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AbBtract 

Kirkwood's theory for the friction coefficient in Brownian motion relates 
the transport coefficients to the microscopic properties of a system through the time 
integral of a force autocorrelation function. The expression is useful subject to the 
validity of certain assumptions on the form of the autocorrelation function. These 
restrictions and the predicted diffusion coefficients have been examined using the 
method of molecular dynamics. It is shown that the assumptions are invalid and that 
when Kirkwood's expression is evaluated exactly it gives negative self·diffusion 
coefficients. This leads to the conclusion that the friction coefficient approach to 
transport in simple systems is physically unreasonable and should no longer be used. 

1. INTRODUCTION 

The problem of calculating the transport coefficients of dense classical fluids 
is extremely complex. One of the most widely used approaches is to attempt to relate 
the movement of the particles in the fluid to the theory of Brownian motion. The 
best known of this type of theory is due to Kirkwood (1946). Kirkwood began by 
introducing a "coarse graining" procedure into the Liouville equation for the distri. 
bution function j(N) of N particles. This led to a set of coupled partial differential 
equations for the lower order distribution functions j(n), n ::( N. These equations 
have the same form as the Fokker-Planck equation. A similar procedure led to a 
Langevin equation for the equation of motion of a single particle. By introducing 
the hypothesis that the integral of the force autocorrelation function reaches a 
plateau value Kirkwood (1946) obtained an expression relating the friction coefficient 
to this plateau value. Later Suddaby and Gray (1960), by considering the relations 
implicit in Brownian motion theory, obtained an expression for the friction coefficient 
similar in form to Kirkwood's expression. Under certain conditions the expressions 
are compatible and hence Kirkwood's theory is useful. These conditions, along with 
a general discussion of the friction coefficient are given by Rice and Gray (1965). 

In the present paper the method of molecular dynamics (Rahman 1964) is used 
to test the assumptions implicit in Kirkwood's (1946) theory. Rahman used his 
results to calculate the velocity autocorrelation function and compared this with the 
exponential form predicted by the Langevin equation. In the liquid regime it was 
found that the machine result gave a negative region, which contradicts the 
Langevin result. This was evidence for the conclusion that Kirkwood's theory was 
not exact. However, no test of the range of validity of the assumptions in the friction 
coefficient theory was carried out and it has generally been assumed that the theory 
gives good results (see e.g. Cole 1970). We begin in Section II by outlining the 
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assumptions inherent in the friction coefficient theory. A brief discussion of the 
relation between the friction coefficient and the intermolecular forces is also given. 
The next section gives a short outline of the molecular dynamics calculations, with 
particular emphasis on the accuracy of the calculations. In Section IV the results 
of the study are presented, again with some emphasis on possible sources of error. 
Finally the results are summarized and their implications are discussed. 

II. FRICTION COEFFICIENT THEORY 

Suppose that the force acting upon a particle can be written as the sum of two 
terms, the first term being proportional to the momentum of the particle whilst the 
second term corresponds to a microscopic fluctuating force. Thus we may write 

(1) 

where ~ is the friction coefficient and X, corresponds to the fluctuating force. This 
is a molecular Langevin equation with Pt the momentum of the ith particle along 
a given coordinate. In a centre of mass frame, with conservative forces we have at 
any given time t 

where the angle brackets represent an average over an equilibrium ensemble. The 
autocorrelation function for the fluctuating term is given by 

(2) 

where < )1 denotes an ensemble average with the initial momentum of particle 1 held 
fixed. One of the conditions to be satisfied for Kirkwood's (1946) theory to be valid 
is that ~(T) should be sharply peaked. In particular it should be so sharply peaked 
at T = 0 that the integral 

reaches a value essentially equal to its value when T2 = 00 in a time T1 that is 
sufficiently short to ensure T1 <{ Mg. In practice this means that ~(T) must be 
essentially a S-function. Provided this condition is met, it then follows (Rice and 
-Gray 1965) that 

(3) 
and that 

(4) 

