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Abstract 

A T-matrix perturbation method has been used to calculate three-body binding 
energies for two local potentials. The results obtained indicate that the method provides 
one of the most attractive ways of solving by computation the three-body bound state 
problem for realistic interactions. 

1. INTRODUCTION 

One of the many successes of the Faddeev (1961) equations has been a renewal of 
interest in the three-nucleon bound state as a means of investigating the off-shell 
behaviour of the two-body T-matrix (Afnan and Serduke 1973; Hadjimichael and 
Jackson 1972). Although a large number of calculations for the bound three-nucleon 
system have been made with separable potentials (see the review by Mitra 1969), 
the ultimate aim of these investigations has always been to calculate the binding 
energy and wavefunction of the three nucleons with realistic two-body interaction 
potentials such as the Reid (1968) potential. There have been a number of recent 
advances in this direction with the work of Malfliet and Tjon (1970) and Harper 
et al. (1972) on the direct solution of the two-dimensional Faddeev equations and that 
of Levinger's group (Harms 1970; Bhatt et al. 1972) who have used the unitary pole 
approximation. However, the binding energies obtained from these different methods 
and from the variational calculations of Jackson et al. (1971) and Hennell and Delves 
(1972), who used the Reid potential, do not all agree. 

In the present paper, we describe the application of a T-matrix perturbation 
theory to the calculation of the binding energy of the three-nucleon system (Fuda 
1968; Lu 1970; Kowalski and Pieper 1972; Sloan 1972). Our starting point is the 
solution of the Faddeev equations for a unitary pole expansion (hereinafter designated 
UPE) potential (Harms 1970), which is separable. The difference between the actual 
two-body T-matrix and that of the UPE potential is treated as a perturbation. The 
first few terms of the UPE are sufficient to yield a good approximation to the three­
body binding energy and wavefunction. Any attempt to improve the results by 
increasing the number of terms involves an enormous increase in the necessary 
computer time and storage. This is apparent for central potentials from the results of 
Harms (1970) and the situation is even more pronounced in the presence of a tensor 
force (Afnan and Read 1972). The present perturbation approach appears capable of 
yielding very reliable results and has the advantage that it is much faster than methods 
which involve direct inversion of the Faddeev equations. 
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II. TWO-BODY T-MATRIX IN UPE 

In the present section we consider the UPE for a central two-body potential, 
summarizing the results of Harms (1970), and demonstrate that the T-matrix of the 
original local potential can be reproduced if a sufficient number of terms are taken 
in the expansion. Our'aim is to use the UPE to form a separable potential V* (herein­
after, asterisks are used to denote quantities obtained from the UPE) that gives the 
same T-matrix as does the original potential V in the neighbourhood of the bound 
state pole. To accomplish this we start with the homogeneous Lippmann-Schwinger 
equation for the wavefunction 

(1) 

where GoCE) = (Ho-E)-1 and ED is the bound state energy. We assume that 
equation (1) is partial wave expanded and that the channel under consideration has a 
bound state energy ED. (In the ISO channel we choose ED = 0, which is justified by the 
proximity to zero of the energy of the antibound state.) Since Go( - ED) is positive 
definite, we may define Gt = (Ho+Eo)-t in order to rewrite the wavefunction (1) in 
the form 

IcP) = -G'8 VG8IcP), with Il{I) = GtlcP). (2,3) 

The advantage of equation (2) is that it represents a homogeneous integral equation 
with a symmetric kernel K = Gt VG8 and so may be transformed to the eigenvalue 
problem 

(4) 

Since K is Hermitian, the states IcPn> form a complete set of orthonormal functions, 
in terms of which the kernel may be expanded as 

00 00 

K = L IcPn> <cPnIKlcPm> <cPml = L IcPn>Il;1 <cPnl· (5) 
n,m=l n~l 

By introducing a set of states IXn> defined by 

(6) 

that is, the IXn> satisfy the conditions 

(7) 

we obtain from equation (5) that 
00 

V = - L IXn)Il;1 <Xnl· (8) 
n~l 

The UPE potential V* is then formed by truncating the summation (8) after a finite 
number N of terms 

N 

V* = - L IXn)Il;I<Xnl (9) 
n~l 
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and the UPE T-matrix may be written as 

N 

T* = L IXn> [M -l(E)]nm <Xml , (10) 
n,m=l 

where 
(11) 

This truncation turns out to yield a better approximation for the T-matrix than for the 
potential, the explanation being that the bound state pole dominates the behaviour 
of the T-matrix on the negative energy axis and the series (9) reproduces the two-body 
bound state energy and wavefunction exactly for any N. 

