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Abstract 

Baxter's method of solving the eight-vertex model in lattice statistical mechanics is examined from 
an elementary point of view. It is shown that the algebraic operations in the method can be carried 
out without recourse to elliptic functions. These include: construction of certain subspaces invariant 
under the action of the transfer matrix; reduction of the transfer matrix eigenvalue problem to an 
equivalent ice-type problem and construction of certain matrices which commute with the transfer 
matrix and satisfy a functional matrix equation. The problem is examined in a somewhat more 
general context. It is shown that some of the identities which are crucial for constructing invariant 
subspaces no longer hold when the effect of external fields is included. The connection between 
the uniformization theory of algebraic functions and parameterization in terms of elliptic functions 
is pointed out in an appendix. 

1. Introduction 

In lattice statistical mechanics, exact solutions are known only for a small number 
of lattice models. The most important of these is the so-called eight-vertex model 
without external fields, which contains as special cases most other models on a plane 
square lattice. Detailed solutions for this model and the associated problem of a 
one-dimensional Heisenberg chain were given in a series of papers by Baxter (1972a, 
1972b, 1973a, 1973b, 1973c). An importantfeature of Baxter's method is the appearance 
of elliptic functions in terms of which the vertex weights are parameterized. A number 
of algebraic identities among the elliptic functions facilitate the work throughout 
and the study of analytic properties of thermodynamic; quantities is facilitated by 
the known analytic properties of elliptic functions. 

The field of elliptic functions, like the field of the more general automorphic 
functions, is an algebraic function field of degree of transcendence one, i.e. an algebraic 
relation holds between any two members of the function field. In the eight-vertex 
model problem, elliptic functions are introduced to satisfy a basic polynomial relation. 
One can therefore say that all algebraic relations involving elliptic functions in this 
model are controlled by this basic identity. It has a sufficiently simple structure so 
that all these relations can be followed directly, without introducing elliptic functions. 
This is the main observation on which the present paper is based. It will be shown 
that one can construct the subspaces invariant under the action of the transfer matrix 
and reduce the eight-vertex model without fields to a generalized ice-type model 
without introducing elliptic functions. This in effect describes the structure of eigen­
vectors of the transfer matrix. The functional matrix equations for the eigenvalues 
of the transfer matrix are also derived without introducing the elliptic functions. 
In this way the purely algebraic aspects of the problem are dealt with in a more 
direct manner. 



434 Kailash Kumar 

While the above features are sufficient justification for this work, a more general 
remark is also in order: Models in lattice statistical mechanics typically depend 
on a small number of parameters. The algebraic part of the problem is that part 
which is concerned with the transformation of the partition function, by introducing 
a transfer matrix or otherwise, to a form in which its evaluation can be performed 
by solving an eigenvalue type of equation in a small number of variables. Some 
properties of the eigenvalue equation may also be derived by purely algebraic methods. 
Analytic methods are needed only at the stage of solving the final equation and in 
the study of singularities of thermodynamic functions. Known solutions of lattice 
models have been obtained by methods invented to suit particular problems and a 
separation of the algebraic and analytic aspects of the problems has not been attempted. 
As the models become more complicated, however, such a separation becomes 
important, not only to obtain a better understanding of the structure of problems 
already solved but also because it may provide a more systematic point of view 
for attacking other problems. 

While our main concern here is with some algebraic properties of the eight-vertex 
model, we start with a somewhat more general problem and state results for this 
problem where no advantage of brevity or clarity is to be gained by restricting attention 
to the eight-vertex model. In this context it becomes clear that the solution of the 
eight-vertex model for the field~free case has been obtained by a very special device 
which does not work even for the same model in the presence of fields. 

In view of the limited scope of this paper, the model is defined directly in terms 
of its transfer matrix. Its physical interpretation and vertex diagrams are of no 
immediate concern here and are therefore not mentioned. For the eight-vertex 
model these are, of course, available in the papers of Baxter (1972a, 1 972b, 1973a, 
1973b, 1973c). 

2. Transfer Matrix 

(a) Definition 

We consider transfer matrices defined in terms of 16 parameters tab (a, b = 1,2,3,4). 
The eight-vertex model without external fields depends on only four parameters and 
corresponds to the case 

tab = ta (jab' (1) 

where (jab is the Kronecker symbol. With the help of 2 x 2 matrices (Ji, given by 

[0 1] . [0·] [1 0] 
(Jl = 1 ° ' (J2 = i ~l , (J3 = ° -1 ' (J4 [~ ~], (2) 

and Pi' which are copies of (Ji but act independently of them, we define the objects 

• aa -tap t. = t b (J Pb = All (rx,P,A,j1. = 1,2 or i). (3) 

The transfer matrix T is then given by 

T tatpt ta2P2 taN(JN 
AtA2 A2A3 ••• ANAt 

( 
t1 t1 (1) 

== trp t: 0 t:0 ... 0 t: (N terms). (4) 
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Here the dot superscript indicates an object (matrix or vector) referring to cr-type 
2 x 2 matrices and the dot subscript an object referring to p-type matrices. The 
transfer matrix as defined by (4) is a 2N x 2N matrix. It acts on column vectors with 
2N components which may be formed from cross products of N two-component 
vectors 4J~ on which cr matrices act. In the second line of equation (4) there is a cross 
product of cr-type matrices and an ordinary product of p-type matrices on which 
the trace is finally taken. Apart from this clarification of the operations to be per­
formed, the p and cr matrices play no explicit part in the following work. 

(b) Invariance of trace 

If we take p-type nonsingular matrices M'J (J = 1,2, ... , N + 1) such that 

M'N + l = M'l (5) 

and replace t: in the Jth position inside the trace in equation (4) by 

l:J = M.i l t: M'J+l , (6) 

then the trace remains unaltered. Hence the transfer matrix also remains unaltered, 
although this operation introduces some extra parameters in it. By introducing 
suitable choices of the same parameters in the vectors on which the transfer matrix 
acts, it is possible to simplify the action of the transfer matrix on these vectors. 

In general we may write 

M.J = [r~qJ rJ PJ] 
r' ' J rJ 

(7) 

AJ = detM'J = rJr~(qJ-PJ)' (8) 

so that from equation (6) 

[A; B;] 
l:J == • D' ' CJ J 

(9) 

with 
A; = Ai I rJ r;+l(qJ+ l t'l1 +t'12 -PJqJ+ l t'21-PJt'22), (10) 

B; = Ail rJrJ+l(PJ+l (11 +(12 - PJ PJ+I (21 - PJ(22), (11) 

C; = -Ail r~r~+I(qJ+l (11 +(12 -qJqJ+l (21 -QJ(22), (12) 

D; = -Ailr~rJ+l(pJ+lt'l1 +t'12-QJPJ+ 1t'21 -QJ t'22)' (13) 

In equations (10)-(13) dotted quantities are cr-type matrices (see equation (3». It 
is seen that the ratios P J and qJ of elements in columns of M.J determine these matrices, 
apart from the normalization which is determined by the choice of the factors r J and r~. 

