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Abstract 

It is shown that the exact statistical mechanical properties of a one-dimensional self-gravitational 
system in. the limit of an infinite number of particles are easily obtained with the aid of the virial 
expansion. 

Rybicki (1971) studied the statistical mechanical properties of a one-dimensional 
self-gravitational system of N = 2, 3, ... particles. He obtained the free energy and 
the one-particle distribution function for both finite and infinite N. Monaghan (1978) 
applied approximate methods to this system for the limiting case of infinite N. We 
here call attention to the fact that the properties of this system in the limit of infinite 
N may be calculated exactly with the aid of the 'molecular field approximation'. 

The potential energy of a one-dimensional system of N particles is given by 

4>{Xj} = A L I X/-Xj I, (1) 
N~I>j~l 

where Xl is the coordinate ofthejth particle and {xJ stands for the set of Xl' X2' ... , XN • 

The configurational part F of the free energy is given in terms of the one-particle 
distribution function p(l)(X) by 

PF = I p(1)(x) [In (p(1)(x) ) -1 ] dx 

-! II p(1)(x)p(l)(x')[exp(-APlx-x'l )-l]dxdx' -I, (2) 

where I is the sum of all the more than singly connected diagrams of vertices and 
simple bonds connecting them. Here each diagram of n vertices represents an n-fold 
integral with respect to the variables Xl' X2' ... , Xn, the integrand being the product of 
(i) the one-particle distribution function p(l)(X/) for the ith vertex, (ii) the factor 
exp(-APlx/-xjl) -1 for a bond connecting the ith andjth vertices and (iii) the 
inverse of the symmetry number of the diagram (Morita 1959; Morita and Hiroike 
1961). The integrations are taken over the volume of the system. In addition, we 
have P = llkB T as usual, while p(1)(x) is so normalized that 

I p(l)(X) dx = N. 
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By transforming to reduced coordinates ~j = xj/L, where L = (Np).,)-l, we convert 
equation (1) to 

P~{L~J=N-l L I~i-~jl. 
N~i>j~l 

(3) 

We now define the functions 

p(l)(~) = Lp(l)(L~) and p(2)(~,O = L2 p(2)(L~,LO, 

which play the role of the one-particle and two-particle distribution functions respec
tively. The normalization is such that 

I p(l)(~) d~ = N. (4) 

Equation (2) then takes the form 

PF = I p(l)(~) [In (jP)(WL )-1 ] d~ 

-t II p(l)(~)p(l)(f)[exp( _N- 1 1 ~-f I) -1] d~d~' -L. (5) 

In L, a diagram of n vertices represents an n-fold integral with respect to the variables 
~1' ~2' ... , ~n> the integrand being the product of (i) the transformed one-particle 
distribution function P<l)(~i) for the ith vertex, (ii) the factor exp( _N-1 1 ~i- ~j I) -1 
for a bond connecting the ith and jth vertices and (iii) the inverse of the symmetry 
number of the diagram. If we make the assumption that p(l)(~) takes nonzero values 
of order O(N) only within a range of order O(N°) from an arbitrary fixed point as 
N -+ 00, then a term represented by a diagram of m vertices and n bonds will be of 
order O(Nm-n). Since n ~ m holds for all diagrams represented by the sum L in 
equation (5), we estimate this term to be of order O(NO); the situation is similar to 
the case of the Husimi-Temperley model (Katsura 1963). The p(1)(~) is so determined 
as to make the right-hand side of equation (5) stationary under the subsidiary con
dition (4) (Morita and Hiroike 1961), so that we have 

In (p(1)(WL) = - N- 1 I p(l)(~/) I ~ - ~' I d~' + PIl + .... (6) 

In the limit as N -+ 00, the integration limits tend to ±oo. The continuation dots 
(ellipses) in equation (6) denote terms which vanish in this limit. If we consider the 
limiting case and thereby ignore such terms, the integral equation (6) becomes solvable 
by a two-fold differentiation with respect to ~, to give the solution 

p(l)(~) = Nexp(~-~o)/[exp(~-~o) + IF = !-Nsech2(!-1 ~-~o I), (7) 

where ~o is an arbitrary constant. This result justifies our assumption that p(1)(~) 
takes nonzero values of order O(N) only within a range of order O(N°) from an 
arbitrary fixed point (in this case ~o) as N --+ 00. Hence equation (7) for p(l)(~) is 
exact for the system under consideration. In fact, if we take the position of the range 
centre ~o to be the origin, we see that the exact solution has already been obtained 
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by Rybicki (1971). Also, Monaghan (1978) has noted that this solution satisfies the 
Debye-Hiickel equation, i.e. equation (6) excluding the terms represented by the 
ellipses. Substitution of the expression (7) for p(l)(~) into equation (5) yields 

PF = N[ln(NJL) -2] + ... , (8) 

where the ellipses represent terms of order o(N). This result is equivalent to that 
given by Rybicki (1971). 

From the standpoint of the virial expansion, the pair distribution function p(2)(~, 0 
may be expressed in terms of the individual one-particle distribution functions by 
(see e.g. equation (4.3) of Morita (1959) and equations (4.9), (4.13) and (4.14) of 
Morita and Hiroike (1961)) 

p(2)(~,O = p(1)(~)p(1)(~')exp( _N-1 1 ~-n + ... ), (9) 

where the terms indicated by the ellipses are of order O(N -1) and so are negligible. 
Thus, in the limit N -+ 00, equation (9) becomes, exactly, 

p(2)(~, 0 = p(1)(~) p(1)(~'), (10) 

a result conjectured by Monaghan (1978) from an approximate calculation. 
Finally, we comment on this one-dimensional result in relation to the situation in 

higher dimensions. In the two- and three-dimensional cases, the gravitational poten
tials are respectively the logarithm and the inverse of the distance between two 
particles, and these potentials tend to - 00 as the distance of separation is reduced. 
For the limiting state in which all particles collapse to a single point, the free energy 
of the classical system then is - 00, and this system is not stable, as is well known 
(see e.g. Ruelle 1969). 
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