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Abstract 

The 6j symbols of the exceptional group £7 are studied and evaluated explicitly for a number of 
important cases involving the fundamental and adjoint representations. These 6j symbols suffice 
to calculate all the 3jm factors (or isoscalar factors) involving the fundamental or adjoint representa
tions of £7 at least twice, except in the latter case those involving the power-4 irreps (426) and (3 225). 

Introduction 

The exceptional group E7 has recently become of interest to particle physicists. 
Attempts have been made to develop unified theories of strong, electromagnetic and 
weak interactions using the group structure E7 :;, SU~1 X SU~, where SU~1 is the 
group of quark flavours and SU~ is the unbroken group of colour (Giirsey 1975; 
Giirsey et al. 1976; Ramond 1976). In these theories the basic fermions (quarks, 
leptons and their antiparticles) are associated with the 56-dimensional fundamental 
irreducible representation (irrep) of E7 , and the gauge vector bosons that mediate 
the interactions are associated with the 133-dimensional adjoint irrep. 

Quantitative calculations require a knowledge of the 3jm factors (or isoscalar 
factors) for E7 :;, SU6 X SU3 and of the 6j symbols of E7. In this paper we calculate 
some 6j symbols that involve the fundamental and adjoint irreps of E7 • These 6j 
symbols suffice to calculate all the 3jm factors involving the fundamental or adjoint 
irreps of E7 at least twice, except in the latter case those involving the power-4 irreps 
(426) or (3 225). Such 3jm factors arise in the evaluation of the matrix elements of the 
generators of E7 in the E7 :;, SU6 X SU3 basis, a subject we shall report on later. 

A detailed discussion of the basic properties of the exceptional groups has been 
given by Wybourne and Bowick (1977) while the general properties, and evaluation, 
of the 6j symbols and 3jm factors for compact groups have been considered by Butler 
(1975, 1978) and by Butler and Wybourne (1976). We refer to these papers for much 
of the basic theory, notation and definitions. 

Irreps of E7 

A number of properties of the irreps of E7 must first be enumerated. Wybourne 
and Bowick (1977) have shown that the irreps of E7 may be uniquely labelled by 
partitions (A) of even integers I into six or seven integral parts Ai such that 

Ai ~ Ai+l ~ 0 (i = 1,2, ... , 6) 
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and 
A4 + AS + A6 + A7 ;;:::: A1 + A2 + A3 . 

In this notation the fundamental irrep is designated as (1 6) and the adjoint irrep as 
(21 6). The dimension I A I of each irrep (A) may be readily evaluated (Wybourne 1974). 
The power P;., of an irrep (A) is defined as the smallest integer P;. for which the p;.th 
Kronecker power of the fundamental irrep contains (A). In this paper we shall 
restrict our attention to irreps with P;. :::; 3. For subsequent brevity it is convenient 
to associate a serial number A with each irrep (A). 

The irreps of E7 are all real and are orthogonal or symplectic as 

¢;. = (_1)'/2 (1) 

is positive or negative. The phase ¢;. is often referred to as the 2j symbol (Butler and 
Wybourne 1976). It follows that all the 6j symbols of E7 may be taken as real. The 
above-mentioned properties of the E7 irreps with P;. :::; 3 are listed in Table 1. We 
note that A = 0 corresponds here to the identity irrep (0) of E7 • 

Table 1. Some E7 irreps and their associated properties 

Irrep (A) Dimension 1.1.1 

(0) 
(1 6) 56 
(21 6 ) 133 
(26) 1463 
(2512 ) 1539 
(27) 912 
(3251) 6480 
(34 23) 27664 
(3521) 51072 
(3 6) 24320 

Triads and 3j Symbols for E7 Irreps 

The 6j symbol 

Serial No. A 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

{
A1 A2 A3} 

J.l1 J.l2 J.l3 "'2r3'4 

Powerp;. 

0 
1 
2 
2 
2 
3 
3 
3 
3 
3 

Phase rPA 

1 
-1 

1 
1 
1 

-1 
-1 
-1 
-1 
-1 

(2) 

will be null unless the triple Kronecker product for each of the four triads (A1 J.l; J.l3), 
(J.ll }'2 J.l~), (J.l1 J.l2 A3) and (A1 A2 A3) contains the identity irrep A = O. The four indices 
r i attached to the 6j symbol are associated with the product multiplicities that may 
arise in the four triads. The triple Kronecker products associated with each triad 
follow trivially from the tables of E7 Kronecker products given by Wybourne and 
Bowick (1977). 