It will be convenient to give here another transformation of t:, namely 

[.4; B;] 
t: = M.i';l t:M'J == C; 15; , (14) 
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with 
..4:; = Ji~lrJ+lrJ(qJt"l1 +(12 -PJ+lqJt"21-PJ+ l t"22), (15) 

13; = Ji~lrJ+lr;(PJt"l1 +(12 -PJ+1PJ t"2l -PJ+ l t'22), (16) 

c; = -Ji~l rJ+l rJ(qJ t"l1 +(12 -qJ+l qJ t"2l -qJ+l (22), (17) 

D; = -Ji~lrJ+lr;(PJ(l1 +(12 -qJ+1PJt"2l -qJ+ l t"22). (18) 

The transfer matrix is also unchanged by the replacement t: --+ 1:, if the condition 
(5) is satisfied. 

(c) Action of transfer matrix on vectors 

Let cp; be a two-component vector on which the (J matrices act, 

cp; = [CPlJ] , 
CPu 

(19) 

and consider the action of the transfer matrix T on the cross-product vector 

IjJ = cP~ ® cP; ® ... ® cP~ . (20) 

From now on the superscript (J is omitted from the cross-product symbol where 
it is clear what matrices are referred to. We have 

TIjJ = trp{(t:l CP~)®(l:2 cp;)® ... ®(l:N cp~)}, (21) 

where the quantities in parentheses are the 2 x 2 matrices 

i: cP ° = J 'I' J J 'I' J . [
A" ",0 BO "'0] 

J J C;cp; D;cp; 
(22) 

Hence in general TIjJ is a sum of 2N cross-product vectors of the form (20). This 
number can be reduced to a sum of two such terms if we choose the parameters PJ 
(or qJ) such that one of the corner elements in the matrix (22) vanishes for all J's, say, 

B;cp; = o. 

For this to hold the p/s should be such that 

detB; = 0 

and cp; should be an eigenvector B; belonging to eigenvalue zero, that is, 

[
Bll B12] B O = J J 

J - B2l B22 ' 
J J 

detB; = 0, 

[ 
B}2 ] 

cp; '" -B.P . 

(23) 

(24) 

(25) 

(26) 
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From equation (11), the relation (24) is a polynomial in PI and PJ+l from which 

PJ+l can be obtained as a function of PI. Hence working from a given Pl all other 

p/s can be constructed step by step. At each step a choice of roots is needed. The 

condition (5) can be used to determine Pl or, as is more convenient, it may be looked 

upon as a mild restriction on the values of the parameters tab. More on this point 

later. 
We have thus shown that independently of ql it is always possible to find parameters 

PI and vectors 4J; such that the vector t/I given by equation (20) becomes a sum of 

two direct-product vectors under the action of the transfer matrix. That is, 

Tt/I = ~+1/, (27) 

with 
~ = ~~ 0 ~; 0 ... 0 ~~ , (28) 

1/ = 1/~ 01/; 0 ... 01/~, (29) 

~; = A; 4J;, 1/; = D;4J;. (30) 

In fact, with 
G = C;4J;, (31) 

we have 

Tt/I = tr[~ :], 
(32) 

where 
c = C~ 0 ~; 0 ~; 0 ... 0 ~~ 

+1/~ 0 C; 0~; 0 ... 0 ~~ 

+ 1/ ~ 0 1/; 0 C; 0 ~~ 0 ... 0 ~~ 

+. 

+1/~ 01/; 0 ... 01/~-1 0 ,~. (33) 

This term, of course, disappears upon taking the trace in (32). Nevertheless it is a 

useful form for generating other vectors in the next section. 

3, Eight-vertex Model Without External Fields 

The eight-vertex model without external fields is characterized by the special 

form (1). If we introduce the parameters 

a = 14 + 13 , b = t4 - t 3 , C = /1 + t 2 , d = tl - t 2 , (34) 

the quantities occurring in equations (10)-(13) and (15)-(18) are given by 

(11 = [: ~], t'12 = [~ ~], ('21 = [: ~], t'22 = [~ :]. (35) 
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(a) Polynomial identities 

The basic polynomial relation for this model is (equations (35) and (11» 

PipJ>PJ+1) = detB; 

= ab(pJ+pJ+1)-cd(l+pJpJ+1)-pJPJ+1(a2+b2-c2-d2) = O. (36) 

It gives us the two identities 

PJ -PJ +1 = 0, PJ+2 PJ -PJPJ+1 = 0, (37a, b) 

and if the successive roots are chosen so that 

PJ i= PJ+2' (38) 

these identities respectively imply that 

(PJ+pJ+2)(ab-cdpJ+1)-(a2+b2-c2-d2)PJ+1 = 0, (39a) 

(cd-abpJ+1)+PJPJ+2(ab-cdpJ+1) = O. (39b) 

If the P /s are chosen to satisfy the relations (36) and (38) then 

[ 
d -CPJPJ+1 ] 

4>; = nJ -apJ+1 +bpJ ' 

where nJ is some normalization. 

(40) 

The vector t/t defined by equations (20) and (40) is such that equations (27)-(30) 
hold. Furthermore, for this model 

~; = A;¢; = OJ 4>;-1 , 

11; = n; ¢; = dJ+1 ¢;+1' 
with 

rJLlJ nJ ad -bcpJ 
OJ = . . -- , rJ+l LlJ+1 nJ-1 d -Cpj PJ-1 

d - rJ+1 nJ bd -acPJ+1 
J+1 - r;- nJ+1 d -CPJ+1PJ+2' 

(41) 

(42) 

(43) 

, (44) 

These relations are derived from equations (10), (1I) and (13) using (35) and (40). 
From equations (39) one can verify the identities 

ad -bcpJ 
d -CPJ PJ-1 

bd -acPJ+1 
d -CPJ+1 PJ+2 

(b2 - d2)pJ-(ab - cdpJ)pJ+ 1 

apJ-bpJ-1 

(d2-a2)pJ+1 +(ab-cdpJ+1)PJ 
apJ+2- bpJ+1 

(45) 

(46) 
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(b) Some eigenvectors of the transfer matrix 

Equations (41) and (42) have the important consequence that we can write 

~ = (IT aJ )t/t-l, 11 = (IT dJ+ 1)t/t +1 , (47) 

where t/t -1 is obtained from t/t by replacing <p; by <p; -1 and t/t + 1 is obtained from t/t 
by replacing <p; by <p; + l' 