TABLE 1 

EXACT AND UPE S-STATE PHASE SHIFTS FOR POTENTIALS (12) AND (13) 

Columns listing UPE phase shifts are labelled by the number of attractive (A) and repulsive (R) terms 

retained in the expansion (9) (for example, 4A + 2R implies that the first four attractive and the first 

two repulsive terms have been used) 

Ecm Phase shift for potential (12) 
(MeV) Exact lA 2A 4A 6A lOA 12A 20A 30A 

12 1·5053 1·3374 1·3882 1·4659 1·4913 1·5015 1·5023 1·5034 1·5053 
24 1·2818 1·0263 1·1377 1·2560 1·2712 1·2721 1·2723 1·2793 1·2818 
48 1·0803 0·7283 0·9422 1·0475 1·0496 1·0656 1·0688 1·0767 1·0803 
72 0·9725 0·5695 0·8493 0·9163 0·9366 0·9616 0·0629 0·9688 0·9725 

104 0·8810 0·4407 0·7660 0·8053 0·8513 0·8636 0·8639 0·8771 0·8810 
152 0·7928 0·3262 0·6718 0·7134 0·7614 0·7688 0·7734 0·7872 0·7928 
176 0·7604 0·2875 0·6325 0·6840 0·7231 0·7377 0·7429 0·7558 0·7602 

Ecm Phase shift for potential (13) 
(MeV) Exact 2A+IR 3A+1R 4A+IR 4A+2R 6A+5R 7A+5R 10A+6:R 16A+8R 

12 1·0997 1·0841 1·0908 1·0943 1·0940 1·0961 1·0977 1·0997 1·0997 
24 0·8370 0·8100 0·8248 0·8315 0·8304 0·8336 0·8357 0·8370 0·8370 
48 0·5501 0·5222 0·5445 0·5513 0·5479 0·5488 0·5492 0·5499 0·5501 
72 0·3730 0·3578 0·3756 0·3784 0·3717 0·3698 0·3700 0·3731 0·3731 

104 0·2083 0·2094 0·2152 0·2152 0·2031 0'2011 0·2043 0·2084 0·2084 
152 0·0358 0·0438 0·0449 0·0506 0·0282 0·0291 0·0345 0·0364 0·0361 
176 -0·0311 -0·0258 -0·0179 -0·0078 -0·0363 -0·0358 -0·0318 -0·0301 -0,0307 

Harms (1970) has shown that, for N ~ 3, T* is a good approximation to the 
T-matrix from the potential V on the negative energy axis. To complement Harm's 
result and at the same time show that for large enough N we can reproduce the T-matrix 
for the potential V, we have made UPE calculations of the s-state phase shifts and 
half-off-shell function (Kowalski 1965; Noyes 1965) for different values of Nand 
compared the results with the exact values obtained from V directly. The comparison 
of the phase shifts at different centre-of-mass energies Ecm is given in Table 1 and of 
the half-off-shell functions at different momenta p for fixed Ecm = 72 MeV is given in 
Table 2. Two potentials were used: a one-term attractive Yukawa potential 

VCr) = - Voexp(-JlT)Jr (12) 

with Vo = 65·246 MeV and Jl = 0·6329 fm- l , which has a single bound state at an 
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energy ED = 2·240 MeV; and the two-term Yukawa potential of Malfliet and Tjon 
(1969) 

(13) 

with VA = 181·5422 MeV, VR = 457·8828 MeV, IlA = 1·55 fm-l, IlR = 3· II fm- l , 

and ED = 0·35 MeV, which was used to test the effect of short-range repulsion on the 
UPE. For potentials with both attraction and repulsion, the eigenvalues An of 
equation (4) can be positive (designated by A) or negative (designated by R) whereas 
for purely attractive potentials all the eigenvalues are positive. The order in which 
the attractive and repulsive terms were added was that of increasing IAnl, so that terms 
with smallest IAnl were included first, this choice being justified by the definition (9) 
of the UPE potential. 

