Calculation of $6 j$ Symbols for the Exceptional Group \boldsymbol{E}_{7}

P. H. Butler, ${ }^{\text {A }}$ R. W. Haase ${ }^{\mathbf{A}, \mathbf{B}}$ and B. G. Wybourne ${ }^{\text {A }}$
A Department of Physics, University of Canterbury, Christchurch 1, New Zealand.
${ }^{\text {B }}$ Contribution based in part on work submitted for the partial fulfillment of the requirements of the B.Sc.(Hons) degree at the University of Canterbury.

Abstract

The $6 j$ symbols of the exceptional group E_{7} are studied and evaluated explicitly for a number of important cases involving the fundamental and adjoint representations. These $6 j$ symbols suffice to calculate all the 3 jm factors (or isoscalar factors) involving the fundamental or adjoint representations of E_{7} at least twice, except in the latter case those involving the power-4 irreps (42^{6}) and ($3^{2} 2^{5}$).

Introduction

The exceptional group E_{7} has recently become of interest to particle physicists. Attempts have been made to develop unified theories of strong, electromagnetic and weak interactions using the group structure $E_{7} \supset S U_{6}^{\mathrm{f} 1} \times S U_{3}^{\mathrm{c}}$, where $S U_{6}^{\mathrm{f} 1}$ is the group of quark flavours and $S U_{3}^{\mathrm{c}}$ is the unbroken group of colour (Gürsey 1975; Gürsey et al. 1976; Ramond 1976). In these theories the basic fermions (quarks, leptons and their antiparticles) are associated with the 56 -dimensional fundamental irreducible representation (irrep) of E_{7}, and the gauge vector bosons that mediate the interactions are associated with the 133-dimensional adjoint irrep.

Quantitative calculations require a knowledge of the 3 jm factors (or isoscalar factors) for $E_{7} \supset S U_{6} \times S U_{3}$ and of the $6 j$ symbols of E_{7}. In this paper we calculate some $6 j$ symbols that involve the fundamental and adjoint irreps of E_{7}. These $6 j$ symbols suffice to calculate all the $3 j \mathrm{j}$ factors involving the fundamental or adjoint irreps of E_{7} at least twice, except in the latter case those involving the power-4 irreps $\left(42^{6}\right)$ or $\left(3^{2} 2^{5}\right)$. Such $3 j m$ factors arise in the evaluation of the matrix elements of the generators of E_{7} in the $E_{7} \supset S U_{6} \times S U_{3}$ basis, a subject we shall report on later.

A detailed discussion of the basic properties of the exceptional groups has been given by Wybourne and Bowick (1977) while the general properties, and evaluation, of the $6 j$ symbols and $3 j m$ factors for compact groups have been considered by Butler $(1975,1978)$ and by Butler and Wybourne (1976). We refer to these papers for much of the basic theory, notation and definitions.

Irreps of \boldsymbol{E}_{7}

A number of properties of the irreps of E_{7} must first be enumerated. Wybourne and Bowick (1977) have shown that the irreps of E_{7} may be uniquely labelled by partitions (λ) of even integers l into six or seven integral parts λ_{i} such that

$$
\lambda_{i} \geqslant \lambda_{i+1} \geqslant 0 \quad(i=1,2, \ldots, 6)
$$

and

$$
\lambda_{4}+\lambda_{5}+\lambda_{6}+\lambda_{7} \geqslant \lambda_{1}+\lambda_{2}+\lambda_{3} .
$$

In this notation the fundamental irrep is designated as $\left(1^{6}\right)$ and the adjoint irrep as (21^{6}). The dimension $|\lambda|$ of each irrep (λ) may be readily evaluated (Wybourne 1974). The power p_{λ} of an irrep (λ) is defined as the smallest integer p_{λ} for which the p_{λ} th Kronecker power of the fundamental irrep contains (λ). In this paper we shall restrict our attention to irreps with $p_{\lambda} \leqslant 3$. For subsequent brevity it is convenient to associate a serial number λ with each irrep (λ).