The periodicity condition (5) can also be satisfied if there is a sub-periodicity 

M'L +1 M·1 , N = JxL. (48) 

where J is an integer. This type of sequence occurs in the work of Baxter (1973a). 
Assume such a sub-periodicity here, and let t/tj be the vector obtained from t/t by 
the replacement <p; --+ <p; + j' in which case 

t/tj+L = t/tj. (49) 

Now, using an Lth root of unity, w, we can form an eigenvector of the transfer 
matrix 

L 

lJI = I wjt/tj' (50) 
j=l 

We have 
TlJI = [w(IT aJ )+w-1(IT dJ+l)]lJI. (51) 

There are an infinite number of such vectors corresponding to the infinite number 
of values of Pl with which we can start to form the set of P J. In addition, different 
choices of w can be made. However, not all of these vectors can be linearly indepen­
dent, and Baxter (1973a, Section 7) has shown that the maximum possible number of 
independent vectors is 2N. At any rate we have exhibited a class of vectors here 
which go over into each other under the action of the transfer matrix. These vectors 
may be said to span a subspace $'0 in the space $' of 2N component vectors on which 
the transfer matrix acts. The subspace $'0 is invariant in the sense 

T$'o ~ $'0' (52) 

(c) Subs paces invariant under action of transfer matrix 

We will now show that the space $' introduced above contains subspaces $'n 
such that 

T$'n ~ $'n, n = 0,1,2, ... ,N. (53) 

The work of the previous subsection is independent of the choice of qJ. We now 
use the invariance property of the transfer matrix associated with equations (l4}-(l8). 
From the relations (35) and (17) we have 

dete; == PiqJ,qJ+l) = 0, (54) 

where PJ is defined by equation (36). Using condition (5), the discussion of the 
previous subsection can be repeated. The set qJ is of the same type as the set PI 
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but qJ =F PI in order that MOJ be nonsingular. In place of c/J; we take a new vector 
1:; which is the eigenvector belonging to the zero eigenvalue of C;. Then 

C;1:; = 0, [ 
d -cqJqJ+l ] 0, , 

1:J = nJ -aqJ+bqJ+1 (55) 

..4:;1:; = 0;1:;_1' .0;1:; = d;1:;+1' (56) 

with 
" bd 2 a' _ rJnJ -acqJ 

J -, 'd ' rJ+1 nJ-1 -cqJqJ-1 
(57) 

d' _ r;+1AJn; ad -bCq;+1 
J - ,,. 'd ' rJDJ+1 nJ+1 -cqJ+1 qJ+2 

(58) 

where identities similar to (45) and (46) have been used in establishing equations 
(56)-(58). 

With the help of the above equations, following the previous arguments we estab­
lish the existence of the subspace iF N in which the vectors are of the form (subscripts 
in decreasing order) 

'" = 1:~ ® 1:~-1 ® ... ® 1:; ® 1:~. (59) 

Other invariant subspaces are obtained by considering cross-product vectors which 
involve both c/J; and 1:;. The construction depends crucially upon the following 
circumstance: Because of the special nature of the matrices t",.p for this model 
(equations (35», we have 

B; = (AJ/AJ+1)(B; -J"traB;), (60) 

c; = (AJ+1/AJ)(C; -J"tra C;) , (61) 

where J" = (14 is the unit matrix. Matrices on the right-hand sides annihilate the eigen­
vectors belonging to the nonzero eigenvalues of B; and C; respectively, and hence 
when acting on any arbitrary vector they respectively produce multiples of c/J; and 
1:;. In particular 

nO 0 b' ,/,0 DJ1:J = J+1 'f'J, (62) 

b' - rJ+1 rJn; (apJ-bpJ+1)(d -cqJqJ+1)-(aqJ-bqJ+1)(d -CPJ PJ+1) 
J+1 - AJ+1 nJ d -CPJ PJ+1 

(63) 

and 

,; = C;c/J; = CJ 1:;, (64) 

CJ = _ r;+1 r;nJ (aqJ+1 -bqJ)(d -CPJ pJ+1)-(apJ+1- bpJ)(d -CqJqJ+1) (65) 
AJn; d -cqJQJ+1 . 



Solution of Eight-vertex Model 

Collecting the various results, 

• • [OJCP;-l 0] l'JcpJ = , 
cJ-r; dJ+l CP;+l 

M • _ [OJ-r;-l 
t.J-rJ - 0 

bJ+ 1 cP; ] 
dJ+ 1 -r;+1 . 

441 

(66) 

(67) 

Now consider the action of the transfer matrix on one of the vectors Cj which 
occur on the right-hand side of equation (33). From the relations (41), (42) and 
(64) the typical form is 

Cj = cP;®cp;® ... ®CPj®-rj®CPj® .. ·®CP~-l' (68) 

In the expression for T Cj we can insert the matrices M.j appropriately so that 
cP; -+ i: cP; and -rj -+ 1: -rj provided the M.J now satisfy the condition 

M'N = M·2 • (69) 

Writing out the trace with matrices (66) and (67) it can be verified that the vectors 
appearing in the diagonal elements are linear combinations of vectors 'j' Thus 

TCj = L ajkCk, (70) 
k 

where ajk are certain coefficients involving scalar quantities. Thus we have a subspace 
fF 1 that is invariant under the action of the transfer matrices. It is characterized by 
the form of vectors (68) in which only one -rj occurs in the cross product, preceded 
and followed by a cPj, and by the condition (69). Interchanging the roles of cPj and 
't" j, taking into account the descending sequence (59) of 't" j, we find the subspace fF N -1' 

In general the vectors in subspace fF" are cross products of n 't" j vectors and N - n 
cPj vectors arranged according to the rule that a 't"j can be followed by a 't"j-l or a 
cPj in the cross product, while a cPj can be followed by a 't"j or a CPj+l' If the M./s are 
chosen so that 

M' l = M'N - 2n+ 1 (71) 
or if 

(Pl,Ql) = (PL+l,QL+1)' with N-2n = fxL, (72) 

f being an integer, it can be verified that under the action of the transfer matrix 
such a vector goes into a linear combination of vectors of the same type. Hence 
equation (53) and the statement at the beginning of this subsection are established. 

