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Abstract 

Methods for calculating branching rules and Kronecker products for the exceptional group E8 are 
developed. In particular, tables of branching rules for E8 -> SU9 , E8 -> SU2 X E7 and E8 -> SU3 X E6 
are given. The third and fourth symmetrized powers of the adjoint representation of E8 are also 
resolved. The relevance of E8 to unified theories of strong, electromagnetic and weak interactions 
is briefly considered. 

Introduction 

The properties of the exceptional groups have recently been a subject of interest 
to physicists investigating the possible construction of unified gauge theories of strong, 
weak and electromagnetic interactions (see Gell-Mann et al. 1978, and references 
therein). Ramond (1977) has asked the question 'Is there an exceptional group in 
your future?', answering in the affirmative. Subsequent developments make the 
affirmative answer questionable. Nevertheless, it is important that the basic properties 
of the exceptional groups be known and available. 

The basic properties of the exceptional groups have been outlined, and a systematic 
notation established for describing their irreducible representations (irreps), by 
Wybourne and Bowick (1977). The calculation of explicit properties such as 3jm 
and 6j symbols for E7 in particular has been considered (Wybourne 1978; Butler 
et al. 1978, 1979). The exceptional group E8 is truly exceptional in that its defining 
(or fundamental) and adjoint (or regular) irreps coincide. The high dimension (248) 
of the adjoint irrep of E8 further complicates the problem of resolving Kronecker 
products and branchings. As a consequence there is a paucity of known results for 
E8 (McKay et al. 1976b; Wybourne and Bowick 1977). In this paper we are able 
to find quite simple and efficient methods for resolving all Kronecker products of 
E8 irreps up to the fourth power in the adjoint irrep and thence to resolve the 
symmetrized third and fourth powers of the adjoint irrep. These calculations were 
performed leisurely by hand and the most cumbersome case, a Kronecker product 
of dimension 1015808000, was resolved in 10 minutes while awaiting a coffee break. 
The bulk of the time was taken up with checking the results. We note that this 
example is about six orders of magnitude larger than those produced by computer 
programs which solve the problem by enumeration of weights (cf. Patera and Sankoff 
1973; McKay et al. 1976a). 
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While for most Lie groups it is possible to deduce branching rules for the various 
group-subgroup combinations from a knowledge of Kronecker products in the group 
and subgroup, together with the branching rules for the irreps that arise in the 
Kronecker square of the fundamental irreps, such a procedure fails for Es. In this 
case the Kronecker third powers of the fundamental irrep do not yield sufficient 
equations to solve for the branchings of three of the five power-3 irreps of Es. These 
methods in two cases yield the content of pairs of irreps of Es, namely the pair 
[(4362), (63 7)] and the pair [(4362), (3 S)]. While comparison of the two pairs yields 
a partial content for each irrep, it is not possible to separate the pairs completely 
in the traditional manner. Nevertheless, methods are described here which enable 
us to make a complete separation and thus to determine for the first time the branching 
rules for all third power irreps of Es. Inspection of the tables of Es Kronecker products 
shows that the branching rules for all the fourth power irreps of Es can be unequivocally 
resolved and probably even those of fifth power, if not all higher powers of Es. 
Particular results are given here for the maximal subgroups SU9 , SU2 x E7 and 
SU3 x E6 • The relevance (or what currently appears more likely, the irrelevance) of 
these results to unified gauge theories is briefly considered. 

Some Basic Properties of E8 Irreps 

The nontrivial irreps of Es may be uniquely labelled by a set of eight integers 
Ai (i = 1,2, ... , 8) such that (Wybourne and Bowick 1977) 

Ai~Ai+1~0, (1) 

2(A6+A7+AS)-(A1 +A2+A3+A4+AS) = 3n, (2) 

where n is a non-negative integer. (For an alternative labelling scheme based on 
the S016 subgroup of Es see Qubanchi 1978.) The irreps may be equivalently labelled 
in Dynkin's notation by the set of non-negative integers a == a1 a2 ... as. It is useful 
to list the irreps in order of increasing power P A (Wybourne 1979) and, for a given 
power, in order of increasing maximal weights. The power P A of an irrep (A) of 
Es is simply the numerical value of A6 (Wybourne 1979). Every irrep of Es may 
be associated with a dimension D A and a second-order Dynkin index I<j) (Dynkin 
1952a, 1952b; Patera et al. 1976, 1977). These basic properties are given, for all 
irreps of Es with P A ~ 4, in Table 1. A similar, and more extensive, tabulation 
including the fourth order Dynkin index I~4) but without ordering with respect to 
P A has been given by McKay and Patera (1977). 

