first-order equation for a 
binary mixture. On introducing various straightforward abbreviations we obtain 
from (178) and (182) 

where 

Hence, 

{d1} = [J1]{(h} + [h2]{(~2}' 

{ d 2} = [J 2]{(Y2} + [J 2l]{(h}' 

d, = dj(l) avo + .#,(1) (ylO av1 - 2 avo) . 

(183) 

(184) 

(185) 

{(h} = [[h]-l [h] - [h2]-1 [J 21J]-1 [[J2]-1 {d1} - [h2]-1 {d 2}] . (186) 

There is a similar equation for lY2. The quantities in the square brackets are 
square matrices with respect to v, and the superscript -1 represents the corresponding 
inverse. 

The coefficients of diffusion and thermal diffusion are obtained by separating 
the parts depending on di(l) and slP) in (186) and using the basic definitions of 
these coefficients. The discussion of the linear relations between {d 1} and {d 2} and 
between the diffusion constants follows exactly as in the usual theory by making 
verbal changes appropriate to the present notation. 

v. CONCLUDING REMARKS 

The chief purpose of the present paper has been to demonstrate that the 
calculations in kinetic "theory can be simplified in some respects by using certain 
algebraic devices. The example of the Chapman-Enskog method was chosen because 
it is the most familiar and, from the point of view of transport theory, the most 
useful. It was possible to reformulate this method in such a way that it can be 
understood simply in terms of the usual matrix operations and the algebra of irreduc­
ible tensors. In particular, the theorems on integral equations are not required, and 
the conservation, compatibility, and subsidiary conditions can be understood in a 
more direct manner. 

Further, the tensorial properties are also expressed more clearly. At the level 
of the lowest-order calculations of viscosity and diffusion this advantage may 
appear only marginal, but the difference will be seen if calculations involving matrices 
or tensors of higher orders are contemplated. The main point is that in the Cartesian 
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notation, on going to a higher-order tensorial equation, a fresh investigation of the 
symmetries has to be made and the notation augmented to represent new tensors, 
whereas with the irreducible tensors in spherical polar coordinates no such changes 
are required, tensors of any order being characterized by only two indices. Trans­
formations between Cartesian and spherical tensors of arbitrary order were con­
sidered by Kumar (1966a). With the help of that analysis higher-order tensors based 
on differentials of n, oc, and Co may be calculated to extend the work of Section 
II(c)(i). 

With respect to the collision term also, it is possible that some method specially 
designed for a particular lower-order calculation might be as efficient as ours, or 
perhaps even more so, but the advantage of our method is seen in that no change of 
technique is required in going from order to order. The collision integral has been 
resolved into parts that can be calculated separately and then put together with the 
help of a small number of rules. 

For generalization in a different direction it may be noted that a non-spherical 
potential can be accommodated by changing V~p' to V v,v' and replacing v'lm in the 
appropriate Talmi coefficient by v'l'm'. The present form of the collision integral also 
suggests a generalization to accommodate certain types of three-body interactions, 
but the advantages to be gained from such a generalization are still not clear to us and 
therefore it has not been presented here. 

The Boltzmann equation is complicated because of the interplay of its tensor 
parts and because of its nonlinearity. One ofthe ways of understanding the associated 

. problems is to construct model equations that are easier to solve and in which one or 
the other characteristic of the equation is emphasized. The present reformulation 
could perhaps provide some further scope to such model making inasmuch as it provides 
a new perspective in terms of irreducible tensors and matrices. The polynomia.l 
expansion about the .ocal equilibrium may be looked upon as a description of the 
distribution function in a function space with moving coordinates. The movement 
of the coordinates is governed in this theory by physical phenomena taking place in 
the velocity space on which the basic functions, the basic vectors of the function 
space, are defined. 