(d) Reduction to a generalized ice-type model 

The invariant subspaces of the previous subsection were obtained by Baxter 
(1973b) as families of vectors, by first reducing the problem to an Ising-like form 
and then noting that it satisfied an ice-type condition. The equations were interpreted 
in terms of some new vertex diagrams where the ice-type condition is expressed by 
saying that at each vertex 'there are two arrows pointing into the vertex and two 
arrows pointing out ... Thus the number n of down arrows in a row of vertical bonds 
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is the same for each row of the lattice,' The number n can be identified with the 
subscript n for the subspace fFw We shall not go into the diagrammatic interpretation 
here, 

The main point of Baxter's reduction is that one converts the eigenvalue problem 
of a 2N x 2N transfer matrix to sub-problems in each invariant subspace, where they 
can be further looked upon as (integral-summation) equations for functions defined 
on integers, This is a direct consequence of applying adequate notation to express the 
results of the previous subsection, The notation was introduced by Baxter (1973b), 

Define a two-index symbol cP;,I' for l' = I ± 1 by 

</J; cP;,1+ 1, 
• in· 

TI = 'P1+l,I' (73) 

The cross-product vector ljJ belonging to any of the subspaces of the previous sub­
section is fully specified then by integers Ii (i = 1,2, .. " N + 1) such that 

li+l = Ii ± 1 , (74) 
We have 

ljJ == ljJ(ll, Iz, .. " IN+1) = cP;lh @ cP;2IJ @ .. , @ cP;N ZN+ 1 , (75) 

N 

TljJ(ll' Iz, .. " IN+ 1) = L Il W(mJ mJ+ 1 IIJ IJ+ 1) ljJ(ml' mz, .. " mN+ 1), (76) 
m J=l 

where the summation in (76) is over sets of integers m such that 

mJ = IJ ± 1. (77) 

Each pair (l1,/z) gives rise to a pair (ml' mz) with m1 = 11 ± 1, mz = Iz ± 1. The 
function W is defined for the eight possible values of its arguments by equations (66) 
and (67) (four values each): 

W(I-I, III, 1+ 1) aZ ' 

W (l + 1, III, 1+ 1) = C I , 

W(I,I-IIl+I,/) = a;, 

W(l+2,/-II/+ 1,1) = 0, 

W(l-I, 1+21/, 1+ 1) = 0, 

W(/,I+II/-I,/) 

W(I-I,/I/,I-I) 

W(l+ 1, Ill, 1-1) 

dz , 

C; , 

d;, 

(78a, b) 

(78c,d) 

(78e, f) 

(78g, h) 

The vanishing weights (78b) and (78g) ensure that the vector remains in the same 
subspace, We can make use of this to specify the vector ljJ by giving a smaller set 
of integers, Let Xi (i = 1,2, .. " n) be the positions (integers) where T; occurs in the 
cross product. We have 1 ~ Xl < X z < .. , < xn ~ N, Given the initial value of 
I (II), all other Ii values in equation (75) can be calculated using the Xi and the definitions 
(73), We can therefore use 1 and the set X of the values Xi to specify the vector ljJ 
belonging to the subspace fFn" Equation (76) now takes the form 

N 

TljJ(l,X) = L Il WimYIIX)ljJ(mY), (79) 
m,Y J=l 
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with 
WimYIIX) == W(mJ mJ+tl/J IJ+l)' (SO) 

where /J and mJ are calculated from I and X and m and Y respectively. 
In the subspace IF" we take the linear combinations 

L 

1JI = L L f(l, X) 1/1(1, X), (S1) 
1=1 X 

where L is determined by the periodicity condition N - 2n = oF x L of equation (72). 
Note that the eigenvalue equation for the transfer matrix 

T'P = A'P (S2) 

is satisfied in the subspace IF" if the coefficients/(I, X) satisfy the equation 

Af(l,X) = 1 (}]1 WimYIIX))f(m, Y). (83) 

This may be looked upon as a transformation of the eigenvalue equation from the 
space ff of cross-product vectors to the space of functions on the integers I ~ I ~ L 
and x; (1 ~ Xl < X2 < ... < xJ. Equation (S3) can be further put in the canonical 
form of ice-type models (Lieb and Wu 1972, Section IV) by noting that on the right­
hand side m = I± 1 and 

Af(l,X) = LDL(l,X, Y)f(I+I, Y) + LDR(I,X, Y)f(I-I, y), (84) 
y " y . 

with 
N 

DL(I,X, Y) = n fJ'il+1 YIIX), (SSa) 
J=l ' 

N 

DR(I,X, Y) = n Wil-l YIIX). (SSb) 
J=l 

In equation (S4) the sum over Y; is restricted to the "ranges 

I ~ Yl ~ Xl' Xl ~ Y2 ~. X2' ••• , X,,-l ~ y" ~ X" 

in the first term and to the ranges 

Xl ~ Yl ~ X2, X2 ~ Y2 ~ X3' ••• , X" ~ y" ~ N 

in the second. By introducing Xo = 0, X,,+l = N + I we can describe these intervals 
respectively in the form: 

Xj-l ~ yj ~ Xj; Xj ~ Yj ~ Xj+l; with Xj < Xj+l 

and no two y's equal. The products of N factors in DL and DR can then be 
expressed as products of n factors defined in these intervals. The new functions can 
be labelled by values of IJ at the Jth position (J = 1,2, ... , N + I) within the interval 
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which contains Yi and the variables which define the interval. Thus 

II 

DL(l, X, Y) = n U(I+1-2j / Xj-loYj,Xj)' (86a) 
j=l 

II 

DR(l, X, Y) = n U(I-1-2j/xj,Yj,Xj+1), (86b) 
j=l 

where within the respective intervals Ij = I± 1-2j+J. The precise form of U can 
be simplified by appropriate choice of the two normalizations nJ and nJ and the two 
ratios rJ and rJ' occurring in the expressions for weights (43), (44), (57), (58), (63), 
(65) and (78). 

This reduction of the problem to an ice-type one suggests that a generalized Bethe 
ansatz for f(/, X) may solve equation (84). Baxter (1973c) has shown that this is 
indeed the case, and the final equations obtained for the eigenvalues are the same 
as were obtained by Baxter (1972a) from a functional matrix equation. 

4o Functional Matrix Equation 

The functional matrix equation was derived by Baxter (1972a) as a generalization 
of some ice-model results. Parameterization of vertex weights in terms of elliptic 
functions provides the basic motivation for such a generalization. It is possible that 
the method works because of the basic ice-type structure of the problem. It is not 
clear what types of transfer matrices satisfy such functional equations and what 
types of functional matrix equations are helpful in solving the eigenvalue problem. 

In -a limited way the problem may be approached as follows. We have studied 
the action of the transfer matrix on certain vectors and seen that a demand for simpli­
fication expressed by equation (27) has led to several useful results, including the 
construction of invariant subspaces. We now propose to study the action of the 
transfer matrix on other matrices and ask for similar simplification but with the added 
requirement that these matrices commute with the transfer matrix. The commutation 
requirement is a natural one: we want the matrices to have common eigenvectors 
with the transfer matrix. This proves to be sufficient for deriving the functional 
matrix equation for the eight-vertex model. For the more general problem we only 
have certain basic equations whose solution may help in deciding whether such 
functional equations can be derived in other cases. 