It. can then be shown that the friction coefficient may be calculated from the 
expression 

fTt 

~ = (ljkT) 0 <F(t) F(t+T) dT, (5) 

where the average is now over a full equilibrium ensemble. Equation (5) is Kirkwood's 
(1946) expression for the friction coefficient. Provided the conditions on ~(T) are 
satisfied, Suddaby and Gray (1960) showed that Kirkwood's friction coefficient could 
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be used to calculate the self-diffusion coefficient through Einstein's equation 

D = kTg. (6) 

The most important concept in the friction coefficient theory is the plateau 
time Ti. Other than to state that it should be microscopically long but macroscopically 
short, Kirkwood (1946) gave no prescription for calculating it. The condition 
Ti ~ M/~ gives an upper bound, but this cannot be found unless ~ is known. 
However, we might expect it to be related to the onset of the region of validity of 
the hydrodynamic equations, in which case Ti would be around 10-11 s. If the 
restrictions on cp(T) and Ti are met, then it can be shown (Suddaby and Gray 1960) 
that the force autocorrelation function is given by 

(7) 

During the period T < Ti the function cp(T) is the dominant contributor to the auto­
correlation function. However, cp(T) is supposed to be essentially zero when T ,....., Ti, 

and the exponential term will take over. Thus <F(t)F(t-t-T) will reach a minimum 
value at the plateau time Ti and then rise slowly to zero. As the results should be 
relatively insensitive to Ti to be acceptable, again we would expect Ti to be of the 
order of 10-11 s. 

There exists (in principle) a method of calculating the self-diffusion coefficient 
corresponding to that measured experimentally. This is the linear response theory 
of Green (1952) and Kubo (1959). If we assume that the non-equilibrium distribution 
function can be expanded linearly about its equilibrium value, and define the self­
diffusion coefficient as the coefficient of proportionality when writing the mass flux 
in terms of a chemical potential gradient, then the linear response theory gives 

(8) 

an equation originally derived by Einstein in his theory of Brownian motion. By 
calculating the momentum autocorrelation function and carrying out the required 
integration we can obtain D. If Kirkwood's (1946) theory is valid we would expect 
the D obtained from equation (8) to agree with that obtained from equations (5) and 
(6). In order to determine D from molecular dynamics calculations we need to truncate 
the infinite integral in equation (8) at some time TD. We might expect that if 
Kirkwood's theory is valid Ti ~ TD. This question is examined again in Section IV. 

III. MOLECULAR DYNAMICS CALCULATIONS 

Barker, Fisher, and Watts (1971) have recently given a detailed account of 
calculations of the equilibrium properties of liquid argon. The agreement with 
experimental data was impressive. Their calculations were carried out using Monte 
Carlo and molecular dynamics methods for an accurate pair potential for argon. 
This potential was developed originally by Barker and Pompe (1968) and improved 
by Barker and Bobetic (1970). In the present investigation two of the molecular 
dynamics calculations, one near the critical point and the other near the triple point, 
were used to test Kirkwood's theory. 
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The Barker-Pompe-Bobetic potential for argon consists of an analytic form for 
the pair potential, 

i 2i+6 ( 
L 2 ) 

u(r) = E exp{a(l-r)} i~O Ai(r-l) - i~O C2i+6!(8+r ), 

together with the Axilrod-Teller triplet potential. Details may be found m the 
paper by Barker and Pompe (1968). In the results reported here the pair potential 
was truncated at 2· 5 a, where a is the position of the zero in the potential. It was 
not possible to perform the calculations with the three-body potential included. 