The 3j symbols {(n)A1 A2 A3}rr' give the permutational symmetries of the 3jm 
factors and consequently arise in the reordering symmetries of the 6j symbols (Butler 
1975). For simple phase irreps the 3j symbol is no more than a phase factor (Butler 
and King 1974). It may be shown that the irreps A of E7 with P;. :::; 3 are indeed 
simple phase. As a consequence, for each of these irreps of E7 we may associate 
a j value such that 

¢;.=(_1)2i A , (3) 
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where j;,. is an integer if A is orthogonal and half-integer if A is symplectic. The 3j 
symbol may in this case be chosen so that (Butler and Wybourne 1976) 

{(123)A1A2A3}rr' = {(132)A1 A2A3}rr' = orr" 

{(12)A1A2 A3}rr' = {(23)A1 A2A3}rr' = {(13)A1 A2A3}rr' 

(4a) 

= {Al .1.2.1.3 r}Orr' = (-I)h,+i;,.,+i;"3+rOrr'. (4b) 

The j;,. value to be associated with a given irrep A of E7 follows directly from an 
analysis of the Kronecker squares of A. We readily deduce that for p;,. :::;;; 3 we may 
choose 

j;,. = tp;,., (5) 

except for the (2512) irrep where we must choose j4 = o. 
A knowledge of the 3j symbols allows a determination of the behaviour of the 

6j symbols under a reordering symmetry. Noting that the 6j symbols for E7 are 
real because the irreps are real, we have 

{Al .1.2 A3} {Al 112 1l3} 

III 112 113 rl'2r3r4 = fll .1.2 .1.3 r4r2'3rl 

= 4>/-114>/-124>/-13 {Al1l21l3 rd {Ill A21l3 r2} {1l11l2 .1.3 r3} 

{ 1 1 1 } {A"(l) .1.,,(2) A"(3)} 
x II.l11.211.3r4 ' 

1l,,(1) 1l,,(2) 1l,,(3) m(1)r,,(2)r,,(3)r,,(4) 
(6) 

where 1t is a transposition. 

Calculation of 6j Symbols for E7 

The trivial 6j symbol is essentially a 3j symbol: 

{Al .1.2 A3} 

.1.2 .1.1 0 OOr. 
= 1.1.1 A21- t {A1 .1.2 .1.3 r }Or •• (7) 

These 6j symbols may be immediately evaluated using equation (4b) and the informa
tion contained in Table 1. 

The next simplest 6j symbols to evaluate are the so-called primitive 6j symbols 
that involve the fundamental irrep 1 at least once (Butler and Wybourne 1976). 
These 6j symbols may be evaluated by use of the orthogonality relation. 

" {Al .1.2 A3} {Al .1.2 A;} 
L... I A31l3 I = 0 h"; 0r3r; or4r~ 

/-I3
r

l
r

2 III 112 113 r1r2r3r4 III 112 113 rlr2r;'~ 
(8) 

and the Racah backcoupling relation 

C1 .1.2 A3} " 
= vI;:, I v I 4> /l2 {Ill A21l3 r 2}{ .1.1 .1.2 .1.3 r 4}{ .1.1 III v r} 

1 112 113 rlr2r3r4 

{A2 .1.1 A3}' {Al III V } 

X ~1 112 V r'rr3'4 .1.2 112 113 rlr2r'r· 
(9) 
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Starting with the known values of the trivial 6j symbols it is possible to use equations 
(8) and (9) to generate simple sets of simultaneous equations in the primitive 6j 
symbols which may be solved to yield hitherto unknown primitive 6j symbols which 
may be returned to equations (8) and (9) to produce further primitive 6j symbols. 
In some cases the equations are nonlinear and it is necessary to choose the roots of 
a quadratic equation. In these cases it is always found, as would be expected, that 
the wrong choice of root leads to a subsequent contradiction. 

Once a primitive set of 6j symbols has been found it is possible to generate non
primitive 6j symbols using a generalization of the Biedenharn-Elliott sum rule (Butler 
and Wybourne 1976). A comprehensive computer program developed by one of us 
(P.H.B.; details to be published elsewhere) was used in generating many of the 
basic equations and in evaluating the symmetries of the 6j symbols. 

Table 2. Some nontrivial 6j symbols for E7 

Symbol Value Symbol Value Symbol Value 

C 12} C 13} C 13} 
3 

112 -~ 112 ~ 11 3 23.7.11.19 

C 14} C 14} C 14} 
29 

112 23.3.7.19 113 23.3.7.19 114 23.34.7.19 

r 15} 
211 2.7.19 

r 15} 
215 24.3.7.19 

{215} 
216 22.32.7.19 

{216} {216} 103 

211 22.3.7.19 216 24.34.5.7.19 

{222} ";3 {222} ";3 {2 2 2} ";3 

111 2.7.19 115 2.3.7.19 116 22.32.7.19 

{224} ";5 {224} ";5 {224} ";5 ---
III 2.3.7.19 115 22.32.7.19 116 34.5.7.19 

{2 2 2} {224} 2 ---
222 2.7.19 222 32.7.19 

A list of nontrivial 6j symbols for E7 is given in Table 2. It so happens that all 
the 6j symbols listed there are invariant under' all the reordering symmetries. This 
need not always be the case for the 6j symbols of E7. For example, the 6j symbol 

r42} 
434 0100 

changes sign under an odd transposition of columns. The 6j symbols given in Table 2 
suffice to calculate all the 3jm factors involving the fundamental or adjoint irreps 
of E7 at least twice, except in the latter case those including (426) or (3225) irreps 
which are of power 4. We note that the evaluation of the 3jm factors requires only 
the primitive 6j symbols of E7 (Butler and Wybourne 1976). 
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Conclusions 

We have shown that even in a group as complex as E7 it is possible to systematically 
evaluate the 6j symbols. This has the important implication that the machinery 
already exists to fully exploit the Racah-Wigner calculus for E7 and its subgroups. 
The problems of phase specification are fully understood and there is no difficulty 
in extending the methods used here to any other compact group. 
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