(a) Action of transfer matrix on matrices 

The matrices we consider are defined by analogy with the expression (4) for the 
transfer matrix itself. Let q ° be objects defined by 

qO == qQq" == qlZPIIIII , (87) 

where qQ are L x L matrices, with rx, p = 1,2 and m, n = 1,2, ... , L. Then the matrices 
Q on which the action of the transfer matrices is to be considered are 

Q=trLq00q00 ..• 0qO , (
a a a ) 

(N terms). (88) 
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Using the relation 
(trmA)(tr"B) = trmn(A ~B), (89) 

we find 

TQ = tr2L (t:q") ®(t:qO) ® ... ®(t:q") , ( 
t1 t1 t1 ) 

(90) 

with 

(t:qO) = fZfJ).pqfJYmn == [t~l1q~ t>2qO]. 
t 21q t 22qo 

(91) 

Equation (91) represents an ordinary product in O'-type indices and a cross product 
between the Lx L matrices of qa and 2 x 2 matrices Pa' The trace in equation (90) 
is over the resulting 2L x 2L matrix. This trace remains unchanged under a variety 
of operations (cf. Section 2b), the simplest of which is a similarity transformation 
of all elements (t:qO) in (90) by a single matrix P. If P-1(t:qO)P is partitioned as 
suggested by equation (91) and P is chosen so that an L xL corner block vanishes 
identically, then the trace in equation (90) decomposes into a sum of two traces 
over L-dimensional matrices. It is sufficient to consider the form 

[
IL P] 

P = (J)L IL ' 
(92) 

where p is an arbitrary matrix, IL the unit matrix and (J)L the null matrix. From 
equations (91) and (92) 

P- 1(t:qO)P = [q~ q~] . 
q4 q2 

We need only the blocks 

q~ = t0l1qO-pt"21qO, q; = t"21qop +t"22qo, 

q; = t"l1qop +t"12qo -t"21Pqop -t"22Pqo = (J)L' 

(93) 

(94) 

(95) 

In these equations the products between t" and q ° are in 2 x 2 matrix indices and those 
between p and qO are between LxL matrices. The order of factors is important. 
Both p and qO are to be chosen to satisfy (95). Since this equation is linear and homo­
geneous in qO, one may choose p to simplify it and make it solvable. The 2 x 2 indices 
decouple from the L x L indices if p is diagonal, 

p = Pm c5m,,' m,n = 1,2, ... ,L. 

Equation (95) now becomes 

q; == PAO(mn)qO(mn) = 0, 
with 

PAO(mn) = (p" tOl1 + t" 12 - PmP" to 21 -Pm to 22) • 

(96) 

(97) 

(98) 

It is to be satisfied for all pairs (m,n). The trivial solution qO(mn) = 0 can be used 
where convenient. Nontrivial solutions can occur for those (m, n) for which Pm and 
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Pn satisfy the polynomial relation 

det[gg"(mn)] == P(mn) = o. (99) 

In that case equation (97) determines the ratio of elements in the two columns of 
the 2 x 2 matrix q"(mn) and one can write 

[ 
gg12(mn)r+ 

q"(mn) = -ggl1(mn)r+ 
gg12(mn)L ], 

-ggl1(mn)L 
(100) 

where the arbitrary factors r ± can also depend on t and m, n. This relation holds 
only for some limited number of pairs (m, n). 

We have thus shown that it is always possible to construct a matrix Q from 
equations (88), (99) and (100) such that 

TQ = Ql +Q2' (101) 

where the matrices Qi are of the form (88) with q" replaced by q~, and from equations 
(94) and (96) 

q~(mn) = (t"11 -Pm t"21)q"(mn) , 

q;(mn) = (Pn t"21 +t"22)q"(mn). 

(102a) 

(102b) 

The product QT can be considered in a similar way. Instead of t:q" we now have 
C( t:. Equation (97) is replaced by 

C(mn) gg"(mn) = 0, (103) 

where gg"(mn) is stiIl given by (98) so that the solvability condition is again (99). 
Equation (103) determines the ratio of elements in rows of C(, which is 

_" _ .[f!J21 r~ 
q - f!J21 r~ 

_f!Jll r~] . 
_ggl1r~ 

(104) 

Accordingly, it is always possible to construct a matrix Q from equations (88), (99) 
and (104) such that 

QT = Ql+Q2' 

where the Qi are obtained from equation (88) by replacing q" by q~, and 

q~(mn) = q"(mn)(t"l1 -Pm t"21), 

q;(mn) = q"(mn)(PJ21 +t"22). 

(105) 

(106a) 

(106b) 

This behaviour is analogous to the action on vectors (Section 2). If we take 
n = m ± 1, the matrix gg"(mn) reduces to the matrices B" and Jj" of equations (11) 
and (16). For the eight-vertex model the same polynomial relation is obtained in 
both cases. This circumstance leads to the disposition of nonzero elements in the 
q" matrices found in Baxter's work (1972a). 
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(b) Transformation of parameters 

The four quantities q; and q; have been obtained as particular functions of the 
parameters I (== t" b) of the transfer matrix. Are .there certain other values II and i I 
of th~se parameters in terms of which Qi and Qi become the same functions of the 
new parameters as Q and Q are of I? Consider one of these cases. If there exists 
an Lx L matrix f!( 1 and a scalar function CPl such that 

q~(/) = CPl(t)f!(l q'(tl)f!(11 , 
then 

Ql = {CP1(I)}NQ(tl)' 

(107) 

(108) 

Choosing f!( 1 to be a diagonal matrix, for each nontrivial pair m, n we have two 
homogeneous equations for two unknowns f!( 1m and f!( In' The solvability condition 
is independent of CPl(t): . 

Rl (mn) == q~l(t I mn)q21(tll mn) _q~l(t I mn)qll(tll mn) = O. (109) 

Considered as a polynomial in Pm and Pn' this equation should be satisfied by the 
same set of values of Pm and Pn which satisfy the basic polynomial (99). Hence Rl (mn) 
can differ by at most a factor of the fOIlll (rx+PPm) from P(mn), that is, 

Rl (mn)+(rx+PPm)P(mn) = o. (110) 

Since we require this to. be identically satisfied, we can equate coefficients of different 
powers of Pm and Pn simultaneously to zero, obtaining equations for linearly occurring 
unknowns 11 (== t l :), rx and p. Depending on the nature of the system lab' different 
types of linear systems will be obtained. For the eight-vertex model the system is 
in fact overdetermined rather than underdetermined, but easily solvable. 