We note that all the irreps of Es are orthogonal and real (Malcev 1944). The 
group SU9 occurs as a maximal subgroup of Es. The characters of SU9 may be 
expressed in Schur functions (S-functions) (see Wybourne 1970). Under the reduction 
Es -+ SU9 we necessarily have in our notation 

A:::> {A}, (3) 

where we use braces to label the S-functions of SU9 (Wybourne and Bowick 1977). 
If {A} is not self-contragredient then {A *} will also necessarily occur in the right-hand 
side of the relation (3). 



Aspects of Exceptional Group·E8 419 

Table 1. Basic properties of Es irreps 

All irreps of E8 with P A ,;;; 4 are listed 

Irrep Dynkin label Power Dimension Dynkin index 
(A) (a) PA DA 1<])/8 

(0) (00000000) 0 1 0 
(217) (10000000) 1 248 60 
(271) (00000010) 2 3875 1500 
(3 226) (01000000) 2 30380 14700 
(427) (20000000) 2 27000 13500 
(38) (00000001) 3 147250 85500 
(4362) (10000010) 3 779247 502740 
(433 5) (00100000) 3 2450240 1778400 
(5436) (11000000) 3 4096000 3072000 
(637) (30000000) 3 1763125 1365000 
(4632) (00000100) 4 6696000 5292000 
(472) (00000020) 4 4881384 3936600 
(547) (10000001) 4 26411 008 22364160 
(52453) (01000010) 4 76271625 68890500 
(5444) (00010000) 4 146325270 141605100 
(6463) (20000010) 4 70680000 64980000 
(65245) (10100000) 4 344452500 344452500 
(6246) (02000000) 4 203205000 206482500 
(7546) (21000000) 4 281545875 290628000 
(847) (40000000) 4 79143000 84249000 

Calculated Results for Es 

Resolution of Kronecker Products 

A Kronecker product (A) x (A') will be resolved if all the non-negative integers 
k A" are known in 

(A) x (A') = L kA" (A"), (4) 

where the summation is over all irreps (A"). The resolution may be verified by checking 
that the identities 

DAxDA, = LkA"DA", 

D I (n) +D I(n) '" k I(n) A' X A A X A' = L.. A" A" 

(5) 

(6) 

are simultaneously satisfied. It is important to require simultaneous satisfaction since 
either identity by itself can be satisfied by incorrect resolutions. For example, in 
Es the two irreps (66 54) and (76554) are of the same dimension though they have 
different values of I~2). In comparatively rare instances two or more irreps may 
separately coincide inDA and I<j), such as for the {31 3 } and {326 } irreps of SU9• 

In these cases the fourth order Dynkin index I~4) is required. Contragredient partners 
will necessarily possess common values for the dimension and Dynkin indices. In 
these cases great caution must be exercised. 

It is often possible to resolve Kronecker products by use of equations (5) and (6) 
and the consequential solution of the resulting linear Diophantine equations, provided 
the possible values of (A") in equation (4) can be sufficiently restricted. Our resolution 
of Es Kronecker products relies upon producing just such a restricted list of candidates 
for the (A"). 
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We first note that the range of (A") is restricted by the requirement that (Wybourne 
1979) 

peA) + peA') ~ p(A") ~ I peA) - peA') I . (7) 

The leading term in equation (4) is necessarily 

(A")max = (A + A'), (8) 

with k A"max = 1. The identity irrep (0) will occur in equation (4) if and only if A == A * 
and then only with ko = 1. 