TABLE 2 

EXACT AND UPE S-STATE HALF-OFF-SHELL FUNCTIONS FOR POTENTIALS (12) AND (13) 

The half-off-shell function is given for a centre-of-mass energy Eem = 72 MeV 

p Half-off-shell function for potential (I 2) Half-off-shell function for potential (13) 
(fm- 1 ) Exact lA 3A 12A 30A Exact 2A+IR 6A+5R 16A+8R 

0·0064 0·777 2·173 0·668 0·803 0·777 1·550 1·697 1·539 1·549 
0·1535 0·781 2·136 0·692 0·800 0·781 1·547 1·690 1·540 1·547 
0·4885 0·816 1·851 0·850 0·812 0·817 1·514 1·618 1·526 1·513 
1·007 0·942 1·276 1·021 0·958 0·942 1·292 1·307 1·307 1·291 
2·041 0·786 0·588 0·782 0·797 0·786 0·032 0·129 0·035 0·033 
2·780 0·511 0·369 0·546 0·512 0·511 -0·691 -0·576 -0·688 -0·690 
3·772 0·305 0·221 0·334 0·306 0·305 -0·893 -0·899 -0·900 -0·892 
5·182 0·170 0·125 0·179 0·173 0·170 -0·614 -0·665 -0·615 -0·614 
7·355 0·087 0·064 0·085 0·086 0·087 -0·257 -0·278 -0·263 -0·258 

11·070 0·039 0·029 0·034 0·040 0·039 -0·074 -0·131 -0·078 -0·075 
14·051 0·024 0·018 0·021 0·024 0·024 -0·039 -0·095 -0·037 -0·037 
18·42 0·014 0·011 0·012 0·014 0·014 -0·020 -0·061 -0·016 -0·019 
25·239 0·008 0·006 0·006 0·008 0·008 -0·010 -0·035 -0·010 -0·011 

Tables 1 and 2 show that the agreement is remarkably good in general provided 
N is taken large enough. Together with the results of Harms (1970) at negative energy, 
this leads to the conclusion that, with a suitable choice of N, the UPE can reproduce 
the T-matrix of a local potential. The method has been tested for the Reid potential 
in the ISo and 3S1 - 3D1 channels (Mnan and Read 1972) with comparable success in 
reproducing the on-shell T-matrix. Finally we note that to reproduce the T-matrix 
for the original potential we require N ~ 12. This makes it very difficult to use T* in 
the Faddeev equations because of time and storage problems on present computers. 
However, this problem can be overcome by the use of T-matrix perturbation theory. 

III. T-MATRIX PERTURBATION THEORY 

We now consider the three-body bound state, for which we require the two-body 
T-matrix to be on the negative energy axis where its behaviour is largely determined by 
the two-body bound state pole. Since the UPE with only three terms gives a reasonable 
result for the three-body binding energy, the remaining terms in the expansion may be 
treated by perturbation theory. This overcomes the numerical problem of solving the 
Faddeev equations with a large number of terms. The perturbation is introduced via 
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the truncated potential 
Nt 

V * = L IXn) A,;-1 <Xnl for (14) 
n=1 

where the N of the expansion (9) is taken to be large enough to reproduce the T-matrix 
for the potential V. The Faddeev equations are then solved for the energy and wave­
function of the three-body system by using the T-matrix corresponding to v *, 

Nt 

,*(E) = L IXn) [M- 1(E)]nm <Xml , (15) 
n,m=l 

and treating the difference between the actual T-matrix and ,* by perturbation theory. 
Explicitly the perturbation is 

teE) = T(E) -,*(E) ~ T*(E) -,*(E) , (16) 

the separability of which, as is shown below, constitutes the crucial simplification of 
our method. 