Similarly, for the remaining three cases we have 

R2(mn) = q~l(t I mn)q21(121 mn) _q~l(t I mn)qll(t21 mn), 

.R2(mn)+(rx+PPn)P(mn) = 0, 

Ri(mn) = qP(t I mn)q.21(il l mn) _qfl(t I mn)qll(ii I mn), 

Rl (mn)+(rx+PPm)P(mn) = 0, 

Rimn)+(rx+PPn)P(mn) = O. 

(IlIa) 

(11lb) 

(11lc) 

(111d) 

(1lle) 

Note that the arbitrary factors 't'± and't'± do not affect these equations. Once the 
t's are determined by these relations, equation (107) can then be used to find cP by 
considering the elements n = m = 1. Here we also have to restrict the factors· 't', 
to be consistent with the structure assumed for q'. Finally, it has to be verified that 
the new t's indeed lead to the same Pm and Pn' if used in the basic equation (99). 

It is not clear that the linear systems for the new t's described above will be solvable 
in every case. Even if they were it may not be very helpful since by themselves they 
are not sufficient to establish the functional equations. 
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(c) Eight-vertex model without fields 

(i) Solutions 

In this subsection we first give the solutions of the systems described above for 
the special case of the eight-vertex model without fields. The properties of Q matrices 
which lead to the functional equation depend upon the choice of (m, n) values for 
which the q" are taken to be nonvanishing. Following Baxter (1972a) we choose 

m n = 1, m = n± 1, and m n =L. (112) 

The first and last elements are the same-a requirement of periodicity.· Alternative 
choices may be possible but this has not been explored. The possibility of taking 
nonvanishing elements for both m = n + 1 and m = n -1 is a consequence of the 
symmetry of the basic polynomial in m and n. It seems that the elements corresponding 
to one or the other possibility could be set equal to zero without altering the results. 
Recalling now that 

" [apm-bPn d -CPmPn] 
fA (mn) = , 

c -dPmPn bPm-aPn 

with the substitutions (35) in equation (98), we have 

P(mn) = P;' + P; - flPmPn - v(1 + p;,p;) = 0, 
where 

J1. = (a2 +b2 -c2 -d2)/ab, v = cd/abo 

For m = n = 1 we have a quartic 

pt-{(2-J1.)/v}p~+1 = O. 

(113) 

(114) 

(115) 

(116) 

This equation can always be solved to yield an initial value of Pt which can then be 
substituted into (114) to successively solve for all other Pm' Because of the symmetry 
between m and n, P(m,m+l) = 0 implies P(m+l,m) = 0 and nonzero values of 
q" are obtained from equation (100) for all (m,n) pairs (112). 

Since P(mn) is unchanged for Pm -+ -Pm and Pn -+ - Pn' we have the possibility 
of taking different signs for .16'11 in equations (100) and (104), and we shall make use 
of this in subsection (ii) below. It is of importance when we consider the commutation 
properties of Q matrices but not for parameter transformations. 

From (35) 

[ a -CPm] 

t" 11 - Pm t" 21 = _ d Pm b 

and, using this in equation (109), 

Rt(mn) == Pm( -dt ad -dt(d2 -b2))+Pn(at ad -dt ab) 

+P;'Pn( ~at cb +dt cd +ct(d2 -b2))+P;Pm(Ct ab) 

+p;(bt cb)+p;p;(-C1Cd) = O. 

(117) 

(118) 
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From equations (118) and (114), we see that 0( = 0 in (110), and equating coefficients 
of powers to zero we obtain six equations, two of which are identical. Taking 
f3 = - cl ab, they yield the system 

l d 0 

o c 

o ad 

-cb 0 

o 
-b ] lal

] d2~b2 ~: 
cd dl 

= o. (119) 
-a 

-cd 

a2 _c2 

The determinant vanishes identically and the solution is immediate. 
The working for other transformations is similar and need not be given here. 

Although all four systems are different, the remarkable result is that 

tl = 12 = (al , bl , cl , dl ), t2 = 11 = (a2' b2, c2, d2), (120) 

al b 
d l = d' 

bl a b2 _d2 

d l =d a2 _ c2 ' 

Cl C b2 _d2 

dl=da2-c2' 
(121a) 

a2 b a2_d2 b2 a 
d2 = d b2_C2 ' d2 = d' 

C2 C a2 _d2 

d2 =db2_C2 · (121b) 

One can verify that III = 112 = Il and Vl = V2 = v, where Ili and Vi are defined in 
analogy with equations (115). Thus the new parameters in turn lead to the same 
polynomial (114). 

To determine 4>1 we take the ratios (12Ia) as given. Since Xl is taken to be diagonal, 
for m = n = 1 equation (107) gives 

q~(t 111) = 4>l(t)q"(tll11), (122) 

or using equations (100), (113), (l02a) and (117), 

4>l(t)(Jl = ad-cbp~ = d2-b2+ab-cdpi, 
dl-ClPl al-bl 

(123) 

with 
(J1 = 'r+(t1111)/L(tI11) = L(t1111)/.+(tl11). (124) 

Similarly, 

4>2(t)(J2 = bd-capi = d2-a2+ab-cdpi 
d2 -c2pi b2-a2 ' 

(125) 

with 
(J2 = 'r+(t21 l1)/r+(tl 11) = L(t21 l1)/L(tl 11), (126) 

and 

qJ1(t){}1 = ca-bdpi = c2-b2+ab-cdpi 
C2 -d2 p2 a2- b2 ' 

(127) 

qJ2(t){}2 = cb-adpi _ c2-a2+ab-cdpi 
cl-d1Pi- bl - a1 ' 

(128) 

with 
(}i = 'r~(l;ll1)/'r~(t 111) = 'r~(l;ll1)/'r~(t 111). (l29) 
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The identity of alternative forms in equations for the ¢'s may be established using 
the relations (116) and (121). One can choose the 't"'s in such a way that 

¢i (t) = (fiz(t) and ¢z(t) = ([ii (t) . (130) 

It should be noted that the choice of the 't"'s for other values of m, n is still arbitrary. 
Now writing QR for Q and QL for Q, we have established that 

with 

T(t)QR(t) = 1P1 (t) QR(ti ) + IPzCt) QR(tZ) , 

QL(t) T(t) = 1P1 (t) QL(ti) + IPz(t) QL(tZ) , 

lPi(t) = {¢;(t)}N. 

The last relation follows from equation (108). 

(ii) Commuting Q Matrices and Functional Equation 

(131a) 

(131b) 

(132) 

For the rest of this subsection the symbol Q is used to denote a different matrix 
which satisfies the relations: 

[T(t), Q(t)] = 0, 

T(t) Q(t) = 1P1 (t) Q(ti) + IPzCt) Q(tz), 

[Q(t), Q(s)] = o. 