Product 

(217) X (217) 
(271) X (2F) 
(271) x (271) 

(3226) x (217) 
(3226) X (271) 

(3 226) X (3 226) 

(427) X (217) 
(427) X (271) 
(427) X (3226) 

(427) X (427) 

(3 8)x (2F) 
(4362) x (217) 

(35)x(2F) 
(5436) X (217) 

(63 7 ) x (2F) 
(38) x (271) 

(472) x (2F) 
W3 2 ) x (217) 
(547) X (2F) 

Table 2. Kronecker products for E8 

Evaluation 

{(427)+ (271)+ (O)}+ [(3226)+ (217)] 
(4362)+(38)+(3226)+(271)+(217) 
{( 472)+ (43 35)+ (427)+ (3 8)+ (271)+ (O)} + [(4632)+ (4362)+ (3226) + (217)] 
(543 6) + (4335)+ (4362)+ (427)+ (3 8)+ (3226)+ (271)+ (217) 
(5W3)+ (547) + (5436)+ (4632) + (43 35) + 2(43 62)+ (427)+ (3 8)+ 2(3226) 

+(271)+(217) 
{W46 )+ (6463)+ W44)+ (543 6) + (472) + 2(43 35)+ (4362)+ 2(427)+ (38) 

+ 2(271)+ (O)} + [(65245)+ (63")+ (52453) + (547)+ (5436) + (4632) 
+2(4362)+(38)+2(3226)+(21 7)] 

(63 7)+(5436)+(4362)+ (427)+ (3226)+(21 7) 
(6463) + (547)+ (5436)+ wn+ (4362)+ (427)+ (38)+ (3226) + (271) 
(7546) + (65W)+ (6463) + (63 7)+ (52453) + (547)+ 2(5436)+ W3 2 )+ (43 35) 

+ 2(4362)+ (427)+ (38)+ 2(3226)+ (271)+(217) 
{(847) + (6246)+ (6463)+ (5436)+ (43 35)+ (472)+ 2(427) + (271) + (O)} 

+ [(7546 )+(63 7 )+(5W3)+ (5436)+ (4362)+(3226)+ (217)] 
(547) + W3 2 )+ (43 62) + (38)+ (3226) + (271) 
(6463)+ (52453) + (547) + (543 6)+ (472)+ 2(4362) + (43 35) + (4632)+ (427) 

+(38)+ (3226)+(271) 
(6524S)+ W44)+ (5W3)+ (547)+ (5436)+ W3 2 )+ (43 35)+ (4362)+(38)+(3226) 
(7546)+ (6246) + (65245)+ (6463)+ (63 7) + (5W3)+ (547)+ 2(543 6)+ (43 35) 

+(4362)+(427)+(3226) 
(847)+(7546)+(6463)+(637)+ (5436)+ (427) 
(514)+ W44)+ (453)+ (547)+ (472)+ W3 2 )+ (543 6)+ (43 35)+ 2(4362) 

+(38)+(3226)+(427)+(271)+(217) 
(6563)+(574)+(52453)+(472)+(4632)+(4362) 
(65542)+ (514) + W44) + (547)+ (472)+ W3 2 )+ (43 35)+ (4362)+ (38) 
(75 7 )+ W5 6 )+ (65542)+ (6463)+ (65W)+ (514)+ W44)+ (5W3)+ 2(547) 

+ (5436)+ (4632)+ (43 35)+ (4362)+ (3 8) 

The above conditions severely restrict the range of (A") in the Kronecker product 
though not always sufficiently to avoid Diophantine equations with several redundant 
terms. At this juncture we note that the method used by Wybourne and Bowick 
(1977) unequivocally resolves the E8 products if the branching rules for the E8 --+ SU9 

reductions are known. One simply reduces A and A' to linear combinations of 
S-functions appropriate to SU9 , forms their products and then uses the relation (3) 
and the branching rules to invert the S-functions back into E8 irreps. Clearly, con­
siderable labour is involved if all the S-function multiplications are carried out. 
However, many S-function products cannot yield partitions that satisfy the relation 
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(3) and thus in obtaining possible candidates for (A") we need only consider those 
products that can yield S-functions whose defining partitions satisfy the conditions 
(1) and (2). Indeed in many cases the selection of the (A") can be deduced by simply 
combining the S-function products {A} {A'} followed by the solution of some trivial 
linear Diophantine-type equations. In this way it became trivial to resolve the 
Kronecker products listed in Table 2 from just the information given in Table 1 using 
a small non-programmable hand calculator and carrying out only the simplest of 
Young tableau operations. The hand calculator was used primarily for checking the 
results. Inspection of the results in Table 2 shows that if the branching rules are 
known for all E8 irreps of power 3 and less, then all those of power 4 can be deduced. 