TABLE 1 

REDUCED VARIABLES USED 

MKS equivalents also shown are for the appropriate reduced variable R* = 1 

Reduced variable Real variable MKS equivalent (R* = 1) 

T* T = (€/k)T* l'402xlO2 K 

r* r = vr* 3·367x 10-10 m 

V* v = (€/M)'v* 1·716xlO2 m8-1 

T* T = (M/€)!aT* 1· 96 X 10-12 S 

F* F = (€/a)F* 5·746x 10-12 N 

D* D = (€/M)!aD* 5·778 X 10-8 m 2 8-1 

'* , = {(M€)I/aW 3·379 X 10-14 kg 8-1 

As no satisfactory perturbation theory exists for including such terms no attempt 
was made to include the long-range and three-body terms. Consequently the results 
given here are not strictly applicable to argon, although the self-diffusion coefficients 
are close to the experimental values. However, the truncated potential is at least as 
realistic as the Lennard-Jones potential, for example, and we believe that our 
conclusions are generally valid. In order to facilitate the comparisons, the reduced 
variables given in Table 1 will be used in the rest of this paper. 

The molecular dynamics calculations were similar to those described for the 
Lennard-Jones potential by Rahman (1964) and Verlet (1968). The equations of 
motion were solved for a system of 108 particles in steps of 87* = 0·00506 for about 
5000 time steps. This corresponds to about 5 X 1O-1l s in real time. During this time 
the total momentum of, and force on, the system remained essentially zero. The 
average total energy of the system was constant to about 1 % throughout the run. 
Around 500 time steps were discarded at the beginning of each run to allow the 
system to reach equilibrium. The agreement with the Monte Carlo results reported 
earlier (Barker, Fisher, and Watts 1971) along with the good agreement with experi­
ment indicates that equilibrium had been reached. 

To show the accuracy of the calculations, in Figure 1 we have compared the 
values of P V! NkT and U! NkT obtained from the molecular dynamics with the results 
of the Monte Carlo calculations. The agreement is very satisfactory. It is possible 
that the diffusion coefficient calculation may depend upon the size of the system. 
Calculations for the Barker-Bobetic potential using more than 108 particles have 
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not been performed and consequently we cannot directly test this effect. However, 
Table 2 includes some values of D that we have calculated. For the liquid-state 
point the value of 0·026 has been reported by Levesque and Verlet (1970) for 864 
particles interacting through the Lennard-Jones (12,6) potential. The values are in 
good agreement considering the different potential functions, and so it seems reasonable 
to suppose that any effect due to the number of particles is small. 
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, 
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"- 5·5 , 

100 

T (K) 

IV. RESULTS 

Fig. I.-Comparison of values 
for equation of state and 
internal energy from molecular 
dynamics and Monte Carlo 
calculations. The lines give' 
an indication of the agreement 
obtained. 

If we introduce reduced variables into the equations given in Section II we 
obtain the following results: 
Langevin equation 

F* = dv*/dT* = -~*v* +X*; (9) 
Einstein equation 

~* = T*/D*; (10) 
Kirkwood equation 

(ll) 

The correlation between the initial momentum and the later fluctuating forc~ becomes 

<V*(O)X*(T*)l = <v*(O)X*(T*) = 0, (12) 

while the correlation between the initial fluctuating force and the later momentum 
is given by 

(13) 

In equations (ll )-(13) we have used the fact that the autocorrelation functions depend 
only upon the difference of time to put t = O. Also, as the results given in equations (3) 
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and (4) are independent of the initial momentum PI we have integrated over this 
coordinate to get the second parts of equations (12) and (13). Finally, the Kubo-Green 
equation for the self-diffusion coefficient can be written 

D* = fooo 
<v*(O)v*(T)dT*. (14) 

All the time-correlation functions reported here were obtained by averaging over all 
particles at a large number of initial times. For the critical-point results, T* = 1·131 
and p* = O· 25,270 initial times were used. The triple-point results, where T* = 0·671 
and p* = 0·85, were obtained from 700 initial times. To give some indication of the 
error involved in these averages, the force autocorrelation function for the liquid-state 
point is given after 350 and 700 initial times in Figure 2(a). Also shown is an 
independent calculation using 450 initial times for the same state. It is obvious that 
the results are in very good agreement. Notice that the function vanishes rapidly. 
This point is considered in more detail below. 