(133a) 

(133b) 

(133c) 

Equation (133c) needs to hold only when the parameters t and s are related in some 
way. 

Let F and G be matrices such that 

Q = QR F = GQL· (134) 

Then equations (131a, b) imply equations (133a, b). The relation (l33c) is satisfied if 

QL(t) QR(S) = QL(S) QR(t). (135) 

Both sides of (135) can be expressed as traces of L z dimensional matrices and are 
equal if there exists an L 2 xL z matrix OJ! such that 

OJ!(q~(t)~q~(S)) = (q~(S)~q~(t))OJ!. (136) 

Here q~ is the same as q" given by equation (100) and q~ is 'f given by equation (104) 
with Pm'PH replaced by -Pm' -Pm as explained below equation (116) in the previous 
subsection. 

The simplest possibility is to take OJ! to be diagonal, i.e. 

OJ! mm' ,pp' = (jmp (jm'p' Ymm' • (137) 

We can also assume that 't"+ ('t"~) is proportional to L ('t"~) for all mn, and recall 
that nonvanishing q" matrices occur only for certain mn values, given by (112). 
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Then from equations (100) and (104) we find that (136) is equivalent to the equations 

G(l1; 11) = 1 = G(LL;LL) , 

Ylm = Yl m-l G(1m; 1 m-1), 

Yml = Ym-ll G(ml;m-11), 

Ym,m' = Ym-l,m'-l G(mm';m-1,m' -1), m,m';;': 2, 

G(mm',nn') = H(mm',nn' I ts)fH(mm',nn' 1st), 

H(mm', nn' Its) = {Bl21(t I mn) Bl12(s I m'n') -Blll(t I mn) Blll(S I m'n')} 

We note that 
x r~(t I mn) r+(s I m'n'). 

G(l1; 11) "" r'+(t 111) 1:+(s 111) 
1:'+(s 111) 1: +(t 111) . 

(138a) 

(138b) 

(138c) 

(138d) 

(138e) 

(138f) 

(139) 

When s = t1 = 12 or s = t2 = 1, the same ratio of 1:'S can be found from equations 
(123)-(129), and the first part of (138a) is seen to hold as an identity. 

One sets Yll = 1 and obtains all other elements Ymm' by iteration from equations 
(138 b-f) and (139). The elements in which either m or m' or both are equal to L 
can be constructed in more than one way and consistency is to be achieved by exploit­
ing the freedom in the choice of 1: and 1:'. This has not been carried out in detail, 
but in any case the point has been reached where periodicity conditions, e.g. the last 
part of equation (138a), have to be studied and recourse to elliptic functions is needed. 
With this reservation, we have shown that the three equations (133) can be satisfied: 
that is, one can construct a matrix Q(t) which commutes with the transfer matrix 
T(t) and the matrices Q(t1) and Q(t2) and satisfies the functional equation (133b). 

It will be noted that in the present derivation we treat the 1:'S as functions- of 
parameters, which are then chosen to satisfy the required equations. In Baxter's 
(1972a) work they are taken as constants. Presumably, the use of elliptic functions 
and the normalization of various matrix elements in his derivation implicitly satisfy 
the necessary requirements. 

5. Eight-vertex Model With External Field 

In the presence of an external field the parameter array tab is nondiagonal. It 
is simpler, however, to give the matrices ("p which can be directly interpreted in 
terms of vertex diagrams (see Baxter 1972a, where the matrices are designated 
R(rx, {3»: 

[aVH 0] [0 d] 
(11 = 0 bV/H' (12 = cO' (140a) 

[0 C] [bHfV 0] 
(21 = dO' (22 = 0 a/VH' (140b) 
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where V and H represent the vertical and horizontal field effects; for the field-free 
case V = H = 1. 

Forming the matrices of equations (10)-(12), we note that 

detB; = ab(V-2p;+ V2p;+1)-(a2+b2-c2-d2)PJPJ+l -cd(1 +P;P;+l)' (141) 

In the absence of vertical fields (V = 1) this is the same polynomial as that for the 
field-free case. That is, the presence of a horizontal field (H 1= 1) does not affect 
the basic polynomial, but it does affect the matrices and the vectors <p' and 1:'. Because 
of this difference it is no longer possible to obtain the equations (66) and (67) which 
lead to invariant subspaces in Section 3. No straightforward generalization appears 
to be possible. Problems in the functional-equation approach are different, but 
these have not been explored so far. 

6. Conclusions 

When the matrix Q can be constructed in diagonal form the functional equation 
(133b) gives the eigenvalues of the transfer matrix. On the other hand, the equations 
of the generalized ice-model form can be solved to yield the same equations for the 
eigenvalue. Baxter (1973c) has shown this equivalence in detail. Both approaches 
are made possible and shown to be equivalent because of a series of 'mathematical 
flukes'. In the present paper we have arrived at several of these flukes in a different 
way and have shown that some of them, at least, no longer hold for the more general 
problem of the last section. 

It seems quite natural to seek subspaces invariant under the action of the transfer 
matrix, but the manner in which they were obtained is too finely balanced (cf. equations 
(66) and (67)) and should not be expected to work for other cases. The formulae 
of Section 2b do not exhaust the possibilities offered by the invariance of the trace. 
The device of making corner elements zero is too restrictive. Similar remarks apply 
to the Q-matrix approach. At every step one opts for the simplest alternatives which 
turn out to be adequate for the particular problem. Generalizations have a tendency 
to become very rapidly intractable (e.g. try taking nondiagonal matrices for p in 
equation (92), fi£ in (107) or rlJI in (136)). In a basic sense, constructing invariant 
subspaces is equivalent to finding matrices that commute with T, but the two 
approaches described above are not identical in detail in spite of many similarities. 
Attention should be directed to a better exploitation of the freedom offered by the 
invariance of the trace. 

In conclusion we note three problems which perhaps do not require very radically 
new methods: (i) to find the dimension of the subspace fF n and to show that the 
totality of fFn spans the whole of fF, (ii) to prove by algebraic means that a generalized 
Bethe ansatz solves equation (84), and (iii) to investigate solutions of the linear 
systems arising from (110) and (111) for other models to see if commuting Q matrices 
can be set up by this method. 
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Appendix 

(a) Parameterization in Terms of Elliptic Functions and Uniformization Theory of 
Algebraic Functions 

The parameterization of vertex weights was first introduced by Baxter (l972a) 
from considerations of commuting transfer matrices and was later derived from the 
basic polynomial relation (Baxter 1973a). The latter derivation is related to the 
theory of uniformization of algebraic functions (see e.g. Sansone and Gerretsen 
1969; Siegel 1969). This connection is pointed out briefly here since it is part of a 
much more powerful theory applicable to any polynomial in two variables. 