The formalism for such a T-matrix perturbation theory has been presented by 
Fuda (1968) who gives as the first-order correction for three identical particles 

(17) 

where (123) is the permutation operator (Harper et al. 1970), tiEo) is the perturbing 
T-matrix for particles 1 and 2, and Eo is the binding energy for the three-body system 
with ,*. The wavefunction I qJ3) in equation (17) is a solution of the Faddeev equation 
for the bound state 

(18) 

with normalization chosen such that 
3 

<qJlqJ) = 1, where IqJ) = L IqJa)' (19,20) 
",=1 

The advantage of using T* instead of T in equation (16) may be seen on trans­
forming equation (17) to a momentum space representation and considering the case 
of three identical bosons interacting only in relative s-states, wheIlce 

I1E(I) = 12 fffl1(P,Q)t(P,P';Eo-tQ2)I1(P"Q)p2dPP'2dP'4nq2dq, (21) 

where 

I1(P,Q) = 2n fl qJ3(tp+~q,p-tq)d(p.q). (22) 

Since t(p,p'; E) is the difference between two separable terms we can write equation 
(21) as 

(23) 
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where 

(24) 

and 

(25) 

Equation (25) can be reduced to (see Appendix) 

(26) 

where F,ik) is related to the spectator function and Kn1iq, k) is the kernel of the 
integral equation for F,ik). Hence the problem of calculating E(1)(L) is reduced to the 
evaluation of a one-dimensional integral and two sums. The advantages of this 
approach over that of performing the three-dimensional integration are: there are no 
errors in the sums, the integrand is very simple to calculate, and the problem of 
calculating the full off-shell T-matrix for a local potential as a function of energy has 
been avoided. The latter point leads to a considerable saving of time in the numerical 
solution. 

IV. NUMERICAL RESULTS 

To test the perturbation method described in Section Ill, we have examined the 
case of three bosons interacting via an s-wave potential. The reason for choosing this 
simple case is that it enables us to compare our results for different values of Nl in the 
expansion (14) for 1 :( Nl :( N, where N is taken large enough to enable T*(E) to be 
a good approximation to the T-matrix for the local potential. It is worth noting that 
a similar calculation for a realistic potential with Nl = N would require the storage of 
a matrix of dimension 3N times the number of quadratures needed to approximate the 
integral in the Faddeev equations; a matrix larger than 360 x 360 for N = 12. The 
results of the perturbation theory for the binding energy of three bosons interacting 
via potentials (12) and (13) are given in Table 3. In this table, Nl is the number of 
terms in the UPE used to solve the Faddeev equations for zero-order energy while N 
is the number of terms used in representing the T-matrix for the local potential. 

If we consider the results for the one-term attractive Yukawa potential (12), we 
observe that N = 9 is sufficient to reproduce the exact T-matrix as far as the three­
body binding energy is concerned. However, the number of terms used in solving the 
Faddeev equations is very important in determining the accuracy of the results. 
Thus with Nl = 1, the error is about 1 MeV even after using perturbation theory 
because T* -7:* is too large for the second-order perturbation correction to be 
neglected. This is apparent from Tables 1 and 2 for potential (12), where the difference 
between the exact and the Nl = 1 unitary pole approximation (UP A) results is 
large, and from Table 3 for potential (12), where the difference between the 
results for N = 1 and 9 is of the order of 2· 1 MeV. The latter is in contrast with the 
case Nl = 3, where the difference between the results for N = 3 and 9 is about 
0·2 MeV, thereby indicating that the second-order terms are small. It is clear from 
Table 3 that the case Nl > 6 need not be treated since the correction will be less than 
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0·001 MeV. These results show very convincingly that a definite minimum number of 
terms are required for the solution of the Faddeev equations in order to obtain the 
binding energy to a predetermined accuracy. 

We now consider the results in Table 3 for the Malfliet and Tjon (1969) potential 
(13). Using one repulsive term in v*, we present results for an increasing number of 
attractive terms until the required accuracy is obtained. It is clear that two attractive 
terms are sufficient in v* and that the rest may be accurately treated by perturbation 
theory. Also it can be seen that the inclusion of a second repulsive term in v* does not 
change the results and that therefore one repulsive term is sufficient. 