When linearized in a different way the Boltzmann equation yields an equation 
very similar to the equations of quantum mechanics. One can then write down 
formal solutions of the linearized equation by analogy. The rules of interpretation 
in the two theories are, of course, very different. In particular, there is no counterpa.rt 
of the moving coordinates of the function space in quantum mechanics. This is only 
to be expected because kinetic theory has the more detailed structure. 
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APPENDIX I 

The Coefficients of the Talmi Transformation (Equation (29)) 

As indicated in the Introduction, these coefficients arose out of studies on the 
harmonic oscillator shell model of nuclear physics, where many of the properties 
were established in terms of the quantum mechanical conservation laws of energy 
and angular momentum. This interpretation is, of course, not applicable in kinetic 
theory, but the relations between the indices still hold. 

An introduction to the use of these transformations in kinetic theory and an 
algebraic derivation of the elementary properties have been given elsewhere (Kumar 
1966a). The correspondence between the nuclear physics terminology and kinetic 
theory requirements has also been indicated in that paper. General formulae for the 
Talmi coefficients have been given by Smirnov (1961) and Kumar (1966b). 

We list, without derivation, the properties needed for the purposes of the 
present paper following the earlier work (Kumar 1966a, 1966b). 

By multiplying equation (29) by 

w(r, G) w(y, g) c,b(N)(rG) c,b(v) (yg) 

and integrating over G and g we get from the orthogonality of c,b's 

T((r) NLM 1(0.:1) Vlhml) = I w(I', G) w(y, g) c,b(NL)M(I'G) c,b(vl)m(yg) 

(y) vlm (0.:2) V2l2m2 

x c,b[Vj1tlmj(0.:1 Cl) c,b[v21,1m2(0.:2C2) dGdg. (AI) 

The integral remains unchanged under a uniform change of scale of Cl and C2, so 
that the coefficient depends only on the mass ratio 0.:1/0.:2 - (ml/m2)! and is indepen­
dent of temperature. For the case in which the two masses are equal (Talmi 1952; 
Thieberger 1957; Ford and Konopinski 1958; Brody 1959; Moshinsky 1959; 
Balashov and Eltekov 1960; Brody, Jacob, and Moshinsky 1960; Brody and 
Moshinsky 1960; Moshinsky and Brody 1960; Arima and Terasawa 1960; Lawson 
and Goeppert-Mayer 1960; Kaufman and Noak 1965) the coefficient is completely 
independent of mass. This is the case most often studied in nuclear physics, where 
it is convenient to express the coefficient in the form (r = y-l = ,.J2) 

T(rN, yv 11 VI, 1 V2) 

= L (lm LM I Aft) (Aft Iltmll2m2) jlj+i,-l-L <vl, NL, A I vllt, V2l2, A). (A2) .. 
The quantities in angular brackets, called simply the bracket expressions, have been 
tabulated by Brody and Moshinsky (1960). Other related tables were given by 
Balashov and Eltekov (1960) and by Kaufman and Noak (1965). 

The quantities 

c,b[vd(o.:l Cl ) c,b[v21(0.:2 C2) + c,b[Vd(0.:2 C2) c,b[v21(0.:1 Cl ) and c,b[Nl( rG) 
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remain unchanged by an interchange of particles C1 +-+ C2, 0:1 +-+ 0:2, but the relative 
velocity changes sign, g ---+ -g. Hence, 

.p[vl(yg) ---+ (_ )I.p[vl(yg) . 

Therefore, by (AI), if 

[ ] = [T(rN,yv \ vt,v2)+T(rN,yv \ V2,V1)], 

then 
[ ] = (_)1 [ ]. (A3) 

Thus, the symmetric sum vanishes unless I is even (Talmi 1952). 

The chief reason for the usefulness of the coefficients is that by virtue of the 
properties ofthe polynomials only a small set of indices is connected by nonvanishing 
coefficients. The coefficient always vanishes unless the following relations are satisfied: 

(i) m1+m2 = M+m; 

(ii) (- )/1+12 = (_ )L+I ; 

(iii) (It +12) ;;:, A ;;:, \It -l2\' and (L+l) ;;:, A ;;:, \L-l\ ; 

(iv) 2V1 +It +2v2+12 = 2v+l+2N +L. 