Plethysm 

(21")0 {3} 
(217) 0 {21 } 
(2F)0{l'} 
(2F)0 {4} 
(2F)0 {31} 

(2F)0 {22} 

(217) 0 {212} 

(2F)0W} 

Table 3. Symmetrized third and fourth powers of adjoint irrep of E8 

Evaluation 

(63 7)+(4362)+(3226)+(21 7) 
(5436)+ (43 62)+ (427)+ (3 8)+ (3(26)+ (271)+ 2(217) 
(43 35)+ (427) + (3226)+ (271) + (0) 
(847)+ (6463) + (543 6) + (43 35)+ (472) + 2(427) + (38)+ (271)+ (0) 
(7546)+ (646 3)+(63 7 )+(5W3)+ (547) + 2(5436)+ W3 2)+ (4')5)+ 3(4362) 

+ 2(427)+(38)+ 3{3(26)+ 2(271)+ 2(217) 
(6246)+ (6463)+ (547)+ (543 6)+ 2(4335)+ (472)+ (43 6 2) + 3(427) + (38)+ (3226 ) 

+3(271)+2(0) 
(65245)+ (63 7) + (5245 3)+ (547)+ 2(5436)+ W3 2 )+ (43 35)+ 3(4362) + (427) 

+ 2(38)+ 4(]226)+ (271)+ 3(217) 
W44 )+(5436 )+ (43 35)+(4362)+ (427)+ (3 8)+(271)+(21 7) 

Symmetrized Powers of Adjoint Irrep 

Following the methods outlined by Wybourne and Bowick (1977) it was possible 
from the preceding results to resolve the third and fourth powers of the adjoint irrep 
of E8 as listed in Table 3. The resolution of the Kronecker powers of an irrep (A) 
of dimension D A for a group G may be verified by noting that the evaluation of the 
plethysm (Wybourne 1970) 

(A)®{fl} = I kA,,{A"} (9) 

is equivalent to determining the branching rule for the {fl} irrep of UDA under the 
restriction of UDA --+ G (Butler and Wybourne 1969), in our case U248 --+ E8 • With 
this in mind we may simply use the two branching rule identities 

D(Jl) = I kA"DA" and I (n) - "k I(n) (Jl) - Pn L. A" A'" (10) 

The value of Pn may be fixed by knowing the reduction of the vector irrep {I} of 
UDA --+ G. In the present case, the eigenvalues of the second order Casimir operator 
for U., namely 

n (n )2 
C2(A) = In- 1 i~lA;(Ai+n+ 1-2i) -In- 2 i~l Ai , (11) 

were computed and these were then combined with D A to yield the results of Table 4. 
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Table 4. Basic properties of some U248 irreps 

{Ii } D{p) 2. 248 2 C2 60C2 • D{p)/(247. 248.249) 

{O} 0 0 
{l} 248 61503 60 
{2} 30876 163336 15000 
{P} 30628 122508 14760 
{3 } 2573000 185991 1882500 
{21 } 5084248 184503 3690060 
{P} 2511496 183015 1808100 
{4 } 161455750 248976 158130000 
{31 } 476648250 246992 463110000 
{22} 315223376 246000 305040000 
{212} 469021878 245008 452039760 
W} 153829130 243024 147058800 

Branching Rules for Subgroups 

Wybourne and Bowick (1977) have given the branching rules for all power-2 irreps 
of E8 for a number of maximal subgroups of interest. Inspection of their Kronecker 
products for E8 shows clearly that additional information is required to determine 
the branching rules for the (637), (3 8) and (43 62) power-3 irreps of E 8 • If these are 
known then the branching rules for all the power 4, and possibly all powers, follow. 