The irreps of E_{7} are all real and are orthogonal or symplectic as

$$
\begin{equation*}
\phi_{\lambda}=(-1)^{l / 2} \tag{1}
\end{equation*}
$$

is positive or negative. The phase ϕ_{λ} is often referred to as the $2 j$ symbol (Butler and Wybourne 1976). It follows that all the $6 j$ symbols of E_{7} may be taken as real. The above-mentioned properties of the E_{7} irreps with $p_{\lambda} \leqslant 3$ are listed in Table 1. We note that $\lambda=0$ corresponds here to the identity irrep (0) of E_{7}.

Table 1. Some E_{7} irreps and their associated properties

Irrep (λ)	Dimension $\|\lambda\|$	Serial No. λ	Power p_{λ}	Phase ϕ_{λ}
(0)	1	0	0	1
$\left(1^{6}\right)$	56	1	1	-1
$\left(21^{6}\right)$	133	2	2	1
$\left(2^{6}\right)$	1463	3	2	1
$\left(2^{5} 1^{2}\right)$	1539	4	2	1
$\left(2^{7}\right)$	912	5	3	-1
$\left(32^{5} 1\right)$	6480	6	3	-1
$\left(3^{4} 2^{3}\right)$	27664	7	3	-1
$\left(3^{5} 21\right)$	51072	8	3	-1
$\left(3^{6}\right)$	24320	9	3	-1

Triads and $\mathbf{3 j} \mathbf{~ S y m b o l s}$ for \boldsymbol{E}_{7} Irreps

The $6 j$ symbol

$$
\left\{\begin{array}{lll}
\lambda_{1} & \lambda_{2} & \lambda_{3} \tag{2}\\
\mu_{1} & \mu_{2} & \mu_{3}
\end{array}\right\}_{r_{1} r_{2} r_{3} r_{4}}
$$

will be null unless the triple Kronecker product for each of the four triads $\left(\lambda_{1} \mu_{2}^{*} \mu_{3}\right.$), $\left(\mu_{1} \lambda_{2} \mu_{3}^{*}\right),\left(\mu_{1}^{*} \mu_{2} \lambda_{3}\right)$ and $\left(\lambda_{1} \lambda_{2} \lambda_{3}\right)$ contains the identity irrep $\lambda=0$. The four indices r_{i} attached to the $6 j$ symbol are associated with the product multiplicities that may arise in the four triads. The triple Kronecker products associated with each triad follow trivially from the tables of E_{7} Kronecker products given by Wybourne and Bowick (1977).

The $3 j$ symbols $\left\{(\pi) \lambda_{1} \lambda_{2} \lambda_{3}\right\}_{r r^{\prime}}$ give the permutational symmetries of the $3 j m$ factors and consequently arise in the reordering symmetries of the $6 j$ symbols (Butler 1975). For simple phase irreps the $3 j$ symbol is no more than a phase factor (Butler and King 1974). It may be shown that the irreps λ of E_{7} with $p_{\lambda} \leqslant 3$ are indeed simple phase. As a consequence, for each of these irreps of E_{7} we may associate a j value such that

$$
\begin{equation*}
\phi_{\lambda}=(-1)^{2 j_{\lambda}} \tag{3}
\end{equation*}
$$

where j_{λ} is an integer if λ is orthogonal and half-integer if λ is symplectic. The $3 j$ symbol may in this case be chosen so that (Butler and Wybourne 1976)

$$
\begin{align*}
\left\{(123) \lambda_{1} \lambda_{2} \lambda_{3}\right\}_{r r^{\prime}} & =\left\{(132) \lambda_{1} \lambda_{2} \lambda_{3}\right\}_{r r^{\prime}}=\delta_{r r^{\prime}}, \tag{4a}\\
\left\{(12) \lambda_{1} \lambda_{2} \lambda_{3}\right\}_{r r^{\prime}} & =\left\{(23) \lambda_{1} \lambda_{2} \lambda_{3}\right\}_{r r^{\prime}}=\left\{(13) \lambda_{1} \lambda_{2} \lambda_{3}\right\}_{r r^{\prime}} \\
& =\left\{\lambda_{1} \lambda_{2} \lambda_{3} r\right\} \delta_{r r^{\prime}}=(-1)^{j_{1}+j_{\lambda_{2}}+j_{\lambda_{3}}+r} \delta_{r r^{\prime}} . \tag{4b}
\end{align*}
$$