The general formula is (Kumar 1966b) 

T((r) NLM I (0:1) v1ltm1) 

(y) vIm (0:2) v2l2m2 

= (_ )Vl +v2+v+N II ~ lL(O:l)!<Pl +P2+P+P) 

N y,/ , NV2/2NviN NL r 

"'[ I" P"+p' - - - - 2 X L... (-) (0:2/0:1) [Nv'I' Nv"I"N N'L,N N"L"] 

where 

(
l' l" l) 

X a(l'L'lt) a(I"L"12) a(l'l"l) a(L' L~ L) X L' L" L 

It l2 A 

X (1m LM I AfL) (AfL Il1mt, 12m2)] , 

27T3/ 2 

N;I = N;I/(v!)2 = r(v+l) r(v+l+i)' 

l I l ) - ./, +12-/3 lll2 (ltO l20 i l30) , 
a( 1 2 3 - 1 l3 (47T)1 

l = (21+1)*, 

(A4) 

(A5) 

(A6) 

(A7) 

(AS) 

(A9) 

(AlO) 

(All) 

and the X( ) is the so-called 9-j symbol of the theory of angular momentum (Edmonds 
1957; Fano and Racah 1959; Brink and Satchler 1962). The other bracket symbols 
are the Wigner coefficients defined in Section II(a)(ii). The sum in (AS) is over all 
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allowed values of the dashed quantities, e.g. L", 1' , etc. and A. There is no sum over 
fL since fL = ml +m2 = m+M. The restrictions on the values that the variable 
indices l' etc. can take are imposed by the properties of the Wigner coefficients 
contained in the a'S. In addition the following equations are to be satisfied: 

P'+p' =Pl, 

P'+P" =P, 

P"+p" = P2, ) 

p'+p" =p. 
(A12) 

The P's are defined inall cases following the pattern of 2v+1 = p. The equations 
(A12) determine three out of the four quantities v', v", N ' , N". 

The formula simplifies enormously when one set of indices vanishes: 

T(fN,yv I al VI, a20) 

= (477)T (_ )N+HP1 N ;LNpz (a1)P+P (a2)P 
v, /, f al 

a(lLh) (1m LM I hml) . (A13) 

Further, 

I al ' ( )
P-P 

T(rN, yv I alVl, a20) = (-) a2 T(fN, yv I a10, a2Vl) . (A14) 

From the orthogonality of the Wigner coefficients 

m;M (1m LM [ lrml) (1m LM [ lsm3) = 81113m, 8Z,/" 

we have, for N' = N'LM, v' = v'1m, 

~ T(fN, yv I alVl, a20) T(rN/, yv' I alVS, a20) 
M,m 

= 8Z1 8 (_)N+V+N'+P'+V1+P3NNLNpINN'L,Nv'! 
31 m3 m1 

N p, Z, N'3 Z, 

( )
P+P'+P+P' ( )P+P' 

X al a2 a2(lLh). 
f al 

(A15) 

Similarly, the sum 

~ T(fN, yv [ alVl, a20)T(fN/, yv' [ a10, a2Va) 
M,m 

is proportional to 8Z,Z3 8m, m3 • 

ApPENDIX II 

The Integrals Involving the Intermolecular Interaction and Their Relation to thi!, Usual 
Integrals of Kinetic Theory 

In the collision integrals discussed in Sections II(d) and III(b) the effect of the 
intermolecular interaction appears through the term V;v" which is an integral involv­
ing the function az(g) (equations (86), (77), and (78)) 

az(g) = 277 f a(g,x)Pz(cosX) d(cosX)' (78) 
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The quantity a(g, X) is the differential cross section for scattering of particles of 
relative velocity of magnitude g when the angle between the initial and final velocities 
is X. This form arises from the spherical symmetry of the intermolecular potential. 
If this were not the case then it would be necessary to describe the orientation of the 
plane of initial and final relative velocities with respect to the plane containing the 
intrinsic directions of the molecules. Then the differential cross section would be 
a(g, X, €) and would have to be expanded in terms of spherical harmonics of X and € 
rather than the Legendre polynomials of x. No special change of point of view is 
needed to accommodate that case, hence it is sufficient to confine ourselves to the 
case of spherical symmetry. 