TABLE 3 

UPE THREE-BODY BINDING ENERGIES FOR BOSONS INTERACTING VIA POTENTIALS (12) AND (13) 

The table consists of two 2-dimensional arrays, one for potential (12) and the other for potential (13), 
in which the columns are labelled by N" the number of terms retained in the expansion (14) for v*, 
and the rows are labelled by N, the number of terms retained in the expansion (9) for V*. The diagonal 
elements were obtained by direct inversion of the Faddeev equations while the off-diagonal elements 

were obtained by T-matrix perturbation theory 

Binding energy (MeV) for potential (12) Binding energy (MeV) for potential (13) 
N, N, 

N IA 2A 3A 4A 5A 6A N 2A+IR 3A+ IR 4A+ IR 4A+2R 

IA 21·947 
2A 23·285 24·021 2A+IR 7·491 
3A 23 ·868 24·829 24·886 3A+IR 7'522 7·522 
4A 24·023 24·974 25·037 25·040 4A+IR 7·537 7'537 7'538 
5A 24·065 25·008 25·069 25·072 25·072 5A+IR 7·550 7·551 7' 551 
6A 24·077 25·017 25 ·076 25 ·080 25 ·080 25·080 6A+IR 7'555 7·556 7'556 
7A 24·082 25·021 25·080 25 ·083 25 ·083 25 ·083 4A+2R 7·525 
8A 24·083 25·022 25·080 25·083 25·084 25·084 5A+2R 7·539 
9A 24·085 25·023 25·081 25·084 25·085 25 ·085 6A+2R 7·543 7'543 7·544 7·544 

lOA 24·085 25·023 25·082 25·084 25 ·085 25 ·085 6A+3R 7·540 7'540 7'540 7·540 
llA 24·085 25·023 25·082 25·084 25·085 25 ·085 6A+4R 7·539 7'539 7'539 7·539 
12A 24·085 25 ·023 25·082 25·084 25 ·085 25 ·085 6A+5R 7·538 7·539 7·539 7·539 

From the foregoing discussion we conclude that, although v* with three terms 
does not accurately reproduce the T-matrix for the local potential, the approximation 
is sufficiently good that the difference may be treated by perturbation theory. For 
potentials (12) and (13), it was only necessary to solve the Faddeev equations for a 
three-term UPE in order to calculate the three-body binding energy to within o· 1 %. 
Such accuracy is sufficient to study the dependence of the three-nucleon observables 
on the off-shell behaviour of the two-body T-matrix. On the other hand, if the UPA 
potential (that is, Nl = 1) is used, the difference between the UPA and the actual 
T-matrices may be too large for first-order perturbation theory to be sufficient, as is 
shown by the results in Table 3 for potential (12). 

With the success of our method for the two Yukawa potentials, we are optimistic 
about the inclusion of spin dependence and a tensor force. We have already shown 
(Afnan and Read 1972) that a UPE in the presence of a tensor force has a reasonably 
good convergence. 
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ApPENDIX 

Evaluation of An(q) 

We discuss here the procedure for calculating AnCq), which is defined as 

If we introduce a new integration variable k, where 

k = p-!q, 
then equation (AI) becomes 

AnCq) = f dkXn(lk+!qi)<P3(!k+q,k). 

For an N1-term separable potential we can write 

where Fik) is a solution of the integral equation 

(A2) 

(A3) 

(A4) 
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with M,.v given by equation (11) and K,.v defined by 

K (k k') = f1 d(k k') X,.{lk' +!kl) Xv<lk+-!-k'l) 
,.v , -1' (k2+k,2+k.k'-Eo)· 

(A5) 

On substituting equations (A3) and (A5) in equation (A2) we obtain 

An(q) = - roo dkk2 fl d(k.q) I Xn(I~+t~I)X,.<lq+-!-kI)F,.{k) Jo -1 p=1 (q +k +k.q-Eo) 

(A6) 

The important point to note is that when we solve the three-body bound state problem 
with 't* we obtain F,.{1l = 1, ... , N1) and that part of the kernel Kn,.{q, k) has been 
evaluated. Thus, the evaluation of Aiq) takes very little extra time and the correction 
to the energy is then a one-dimensional integral. 
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