The problem for the E8 -+ SU9 decomposition was first solved by exploiting the 
Kronecker product (217)x(271) to give the terms in (4362)+(38), and the third 
symmetrized power (21 7)Q9{3} gave the terms in (637)+(436 2). Comparison of these 
two lists of SU9 irreps made it possible to assign some of the irreps to (637), (4362) 
and (3 8), leaving a common residue of terms. The method of elementary multiplets 
was next used to decide on the distribution of most of the remaining terms among 
the three E8 irreps. It was then possible to complete the resolution by solving some 
trivial Diophantine equations based on the two identities (10) to yield the results shown 
in Table 5a. 

The branching rules for E8 -+ SU2 X E7 proved somewhat simpler to derive, and 
the results are given in Table 5b. The branching rules for E8 -+ SU3 X E6 are of 
some interest as they are relevant to the E6 unified gauge model (Gtirsey et al. 1975; 
Achiman and Stech 1978). To obtain these it was noted that the E8 -+ SU2 X E7 
branching rules could be disassembled to give those for E8 -+ SU2 X SU6 xSU3 and 
then the SU2 x SU6 parts reassembled into irreps of E6 using the results from 
Wybourne and Bowick (1977) for E6 -+ SU2 X SU6. This was trivially done for the 
(3 8) irrep of E8 and then the results for (637) and (4362) were obtained by conventional 
methods. The results are given in Table 5c. These were checked both dimensionally 
and via the Dynkin index. In the latter case it was necessary to first calculate the 
values of the second and fourth Dynkin indices for SU3 x E6 • Here the tables of 
McKay and Patera (1977) were most useful. 

We may note that since the branching rules E8 -+ SU9 for the power-3 irreps of 
E8 are now known it would be possible to use them to obtain all Kronecker products 
of E8 involving products with p(A) :::::; 6. Indeed, we probably now have sufficient 
results to permit the building up of E8 products almost without limit. 
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Table 5. Branching rules for power-3 irreps of E8 

(A) Branching 

(a) Es -+ SU9 branching rules 

(3S) {3S H {3H {33241H {3214H {322PH {325)2H {326H {3216H {313H {3523} 
+ {32313H {322313H {3226H {316H {271H {21 H2{2215H {241 H {2414} 
+ {214H {22)2H {25)2H {2J1H WH {J3} 

(4362) {4362H {4216H {43251H {43324H {42413H {427H {342212H {32212H3{322J5} 

423 

+3{32512H2{3226H2{316H2{33241H2{3214H {33214H {3241H2{322313} 
+2{32313H {3523H {31 3H {32214H {32241 H {326H W16H {3621 H {321} 
+3{2414H3{214H 2{271 H2{21 H2{2313 H3{2215H2{22 12 H 2{2512} 
+ {241}+3{217H2{16H2{1 3} 

(4335) (4335H {4J5H2{43251H (423422H {42214H (42325H {4251 H {4362H {4216} 
+ {42413H {43324H {432214H {434221H {4322312H {427H {3S H {3} 
+2{3523H2{31 3H (351 3H {3213H {3423H {3223H2{3216H2{326} 
+3{322313H3{32313H3{32512H3{32215H {332212H {3222PH {33214} 
+ {3241 H (J42212H {322)2 H 2{33241 H2{3214H W214H {32241 H {3621} 
+ {321 H 2{3226H 2{316H 3{2313H4{2215H3{2414H3 {214H2{271 H2{21} 
+ {241 H {26H {23H2{2512H2{2212H2{217H2{16H2{13H to} 

(5436) {5436 H {5261 H {53522 H {53225 H {4362H {4216 H 2{43251 H 2 {43324H 2{42413} 
+ (423422H {42214H (42325H {4251H2{4322312H {432214H {434221} 
+ {43512H {43215H2{427H {3521H (3221 H2{342212H2{32212H2(3226} 
+2{316H3(33241 H3{3214H {3222)2H (332212H2{33214H2{3241} 
+3{322313H3{32313H {3313H (3323H {3621H {321H (3523H {31 3H {326} 
+ (321 6H 2{32241 H2{32214H5{32512 H5{32215 H 2{271 H2{21 H2{241} 
+4{2414H4{214H 2{26H2{23H4{2215H3{2512 H3{2212 H4{2313} 
+4{217H3{16H3{13} 