According to Waldmann (1960, Sec. 26), 

1 I dbl a(g, X) = -. - bd- , 
smX X 

(A16) 

where b is the impact parameter. Hence, 

az(g) = 27T 100 
Pz(cosx) bdb. (A17) 

In this expression X is to be substituted as a function of g and b from the 
well-known relation 

IS. ( 2<D )-1 
t(7T-X) = Jo 1 - i - ml ds, (A1S) 

where <D is the intermolecular potential, and the upper limit of the integration, s*, 
is obtained from the equation 

1 - S*2 _ 2<D(b(:*) = O. 
my 

(AI9) 

In usual kinetic theory one uses the function (Waldmann 1960, equation (50.S)) 

Q(l) = 27T 100 
(1- coslX) bdb 

and the integral (equation (50.5) of Waldmann 1960) 

n(Z,s) = _1_ roo e-x2x2S+3Q(l)(~2x(y)dx, 
1'(27T)t Jo 

(A20) 

(A21) 

where 1'-2 = oc12+oc22 and ..J2x = 1'g. The quantities Q<l,s) are the same as Q<l)(s) 
of Chapman and Cowling (1939, 1952, p. 157). If 

"';. z p;.(cosX) = ~ az cos X, 
z 

then, by (AI7) and (A20), 

;. 

ao(g) -a ;.(g) = ~ at Q(Z) (g) . 
Z 

~az;'= 1, 
z 

(A22) 

(A23) 
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In terms of the variable x, equation (86) becomes 

;. ~2 J 3 Vpp' = Y w(x)Rp;.(~2x)Rp';.(~2x){ao(~2x/y) - a;.(~2x/y)}x dx, (A24) 

with w(x) = 7T-3/2 exp(-x2). 

Now, {w(x)}!Rv;.(,J2x) is the same as the radial part of a harmonic oscillator 
wavefunction, hence, by expanding these according to Brody, Jacob, and Moshinsky 
(1960) and Brody and Moshinsky (1960), the integral may be expressed as 

V:v' = (~2/y) 2: B(v/l., v' /1.,8) If , (A25) 
s 

with 

Is = . -x 2s+3 ;. 2 100 
2 

r(8+i) 0 e x (ao-a;.) dx (A26) 

2y(27T)t i:. ;. ,.,.(l,s) 
r(8+i) I al ~~ . (A27) 

The coefficients a/ are standard, while the coefficients B(vl, v'l', 8) were intro­
duced in the work of Moshinsky (1959) and of Brody, Jacob, and Moshinsky (1960) 
and have since been tabulated (Brody and Moshinsky 1960). These formulae are 
given only to show the relationship; it is not suggested that it is necessary to evaluate 
the integrals in the form O(l,s). With a machine program it may be just as con­
venient to evaluate (AI7) and (A24) directly. 

The integrals Q (1,8) and I: are of the same type. In nuclear physics literature 
the latter are known as Talmi integrals. 

ApPENDIX III 

Evaluation of the Reduced Integral8 

The reduced integrals occurring in equations (140)-(142) are defined according 
to the Wigner-Eckart theorem (11) 

f iJJ(rx, 0) 4>(vl)m(rxC) YPJf.!4>[v'I'lm'(rxC) dC = (lm Il'm' /l.p,) (vlll Y[Al II II'l'). (A28) 

According to (12), the left-hand side is the coefficient of 

X[vl(a) x(v')(b) 

in the integral 

f iJJ(rx, 0) G(a, rxC/.j2) Y[Alf.! G(b, rxC/.j2) dC, (A29) 

where we have set 

x(v)(a) = Npl X(v)(a) = (_)V N pl a2v+l ID(I)m(a) . (A30) 
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The notation here is chosen so as not to conflict with that in an earlier work (Kumar 
1966b)_ The coefficient it"z was defined in (A9)_ 

The operators 9"[AJI' we need to integrate are 

IX 0[1]1'; K[l]1' = IXO[lJI' -(IJIX)Oa[l]l'; IX 0[1] I' W[O]; 