Suddaby and Gray (1960) showed that if 4>*(1')* is sufficiently sharp then, in 
reduced units, 

<F*(O)F*(O) = ~*T*ITt. (15) 

In addition this autocorrelation function , will reach a minimum at the plateau time 
Tt, the value of this minimum being - ~*2 T*. We can now obtain the predicted graph 
of <F*(O)F*(T*). From the molecular dynamics calculations we first obtain 
<F*(O)F*(O), and then using the Kubo~Green equation and Einstein's relation we 
can evaluate the macroscopic friction coefficient. Rearranging equation (15) gives 
an estimate of the plateau time Tt. Finally we can write equation (7) in terms of 
reduced variables to give 

(16) 

At times such that 1'* < Tt, the first term in equation (16) is supposed to be dominant. 
This conclusion arises from the assumptions that 4>*(1'*) is sharply peaked and that 
~*Tt ~ 1. 

The curve resulting from equation (16) is also shown in Figure 2(a), together 
with the function 4>*(1'*). The latter function was calculated by using the Kubo-Green 
equation together with the Einstein equation to calculate the friction coefficient. 
After obtaining X*(T*) from equation (9) the autocorrelation function <X*(O)X*(T*) 
was obtained by averaging over all particles and several hundred initial times. 

There are many features of interest in Figure 2(a). Perhaps the most surprising 
is the time scale over which <F*(O)F*(T*) is significant. In comparison with the 
first peak, the function is small beyond 1'* ~ 0·2; in real time units this interval 
corresponds to about 4 X 10-13 s. Remembering that SUddaby and Gray (1960) 
showed the plateau time to be in the region of the minimum, it is obvious that Tt 
is not microscopically long. In fact the minimum occurs after only two or three 
molecular collisions. The next most obvious result is that the predicted autocorrelation 
function, from equation (16), is in very poor agreement with the machine results. 
The friction coefficient used in the calculation was obtained from the self-diffusion 
coefficient through Einstein's equation. Notice that the maximum is very high. 
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For T* = 0·01 it was found that the predicted curve had a value greater than 1200. 
The minimum is far more pronounced than the machine minimum, although it occurs 
at nearly the same time. It is of interest that the minimum of Suddaby and Gray's 
conjectured curve, _~*2 T* = -1605, is very much deeper than that of equation (16). 
However, it occurs at essentially the same time, Tt = 0·18. The function q,*{T*) 
also shown in Figure 2{a) is definitely sharply peaked, but the minimum in this curve 
accounts for nearly all the depth in equation (16). It is not, as was conjectured, 
effectively zero. We can also comment on the restriction ~* Tt ~ 1. If we estimate 
Tt using the self-diffusion coefficient and <F*{O)F*{O) from equation (15) we find 
~* Tt = 8·92. Thus the restriction on Tt necessary for Kirkwood's (1946) theory to 
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Fig. 2.-Comparisons of the 
results for short-time 
behaviour of the force 
autocorrelation function for: 

(a) liquid phase, 

(b) gas phase. 

be valid is not satisfied at all. In fact the supposedly sharply peaked function q,*{T*) 
is dominant at all times greater than about T* = 0·01. We can conclude from this 
that at least in the liquid region the concept of a plateau time, in Kirkwood's sense, 
has no meaning. 

There is one other comparison of interest before leaving the liquid-state 
calculations. We can calculate ~* from the self-diffusion coefficient and Einstein's 
relation, and directly from Kirkwood's equation. The required integrations must be 
truncated at some point. The resulting coefficients as a function of the upper limit 
on the integration, are given in Table 2. It is at once obvious that the Kubo-Einstein 
coefficient is very different from the Kirkwood estimate. In particular the Kirkwood 
estimate is negative and does not appear to have stabilized. As the negative friction 
coefficient leads to a negative self-diffusion coefficient, it is obviously not physical. 
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To test for any evidence of a plateau value in the region of the minimum, the Kirkwood 
friction coefficient is given for three times near the minimum. Although the results 
are all positive they are changing rapidly. We can only conclude that at least in the 
liquid region Kirkwood's theory of the friction coefficient is not valid. 