The j_{λ} value to be associated with a given irrep λ of E_{7} follows directly from an analysis of the Kronecker squares of λ. We readily deduce that for $p_{\lambda} \leqslant 3$ we may choose

$$
\begin{equation*}
j_{\lambda}=\frac{1}{2} p_{\lambda}, \tag{5}
\end{equation*}
$$

except for the $\left(2^{5} 1^{2}\right)$ irrep where we must choose $j_{4}=0$.
A knowledge of the $3 j$ symbols allows a determination of the behaviour of the $6 j$ symbols under a reordering symmetry. Noting that the $6 j$ symbols for E_{7} are real because the irreps are real, we have

$$
\begin{align*}
& \left\{\begin{array}{lll}
\lambda_{1} & \lambda_{2} & \lambda_{3} \\
\mu_{1} & \mu_{2} & \mu_{3}
\end{array}\right\}_{r_{1} r_{2} r_{3} r_{4}}=\left\{\begin{array}{ccc}
\lambda_{1} & \mu_{2} & \mu_{3} \\
\mu_{1} & \lambda_{2} & \lambda_{3}
\end{array}\right\}_{r_{4} r_{2} r_{3} r_{1}} \\
& =\phi_{\mu_{1}} \phi_{\mu_{2}} \phi_{\mu_{3}}\left\{\lambda_{1} \mu_{2} \mu_{3} r_{1}\right\}\left\{\mu_{1} \lambda_{2} \mu_{3} r_{2}\right\}\left\{\mu_{1} \mu_{2} \lambda_{3} r_{3}\right\} \\
& \times\left\{\lambda_{1} \lambda_{2} \lambda_{3} r_{4}\right\}\left\{\begin{array}{lll}
\lambda_{\pi(1)} & \lambda_{\pi(2)} & \lambda_{\pi(3)} \\
\mu_{\pi(1)} & \mu_{\pi(2)} & \mu_{\pi(3)}
\end{array}\right)_{\left.\left.r_{\pi(1)}\right) r_{\pi(2) r(3)}\right) r_{\pi(4)}}, \tag{6}
\end{align*}
$$

where π is a transposition.

Calculation of $\mathbf{6 j}$ Symbols for $\boldsymbol{E}_{\mathbf{7}}$

The trivial $6 j$ symbol is essentially a $3 j$ symbol:

$$
\left\{\begin{array}{l}
\lambda_{1} \lambda_{2} \lambda_{3} \tag{7}\\
\lambda_{2} \lambda_{1} 0
\end{array}\right\}_{00 r s}=\left|\lambda_{1} \lambda_{2}\right|^{-\frac{1}{2}}\left\{\lambda_{1} \lambda_{2} \lambda_{3} r\right\} \delta_{r s}
$$

These $6 j$ symbols may be immediately evaluated using equation (4b) and the information contained in Table 1.

The next simplest $6 j$ symbols to evaluate are the so-called primitive $6 j$ symbols that involve the fundamental irrep 1 at least once (Butler and Wybourne 1976). These $6 j$ symbols may be evaluated by use of the orthogonality relation.

$$
\sum_{\mu_{3} r_{1} r_{2}}\left|\lambda_{3} \mu_{3}\right|\left\{\begin{array}{lll}
\lambda_{1} & \lambda_{2} & \lambda_{3} \tag{8}\\
\mu_{1} & \mu_{2} & \mu_{3}
\end{array}\right\}_{r_{1} r_{2} r_{3} r_{4}}\left\{\begin{array}{lll}
\lambda_{1} & \lambda_{2} & \lambda_{3}^{\prime} \\
\mu_{1} & \mu_{2} & \mu_{3}
\end{array}\right\}_{r_{1} r_{2} r_{3}^{\prime} r_{4}^{\prime}}=\delta_{\lambda_{3} \lambda_{3}^{\prime}} \delta_{r_{3} r_{3}^{\prime}} \delta_{r_{4} r_{4}^{\prime}}
$$