W[AJI' = ~ (AI-' Ilv II-'-v) IX 0[1]" K[1]1'_' , (A = 0, I, 2)_ 

Since, further, 

W(IX, 0) = (IXZJ27T)3/Z exp( -iIX202), 

the integrals (A28) and (A29) are seen to be independent of IX, which may therefore 
be chosen equal to "';2 in order to simplify the expressions of all quantities involved_ 
Thus, we have 

w("';2,0) == w(O) = 7T-3/2exp(-OZ), 

IX 0[1]1' = "';20[1]1" K[1]1' = "';2 (0[1]1' - iOC[l]I')' 

W[.\]I' = 2 ~ (AI-' Ilv II-'-v) 0[1]" (0[1]1'-" - ioC[l]I'-") ' 

and (A29) becomes 

I 2 2 2 
I(.r[ A] 1') = 7T -3/2 e -C -a +Za-C 9"[ A] I' e -b +2b-C dC _ 

Consider first the integral 

I(C) = 7T -3/2 I Cexp{-02-a2:"-'b2+2(a+b)-C} dC 

_ -3/2 2a-b IC -(C-a-b)' dC -7T e e , 

or, after shifting the origin and integrating, 

I(C) = (a+ b) eZa-b _ 

From (A32) 

K[1]1' G(b, C) = "';2 (0[1]1' - b[1]I') G(b, C) _ 

The integration can be done as for (A35) 

I(K[l]l') = "';2 a[l]1 eZa-b _ 

Similarly, from (A33), 

I(W[A]I') = 27T-3/ 2 ~ (AI-' Ilv II-'-v)exp(2a-b) 
" 

(A31) 

(A32) 

(A33)t 

(A34) , 

(A35) 

(A36) 

x f ( 0[1]" + a[l]" + bll]I')( 0[1]1'_" + a[l]I'_") e-C' dC _ (A37) 

t Note that the v used inside the Wigner coefficients is a different type of index from the 
v used in ",lv/]m or in (viii S-[A] II v'l')_ 
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The terms linear in C in the coefficient of the exponential vanish on integration. The 
terms independent of C have the factor f exp 0 2 dC = 7T3/ 2. The terms bilinear in 
C vanish unless fL = 0, since 

J O[ll/l O[llv e-c2 dC = (- )l-v br3/ 2 0/l.-v, 

so that 

I(W[Al/l) = 2 ~ (AfL 11v 1 fL-V) [(a[llv + Wlv)a[ll/l_ V + l(_)1-vo/lo]e2a.b. (A38) 
v . 

Since ~3 W[Ol = (a20 2 - C'lIc), 

~3 W[Ol G(b, C) = (202 - 2C· b) G(b, C) = lib' C G(b, C) . (A39) 

On substituting in (A34) for Oi W[Ol the differentiation with respect to b may be 
performed after the integration. Therefore, 

~3I(Oi W[Ol) = 7T-3/ 211b' f (C+a+b)(Ot+ai+bt)e-c2+2a.b dC. 

Using the relation 

J Oi OJ e-c2 dC = !7T3/20ij 

we get 

~3I(Oi W[Ol) = [ai+(ai+bi){4 + 2a· (a+b)}] e2a .b , 

which may be put in the required form 

I( ~2 O[ll/l W[Ol) 

= ~~ [a[ll/l e2a.b + {(4+2a2+8/8,8) (a[l l/l + Wl/l) e2a.bP}P~l]. (A40) 

The main part of this calculation is in the picking out of appropriate coefficients 
to find the reduced integral of (A28). Here we need the algebra of the quantum 
mechanical angular momentum theory (Edmonds 1957; Rose 1957; Fano and Racah 
1959; Brink and Satchler 1962). 