We continue by examining the Kirkwood (1946) theory at a density correspond­
ing to the critical density of argon. The results are given in Figure 2(b). It is at once 
apparent that the Suddaby-Gray result, equation (16), is in excellent agreement 
with the machine results. The total disagreement found for the liquid state no longer 
exists. However, this agreement is about the only satisfactory observation at this 
density. Again the position of the minimum gives a meaningless plateau time. In 
addition the function </>*(7"*) is not particularly sharply peaked, and is obviously the 
dominant contributor to <F*(O)F*(T*) throughout the complete time of interest. 

TABLE 2 

REDUCED DIFFUSION AND FRICTION COEFFICIENTS 

The friction coefficients from the Kubo-Green theory (';) and the Kirkwood theory ('~) are 
compared as functions of the upper limit T; in the time integration 

. Gas phase Liquid phase 
Tl D* ,~ ,~ D* ,; 'l< 

0·11 2·16 6·65 
0·13 1·78 3·74 
0·16 1·51 1·09 
2·08 0·58 1·95 -0·45 0·019 51·6 -2·04 
3·09 0·60 1'89 -0,53 0·021 48·6 -1·58 
5·02 0·61 1·85 -0,76 0·020 48·9 -2·43 

The Suddaby-Gray estimate for the plateau time, equation (15), gives TI = 0 '0033, 
which is much too small to have any macroscopic interpretation; in fact this is less 
than the time needed for one collision to take place. Also the Suddaby-Gray estimate 
of the value of the minimum, - ~*2 T*, gives -2· 37, which is too small by a factor 
of five or six. The value of ~*T* is 0·0061, which is much less than unity, but as T* 
itself is so short this result is of little interest. Finally, we can compare the Kirkwood 
friction coefficient obtained from equation (11) with that obtained from the Kubo­
Green equation and Einstein's relation. The relevant results are presented in Table 2. 
Again the Kirkwood values are negative and show no real sign of a plateau value 
existing. Integrating out to the minimum in the autocorrelation function gives results 
that are close to the macroscopic results, but as with the liquid state results there is 
no reason to prefer the very short time results over any other. We can only conclude 
that although the gas phase results are better than those for the liquid phase there is 
no evidence to suggest that Kirkwood's theory is valid in this region. 

V. DISCUSSION 

We have seen that the force autocorrelation function approach to the friction 
coefficient is not valid at dense gas and liquid densities. However, this does not imply 
that the macroscopic friction coefficient, connecting diffusion with viscosity, is a 
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meaningless concept. It is well known (see e.g. Edward 1970) that the diffusion 
coefficients and shear viscosities of simple non-electrolytes are quite strongly correlated 
through the Einstein equation and the equation 

T) = const. ~p , (17) 

where p is the density. What must now be questioned is the concept of Brownian 
motion being the dominating influence on transport phenomena in dense fluids. One 
of the most popular theories of transport in simple liquids is due to Rice and Allnatt 
(1961). This theory is essentially an attempt to obtain the friction coefficient from 
Kirkwood's (1946) equation. In this theory the intermolecular potential is assumed 
to consist of a rigid core repulsion superimposed on an arbitrary soft potential. On 
the basis of this separation the forces are treated on two time scales. The hard core 
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Fig. 3.-Long-time behaviour 
of the force autocorrelation 
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phases. 

collisions are treated using the Enskog approach (Chapman and Cowling 1939) and the 
soft potential is dealt with using a quasi-Brownian motion approach. Early work 
on this theory suggested that Rice and Allnatt's approach gave good results for a 
liquid (Rice and Gray 1965). However, despite its modifications this theory represents 
an approximate attempt to evaluate the friction coefficient, and consequently there 
must be some explanation for the apparently good results. The most obvious is that 
the accumulation of errors was such that accidental agreement with experiment 
was obtained. In particular, a hard-sphere modified pair potential was used in 
conjunction with an approximate radial distribution function for that potential 
(Kirkwood, Lewinson, and Alder 1952). When Monte Carlo calculations using the 
pair potential were carried out to test the Rice-Allnatt theory, the agreement with 
experiment was poor, although a positive friction coefficient was found (Collings, 
Watts, and Woolf 1971). In addition it was shown that the pair potential itselfled to 
very poor predictions of the thermodynamic properties of the inert gases. Obviously 
there is room for extensive cancellation of errors here. Given the poor agreement 
between the Rice-Allnatt results for the friction coefficient and the results given here, 
particularly ~ < 0, it would seem that this theory is not as useful as was first 
considered. 