and the Racah backcoupling relation

$$
\begin{align*}
& \left\{\begin{array}{lll}
\lambda_{1} & \lambda_{2} & \lambda_{3} \\
\mu_{1} & \mu_{2} & \mu_{3}
\end{array}\right\}_{r_{1} r_{2} r_{3} r_{4}}=\sum_{v r r^{\prime}}|v| \phi_{\mu_{2}}\left\{\mu_{1} \lambda_{2} \mu_{3} r_{2}\right\}\left\{\lambda_{1} \lambda_{2} \lambda_{3} r_{4}\right\}\left\{\lambda_{1} \mu_{1} v r\right\} \\
& \times\left\{\begin{array}{lll}
\lambda_{2} & \lambda_{1} & \lambda_{3} \\
\mu_{1} & \mu_{2} & v
\end{array}\right\}_{r^{\prime} r_{3} r_{4}}\left\{\begin{array}{lll}
\lambda_{1} & \mu_{1} & v \\
\lambda_{2} & \mu_{2} & \mu_{3}
\end{array}\right\}_{r_{1} r_{2} r^{\prime} r} . \tag{9}
\end{align*}
$$

Starting with the known values of the trivial $6 j$ symbols it is possible to use equations (8) and (9) to generate simple sets of simultaneous equations in the primitive $6 j$ symbols which may be solved to yield hitherto unknown primitive $6 j$ symbols which may be returned to equations (8) and (9) to produce further primitive $6 j$ symbols. In some cases the equations are nonlinear and it is necessary to choose the roots of a quadratic equation. In these cases it is always found, as would be expected, that the wrong choice of root leads to a subsequent contradiction.

Once a primitive set of $6 j$ symbols has been found it is possible to generate nonprimitive $6 j$ symbols using a generalization of the Biedenharn-Elliott sum rule (Butler and Wybourne 1976). A comprehensive computer program developed by one of us (P.H.B.; details to be published elsewhere) was used in generating many of the basic equations and in evaluating the symmetries of the $6 j$ symbols.

Table 2. Some nontrivial $\mathbf{6} \boldsymbol{j}$ symbols for $\boldsymbol{E}_{\boldsymbol{7}}$

Symbol $\left.\begin{array}{lll}1 & 1 & 2 \\ 1 & 1 & 2\end{array}\right\}$ Value $2^{3} \cdot 19$
$\left.\begin{array}{llll}1 & 1 & \text { Symbol } \\ 1 & 1 & 2\end{array}\right\}$

A list of nontrivial $6 j$ symbols for E_{7} is given in Table 2. It so happens that all the $6 j$ symbols listed there are invariant under all the reordering symmetries. This need not always be the case for the $6 j$ symbols of E_{7}. For example, the $6 j$ symbol

$$
\left\{\begin{array}{lll}
4 & 4 & 2 \\
4 & 3 & 4
\end{array}\right\}_{0100}
$$

changes sign under an odd transposition of columns. The $6 j$ symbols given in Table 2 suffice to calculate all the 3 jm factors involving the fundamental or adjoint irreps of E_{7} at least twice, except in the latter case those including $\left(42^{6}\right)$ or $\left(3^{2} 2^{5}\right)$ irreps which are of power 4. We note that the evaluation of the 3 jm factors requires only the primitive $6 j$ symbols of E_{7} (Butler and Wybourne 1976).

Conclusions

We have shown that even in a group as complex as E_{7} it is possible to systematically evaluate the $6 j$ symbols. This has the important implication that the machinery already exists to fully exploit the Racah-Wigner calculus for E_{7} and its subgroups. The problems of phase specification are fully understood and there is no difficulty in extending the methods used here to any other compact group.

References

Butler, P. H. (1975). Philos. Trans. R. Soc. London A 277, 545.
Butler, P. H., and King, R. C. (1974). Can. J. Math. 26, 328.
Butler, P. H., and Wybourne, B. G. (1976). Int. J. Quantum Chem. 10, 581, 599, 615.
Gürsey, F. (1975). Proc. Kyoto Symp. on Mathematical Problems in Theoretical Physics (Ed. H. Araki), p. 189 (Springer: Berlin).

Gürsey, F., Ramond, P., and Sikivie, P. (1976). Phys. Lett. B 60, 177.
Ramond, P. (1976). Nucl. Phys. B 110, 214.
Wybourne, B. G. (1974). 'Classical Groups for Physicists' (Wiley-Interscience: New York).
Wybourne, B. G., and Bowick, M. J. (1977). Aust. J. Phys. 30, 259.