We write the polynomial (36) in terms of new variables w = PJ and z = PJ+1 

in the form 
P(w,z) = W2+Z2-JlWZ-v(l +W2Z2) , 

Jl = (a2+b2_c2_d2)/ab, v = cd/abo 

(AI) 

(A2) 

These equations determine w as a function of Z. The theory of uniformization enables 
us to find a single complex variable u and two functions of this variable w = w(u) 
and z = z(u) such that (AI) is satisfied for all u. The polynomial determines these 
functions. The crucial quantity is the genus p of the polynomial, and it is found as 
follows. We note that the number n of roots of (AI) is two, say W1 and W2' given by 

w = Ijlz± {Jl2Z2_4(1-vZ2)(Z2_ V)}t]/2(l-vz2). (A3) 

The discriminant 
(W1 -W2)2 = V(Z4_ pZ2+ 1)/(l-vz2)2, (A4) 

with 
p = (4+4v2-Jl2)/4v, (AS) 

vanishes at four values of z given by 

Z2 = -Hp±(p2-4)t}. (A6) 

Each of these is a ramification point of order I for the algebraic function w defined 
here. The point at infinity is an ordinary point. Hence the ramification number 
m = 4 and the genus p is given by (Sansone and Gerretsen 1969, Section 12.5.5) 

p = !m - n + 1 = 1. (A7) 
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Polynomials of genus 1 can be uniformized by elliptic functions (see e.g. Sansone 
and Gerretsen 1969; Siegel 1969). From the symmetry of the polynomial the same 
elliptic function is indicated for wand z, and hence equation (A3) should appear as 
the addition theorem for the required elliptic functions. We shorten the work by 
noting that the algebraic function 

1'/2 = z4_ pz2+1 = (I-C2)(I-k2C2). (AS) 

with C and k given by 
z = ktC k 2+1-pk = 0, (A9) 

is known to be uniformized by (e.g. Sansone and Gerretsen, Section 12.6.3, p. 315) 

C = snu, 1'/ = cnudnu. 

Substitution in equation (AI) gives 

w = (jtkt sn u ± 2vt cn u dn u]/2(I - kv sn2u). 
This suggests 

p. = 2 cn(21'/) dn(21'/), v = k sn2(21'/) 
and 

w = kt sn(u± 21'/). 

(A 10) 

(All) 

(AI2) 

(A 13) 

To get a parameterization of weights, we introduce a new variable ~ so that the 
two equations (A2) give (Baxter 1973a) 

C avt ~-I , d = bvt~ (AI4) 
and 

p.ab = a2 + b2 - a2vC 2 - b2ve 
or 

(a/b)2(e-v)-(a/b)p.e+~2-V~4 = O. (AI5) 

The same uniformization argument can be repeated for equation (AI5) with the 
result 

alb = sn(y)/sn(y ± 21'/), ~ = ktsn(y), (AI6) 

where the expressions (AI2) have been used. The new variable y can be further 
replaced by v +1'/ to give the parameterization obtained by Baxter, 

a: b : c: d = sn(v + 1'/) : sn(v-I'/) : sn(21'/) : k sn(v +1'/) sn(v - 1'/) sn(21'/). (AI7) 

Using this parameterization in equations (I21a, b), one verifies 

al: bl : cl : dl = sn(v+31'/): sn(v + 1'/) : sn(21'/): ksn(v+31'/)sn(v+I'/)sn(211), (AI Sa) 

a2 : b2 : C2: d2 = sn(v-l1): sn(v-311): sn(211): ksn(v-I'/) sn(v-311) sn(21'/). (AlSb) 

These equations show that the transformations derived here agree with those of 
Baxter (1972a). 
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(b) Polynomial Relations satisfied by Ratios of Elements in q,; and 1:; 
The, equation B; q,; = 0 only determines the ratio XJ of elements in q,; and gives 

two expressions for it: 

. - A.. /A.. _ B12/Bll _ B22/B2l XJ = 'f'lJ 'f'2J - - J J -, - J J, 

that is (cf. equation (40», 

d -CPJPJ+l bpJ+l-apJ 
XJ = - apJ+l-bpJ = - -c":'_=-d-':p=-J-P-J":'+-=-l· 

One can eliminate PJ+l from these equations and obtain the relation 

with 
X;+p; -JllXJPJ -Vl(1 +x;p;) = 0, 

Jll = (a2-b2+c2-d2)/ac = 2cn(v-11)dn(v-1J), 

Vl = db/ac = ksn2(v-1J). 

(A19) 

(A20) 

(A2Ia) 

(A21 b) 

This shows that XJ also is an sn function and its argument is obtained from that of 
PJ by adding ± (v-r/). 

Alternatively, one can eliminate PJ from equations (AI9) and obtain 

with 
X;+P;+l -Jl2 XJPJ+1 -v2(1 +X;P;+l) = 0, 

Jl2 = (a2-b2-c2+d2)/cb = 2cn(v+11)dn(v+11)' 

V2 = ad/cb = ksn2(v+11). 

(A22) 

(A23a) 

(A23b) 

This shows that XJ is obtained from PJ+l by altering the argument by ± (v + 11), 
as it should, since we saw in (a) of this appendix that PJ+l is obtained from PJ by 
changing the argument by ± 277. 

If in equation (A20) we change J to J + 1 and eliminate P J + 1 between the resulting 
equation and (A22), the polynomial relation obtained between XJ and XJ+l is of 
fourth degree in each and factors into two polynomials. We have 

with 
PP' = 0, 

P == X;+X;+l -JlXJXJ+l -vel +X;X;+l) , 

P' == X;+X;+l -Jl'XJXJ+l -V'(1 +X;X;+l)' 

where Jl and v are given by equations (A2) and (AI2) and 

with 

Jl' = {rx2(c2+d2)_p2(a2+b2)}/abP2 

= 2cn(v-11)dn(v-11), 

v' = vrx2/P2 = ksn2(2v), 

rx = a2 _b2 , p = c2 _d2 • 

(A24) 

(A2Sa) 

(A2Sb) 

(A26a) 

(A26b) 
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Thus the roots of equation (A24) corresponding to P = 0 imply that XJ+l is obtained 
from XJ by changing the argument by ± 211, whereas the roots corresponding to 
P' = 0 imply that the relevant change is ± 2v, corresponding to a reversal of the 
roles of v and 11 in the two polynomials. 

Similar remarks to the above apply to the ratio of elements of -r;. Equations 
(C.8) and (C.lO) of Baxter (1973b) correspond to taking the increment +211 in all 
cases. 
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