We require the relation 

e2a.b = ~ R;l (ab)2V+l III [llmial III (1) m(b) (A41) 
vlm 

and the coupling rule for spherical harmonics in the form 

a[ll/l Ill [llm(a) = a ~ a(lll') (lm IfL Il'm') Ill[l'lm,(a), (A42) 
l' 

where 

a(lll') = (l'O 10 IlO)i(l-l'+3) . 
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With these the left-hand side of (A36) becomes 

~2 ~ N;'I,a2P'+I'+1 b2P'+I' a(l'lt) (l'm' 1 p. I lm) ID lI1m(a) ID(I') m,(b) . 
.,,'l'm',l 

Using (A30) the coefficient of Xlv1(a) X(v')(b) can be picked up, which by comparing 
with (A28) gives 

(vl II Kl11 II v't') = (-(+'1' a(l'1l)~2 8p'+1,p N~'I'. 
NI'l 

(A43) 

As in Appendix I, the symbols p are formed after the pattern of p = 2v+l. In 
calculation with (A35) the same process is repeated with due account taken of the 
relation (5) between the standard and contrastandard tensors. The result is 

(vlll 0(0l11 II v'l') = (-(+'1' a(l'1l)~2(8p'+1'p N,::'l' + 8p'-1'P~pI). (A44) 
NI'l Np'l' 

In (A40) the first term is the same as in (A36), and the tensor part of its second 
term is the same as in (A35). Since the variable f3 is scalar, the tensor separation can 
be carried out as for (A44), and then the operator (4+2a2+8f8f3) can be taken into 
account. The result is 

(vlll O(dl1 Wl01 II v'l') 

[ Np'l' 
= (- (+P ~i a(l'll) {28p'+3,P + (p' +5) 8p'+1,p} Npl 

-2 - ] Np-ll, Nvl 
+ 28p'+1,p , + (p +3) 8p'-I,p --- . 

NvINv'I' Nv'l' 
(A45) 

To evaluate the reduced integral of WlAl consider the successive terms of 
(A38). The tensor part of the first term involves 

~ (Ap. IIv 1 p.-v) a lllv allltt_V IDlI'lm,(a) . 
'II 

By applying (A42) successively this becomes 

a2 ~ a(l'll") a(l"ll) (Ap. 11v 1 p.-v) (l'm' Iv Il"m") (l"m" 1 p.-v Ilm) IDlllm(a). 
'1',1" ,m" ,1m (A46) 

The sum over v and m" can be performed and the result expressed in terms of the 
6-j symbol W (e.g. equations (11.19) and (10.13) of Fano and Racah (1959)) 

a2 ~ Xl" a(l'll) a(l"ll) W(1 1 A) (l'm' Ap. Ilm) Wlllm(a) . (A47) 
I" ,I l' l l" 

In the second term of (A38) we have 

~ (- )I"-m" (Ap.I Iv Ip.-v) blll'P all1tt_p IDlI"1m,,(a) IDll"l_m"(fi). 
v 
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On applying (A42) this gives 

ab ~ (- /"-m"-l'+m' (AI-' IIv 11-'-11) (l" -m" Iv Il' -m') (l"m" II-'-v Ilm) 
'P,Z,m,Z'm' 

x a(l"ll') a(l"ll) ID[I]m(a) ID(I') m,(b) , 

where the sign of m', all values of which are to be summed over, was taken negative 
in the Wigner coefficient for convenience. On using a symmetry property of the 
Wigner coefficient (e.g. Rose 1957, equation (3.17a)) and noting that m'+v=m" 
and, because of the a factor, l" -l' + 1 is even, we get 

ab ~ (l' /1") a(l"ll') a(l"ll) (AI-' I Iv II-'-v) (i'm' Iv Il"m") 
'P,l,m,l'm' 

x (l"m" II-'-v Ilm) ~[l]m(a) ID(I') m,(b). 

This expression, of course, occurs in the expansion of (A38) in which all indices except 
1, A, and I-' are to be summed over. Therefore, once again a sum over the indices 
m" and v is indicated which gives, as in (A47), 

ab ~ )..t' a(l"ll') a(l"ll) W(1 1 A) (l'm' AI-' Ilm) ID[I]m(a) ID(I') m,(b). (A48) 
l' l" 

By using specific values or the orthogonality property of the Wigner coefficients the 
sum in the third term of (A38) can be shown to reduce as follows: 

~ (AO 11v I-v) (- )l-v = .../30),0' 
p 

(A49) 

In equations (A47), (A48), and (A49) we have reduced the tensor parts of the expansion 
to the desired form; with the help of (A30) the products of X[V](a)X(V')(b) can be 
formed from these tensors and the coefficients collected from (A38) to give 