The Kirkwood (1946) approach to a theory of transport is based on the extension 
of hydrodynamic equations to microscopic phenomena. This approach would be 
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acceptable if the fluctuating forces X(t) were small. In fact it would appear that the 
fluctuating terms are at least as important as the strongly repulsive forces caused by 
"hard-core" collisions. These "soft" forces appear to swamp the correlations between 
collisions. This can be seen clearly in Figure 3, where the force autocorrelation 
functions given in Figures 2(a) and 2(b) are shown over a longer time. It is obvious 
that the forces acting on a particle become essentially random within about two 
or three collision times. If the fluctuating terms were small, one would expect the 
autocorrelation function to be of longer range. Notice that the ratio 

<F*(O) F*(O)/<F*(O) F*(T*)min 

is greater for the gas than for the liquid. There is also a small positive peak after the 
minimum on the liquid curve. These observations can be correlated with those of 
Fehder (1969) on the behaviour of a two-dimensional system of disks. He found that 
for quite long times a particle tends to stay in a "cage" formed by its neighbours. 

• 

-0-25 

• • • 

.. Molecular dynamics, liquid 

Langevin, liquid 

• Molecular dynamics, gas 

Langevin, gas 

Fig. 4.-Comparison of results for the velocity autocorrelation function. 

The force autocorrelation function can be interpreted in a similar way. The strong 
negative well would represent the particle reaching the end of its cage, and the small 
positive peak the time at which it returned to the beginning. This effect is not obvious 
in the more dilute gaseous system. 

These effects also show up in the velocity autocorrelation functions given in 
Figure 4. Here the liquid curve shows the negative regions first observed by Rahman 
(1964). These regions would correspond to the particle returning along its cage. 
Also shown in Figure 4 are the Langevin equation results for the autocorrelation 
function 

<V*(O) V*(T*) = T* exp( -T* T* ID*). 

This of course is also the form predicted by Kirkwood's theory. Notice that for the 
gas the agreement with the present results is good. This is to be expected as Suddaby 
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and Gray's (1960) conjectured force autocorrelation function agrees with the present 
results. The Langevin result for the liquid is in poor agreement with the machine 
results, confirming the findings of Rahman (1964). It is of interest that the gas-phase 
results are of much longer range than the liquid-phase result. This is in agreement 
with the much weaker minimum in the gas force autocorrelation function. It would 
appear that, although after a short time the forces are opposed to the initial forces, 
this opposition is not sufficient to reverse the velocity of the particle. 

VI. CONCLUSIONS 

The method of molecular dynamics has been used to examine the friction 
coefficient approach to transport phenomena. It appears that the concept of a 
plateau value for the friction coefficient, as proposed by Kirkwood (1946), is invalid. 
Using the machine results to calculate the plateau time 'Tt from results due to 
Suddaby and Gray (1960), it has been found that 'Tt is less than 2 X 10-13 s, and thus 
it cannot be termed microscopically long. When the friction coefficient is calculated 
by integrating the force autocorrelation function to fairly long times it is found to 
be negative. As this leads to a negative self-diffusion coefficient we conclude that 
Kirkwood's approach is not useful. Finally, after examining the implications of the 
present results for the force and velocity autocorrelation functions, we conclude that 
the behaviour of these functions confirms the findings of Fehder (1969) that particles 
in liquid systems tend to stay in "cages" formed by their neighbours for quite long 
times. 
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