(63 7) {637 H {53225 H {53522 H {43512 H {432J5 H {43324H {42413 H {4322312 H {43251} 
+ {427H {36H {33H {3313H (3323H {342212H {32212H {33214H {3241} 
+ {322313H {32313H2{32512H2{322J5}+ {32241 H {32214H {3226H {316} 
+ {2512H {2212H {26H {23H {2414H {214H3{2313H {22PH {217H2{1 6} 
+2{J3H{0} 

(b) Es -+ SUz X E7 branching rulesA 

(3S) 4(27)+3[(3225)+(2512)+(216)]+2[(3423)+(3251)+(27)+(16)]+ 1[(362)+(2512)+(216)] 

(4362) 5(21 6)+ 4[(3251)+ (27)+ (16)]+ 3[(426)+ (3 62)+ (3225)+ (26)+ 2(2512)+ (216)+ (0)] 
+ 2[(436)+(3521)+ (3423)+ 2(3251)+ 2(27)+ 2(16)]+ 1[(43422)+(362)+(3225)+ (26) 
+(25)2)+2(216)] 

(4335) 5(2512)+4[(3423)+(3251)+(27)+(16)]+ 3[(43422)+(362)+2(3225)+(26)+(2512)+2(216)] 
+ 2[(423422)+ (436)+(3521)+ (3423)+ 2(3251)+ 2(27)+ (1 6)]+ 1[(4334)+(4351) 
+(426)+(362)+(3225)+2(2512)+(0)] 

(5436) 6(1 6)+5[(26)+ (2512)+ (216)+(0)]+4[(3521)+ 2(3251)+ (27)+ 2(16)]+ 3[(4351)+(43422) 
+ (426)+ (3 62)+ (3225)+ 2(26)+ 2(251)+ 2(21 6)+ (0)]+ 2[(5352)+ (42342)+ (436) 
+ (3 6)+ (3521) + (3423) + 3(3251)+ (27) + 2(16)] + 1[(5435)+ (4351) + (43422)+ (426) 
+(362)+(3225)+(26)+(2512)+(216)] 

(637) 7(0)+ 6(16)+ 5[(26)+ (21 6)]+ 4[(36)+ (Wl)+ (1 6)]+ 3[(4351)+ (426)+ (26)+ (2512)+ (0)] 
+ 2[(5352)+(3521)+(3251)+ (1 6)]+ 1[(636)+(43422)+ (26)+ (21 6)] 

A The left superscript in this table corresponds to the dimension of the relevant SU2 irrep. 
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Table 5 (Continued) 

(A) Branching 

(c) E8 ---> SU3 X E6 branching rules 

(38) {32}[(1 : 1)+ (14 : 2)]+ {31 }[(15 : 1)+(1 2 : 2)]+ {32}(0: 2)+ {3 }(O: 2)+ {21 }[2(0: 0)+ 2(0: 2) 
+ 2(214 : 2)+ (1' : 3)]+ {2 }[2(1 : 1)+ (14 : 2)+ (1 : 3)]+ {22 }[2(15 : 1)+ (12 : 2) 
+(1': 3)]+ {I }[2(15: 1)+(2: 2)+ 2(1': 2)+(1': 3)+(21': 3)]+ {p }[2(1 : 1) 
+(25: 2)+2(14: 2)+(1: 3)+(221': 3)]+ {0}[2(0: 2)+(214 : 2)+(21: 3) 
+(241: 3)] 