~2 (vlll W[).] II v'l') 

= ~3 0),0 bpp ' Oil' omm' 

+ (-r +p 2 [ ~ >"1" a(l"ll) a(l'll") W(I 
I" l' 

1 A) 
l" 

{ - -2}] Np'l' Np"l" 
X Op'+2,p N- + Op',p N N ,(A50) 

pI pl pT 

where 

2v"+l"+1 = 2v+l or v" = t(2v+l-l"-I). (A51) 

The sum is over the values of l" allowed by the functions in the summand. 
The condition (A5I) arises from comparing the powers of a; v" would always be an 
integer because l+l" + 1 is required to be even, in view of the properties of a. 
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In evaluating these formulae it is to be noted that the restrictions on p and p' 
imposed by the o-function are to be taken into account first, then the restrictions 
on the l's imposed by the a-functions, and finally those by the W-functions wherever 
they occur. No contribution arises when the values of the indices p, v, l, etc. become 
negative. We recall that the symbols a and N were defined in equations (A42) and 
(A9). For the W-function and specific values of a reference has to be made to books 
on the quantum mechanical angular momentum theory (Rose 1957; Fano and 
Racah 1959; Brink and Satchler 1962). Our choice of phases of 1,D[I]m is different 
from the one used in most books (Condon and Shortley 1953; Edmonds 1957; 
Rose 1957; Brink and Satchler 1962) but leads to more uniform signs in the formulae 
according to the recommendation of Fano and Racah (1959). 

These reduced integrals are not symmetrical in the indices vl and v'l' because 
the operators involve differentiations. In deriving the hydrodynamic equations 
the reduced integrals corresponding to (vl) = (00), (01), and (10) are needed for 
arbitrary (v'l'); and in the second approximation of the Chapman-Enskog procedure 
one needs the reduced integrals for (v'l') = (00) and arbitrary (vl). A list of integrals 
for these special cases, as obtained from equations (A43),. (A44), (A45) and (A50) , 
(A51) is given below. Mr. S. C. Gupta, of our Department, has derived these formulae 
in a different form by the more usual methods of nuclear theory. I am thankful 
to him for checking the present calculations. 

(00 II K[l] II v'l') = 0; (A52) 

(0111 K[l] II v'Z') = 0.'001'0; (A53) 

(10 II K[l] II v'Z') = ,J2 0.'0 on ; (A54) 

(vZII K[l] 1100) = 8.0 8ll ; (A55) 

(00 II ocG[l]II v'l') = ,J38.'081'1; (A56) 

(01 II ocG[l] II v'Z') = 0.'0 81'0 - ,JP.'l 81'0 + ,J¥ 0.'0 81'2 ; (A57) 

(10 II ocG[l] II v'Z') = ,J2 8.'0 On +,J5 8.'18 n ; (A5S) 

(vlll ocG[l] 1100) = 8.0 8ll ; (A59) 

(00 II ocG[l] W[O] II v'l') = 48.'0 8n ; (A60) 

(01 II ocG[l] W[O] II v'l') = If 8.'0 81'0 - ~,J2 OV'l 81'0 + ~,J 10 0.'0 81'2 ; (A61) 

(10 II ocG[l] W[O] II v'Z') = -3,J60.'08 n +2,J158.'18 n ; (A62) 

(vZII ocG[l] W[O] II 00) = /~. 8.0 8ll - ,J¥ 8.1 8ll ; (A63) 

(00 II W[A111 v'Z') = ,J30v'08 1'08.w ; (A64) 

(01 II W[Al II v'Z') = ,J3 8.'0 8n 8;'0 + ( - )A {t(2'\ + 1)}~ 8.'0 8n ; (A65) 

(10 II W[Al II v'Z') = If ().'l ()1'0 0;'0 +,J2 8.'0 01'0 8;'0 - 2,J~ ().'O 81'2 ();'2; (A66) 

(vZII W[A111 00) = ,J3 ().08 1O ();,0-,J2 0.1 ()10();'0 +,J2 ()VO()12 8;'2. (A67) 
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