(43 6 2) {43}(1' : 1)+ {41}(1 : 1)+ {42}[(0: 0)+ (0: 2)]+ {32 }[(O: 0)+ (0: 2)+(214 : 2)]+ {3 }[(O: 0) 
+(0: 2)+(214 : 2)]+ {32}[3(1 : 1)+(25: 2)+2(14: 2)+(1: 3)]+ {31 }[3(J5: 1) 
+ (2: 2)+ 2(F : 2)+ (15 : 3)]+ {21 }[3(0 : 0)+ 5(0: 2)+ 5(214: 2)+ 2(13 : 3) 
+(21 : 3)+ (241 : 3)+ (0: 4)]+ {2}[3(1 : 1)+(25 : 2)+ 3(14: 2)+ 2(1 : 3)+(221' : 3)] 
+ {22 }[3(1' : 1)+ (2: 2)+ 3(p : 2)+ 2(1' : 3)+ (21' : 3)]+ {I }[5(1' : 1)+ 2(2: 2) 
+ 4(1' : 2)+ 3(15 : 3)+ 2(21' : 3)+ (324 : 3)+ (p : 4)]+ W}[5(1 : 1)+ 2(25 : 2) 
+4(14: 2)+3(1 : 3)+2(22 13: 3)+(314 : 3)+(14: 4)]+ {O}[(O: 0)+3(0: 2) 
+ 3(214 : 2)+ 2(13 : 3)+ (21 : 3)+ (241 : 3)+ (214 : 4)] 

(4335) {43}[(J5: 1)+(F: 2)]+ {41 }[(1 : 1)+(14: 2)]+ {42}[(0: 0)+(0: 2)+(214 : 2)]+ W}(1 : 1) 
+ {4 }(15 : 1)+ {3 2 }[(O: 0)+ 2(0: 2)+ (214 : 2)+ (1' : 3)]+ {3 }[(O: 0)+ 2(0: 2) 
+(214 : 2)+(13: 3)]+ {32}[3(1: 1)+3W: 2)+(25: 2)+2(1: 3)+(22 13: 3)] 
+ {31 }[3(15 : 1)+ 3(1 2 : 2)+ (2: 2)+ 2(15 : 3)+ (21 3 : 3)]+ {21 }[2(0 : 0)+ 6(0: 2) 
+6(214 : 2)+2(21: 3)+ 2(241: 3)+3(1': 3)+(0: 4)+(214 : 4)]+ {2}[(15: 1) 
+3(1: 1)+3(14: 2)+2(25: 2)+(221': 3)+3(1: 3)+(314: 3)+(14 :4)] 
+ {22 }[(1 : 1)+ 3(15 : 1)+ 3(p : 2)+ 2(2: 2)+ (21' : 3)+ 3(1' : 3)+ (324 : 3) 
+(p: 4)]+ {I }[(1: 1)+3(1' :1)+5(F :2)+2(2: 2)+3(21': 3)+4(1': 3) 
+(324 : 3)+ (1' : 4)+ (2: 4)+ (23 l' : 4)]+ {P}[J5 : 1)+ 3(1 : 1)+ 5(14 : 2) 
+2(25: 2)+3(221': 3)+4(1: 3)+(324 : 3HW :4)+(25: 4)+(21': 4)] 
+ {0}[2(0: 0)+ 2(0: 2)+4(214 : 2)+2(1': 3)+(21: 3)+(241: 3)+(3: 3) 
+(35: 3)+(0: 4)+(214 : 4)+(221': 4)] 

(543 6 ) {54 }(O: 0)+ {51}(0: 0)+ {53}(1 : 1)+ {52}(J5: 1)+ W}(1 : 1)+ {4}(J5: 1)+ {43 }[2(J5: 1) 
+(F : 2)+(2: 2)]+ {41 }[2(1 : 1)+ W: 2)+ (25: 2)]+ {42}[2(0: 0)+ 2(0: 2) 
+2(214 : 2)]+ W }[(O: 0)+2(0: 2)+2(214 : 2)+(21: 3)]+ {3}[(0: 0)+2(0 :2) 
+2(214 : 2)+(241: 3)]+ {32}[(1': 1)+4(1: 1)+2(25: 2)+3W: 2)+3(1: 3) 
+(221': 3)+(314: 3)]+ {31 }[(1 : 1)+4(1': 1)+2(2: 2)+3(F: 2)+3(1': 3) 
+(21 3: 3)+(324 : 3)]+ {21}[4(0: 0)+6(0: 2)+8(214: 2)+2(21: 3)+2(241: 3) 
+4(13: 3)+(3: 3)+(35: 3)+2(0: 4)+2(214 : 4)]+ {2}[(1': 1)+3(1 : 1)+3(25: 2) 
+4(F: 2)+3(1 : 3)+ 2(221': 3)+(314 : 3)+W: 4)+(25: 4)]+ {22}[(1 : 1) 
+3(15: 1)+3(2: 2)+4(p: 2)+3(1': 3)+ 2(21': 3)+(324 : 3)+(F: 4)+(2: 4)] 
+ {I }[2(1 : 1)+ 3(1' : 1)+ 3(2: 2)+ 5(F : 2)+ 6(1' : 3)+ 3(21' : 3)+ 2(324 : 3) 
+2(F: 4)+(2: 4)+(231': 4)+(1': 5)]+ {P}[2(1': 1)+3(1 : 1)+3(25: 2) 
+5W: 2)+6(1: 3)+3(221': 3)+2(314 : 3)+2(14 :4)+(25: 4)+(21': 4) 
+(1 : 5)]+ {0}[4(0: 2)+4(21 4 : 2)+2(21: 3)+2(241: 3)+2(1': 3)+2(0: 4) 
+2(214 : 4)+(1': 5)] 

(6]1) {63 }(O: 0)+ {53}(1 : 1)+ {52}(15: 1)+ {43 }[(15: 1)+(2: 2)]+ {41 }[(1 : 1)+(25: 2)] 
+ {42}[(0: 0)+(0: 2)+(214 : 2)]+ W}[(O: 0)+(214: 2)+(3: 3)]+ {3 }[(O: 0) 
+(214 : 2)+(35: 3)]+ {32}[(1': 1)+(1: 1)+(25: 2)+W: 2)+(1: 3)+(314 : 3)] 
+ {31 }[(1 : 1)+ (1' : 1)+ (2: 2)+ (F : 2)+ (1' : 3)+ (324 : 3)]+ {21 }[(O : 0)+ 2(0: 2) 
+3(214 : 2)+(21: 3)+(241: 3)+(0: 4)+(214 : 4)]+ {2}[(1': 1)+(25: 2)+(14: 2) 
+(1: 3)+(221': 3)+(25: 4)]+ {22}[(1 : 1)+(2: 2)+(F: 2)+(15: 3)+(21': 3) 
+(2: 4)]+ {I }[(1 : 1)+(1': 1)+(2: 2)+(p: 2)+2(1': 3)+2(21': 3)+(324 : 3) 
+W :4)+(15: 5)]+ {P}[(1': 1)+(1: 1)+(25: 2)+(14: 2)+2(1: 3)+2(221': 3) 
+(314 : 3)+(14: 4)+(1 : 5)]+ {O}[(O: 0)+(0: 2)+(214 : 2)+2(1 3 : 3)+(214: 4) 
+(0:4)+(0:6)] 
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Application to Unified Gauge Theories 

The application of the exceptional groups to possible unified gauge theories has 
been considered by a number of authors. Giirsey and his associates (Giirsey et al. 
1975; Giirsey and Sikivie 1976; Sikivie and Giirsey 1977) have considered models 
based on E7, while a detailed study of a vector-like E7 model has been made by Ramond 
(1976, 1977). The weak interaction angle sin20w = t + O(e2 jgD is strongly in conflict 
with experiment (note that we include D'yakonov's (1977) correction to earlier 
published values of !). The vector-like E7 model is also in serious error in its failure 
to recognize properly the consequences of choosing a symplectic-type irrep (16) of 
E7 to embed fermions. Consistent usage requires that the representation be doubled; 
a model using such a doubled representation has been discussed by Gell-Mann et al. 
(1978). Nonvector-like E6 gauge models remain consistent with most experimental 
data (Achiman and Stech 1978). 

Gell-Mann et al. (1978) have determined all Lie groups G that can be written in 
the direct product to 

G ~ SU~ X Gfl , 

where SU'?, x Gfl is a maximal subgroup of G, with Gfl the group of flavours and 
SU'?, the assumed exact colour gauge group of QCD. In choosing G they restricted 
their attention to groups whose fermion representations involved only triplets, anti­
triplets and singlets of colour. This restriction excluded Es from their considerations. 
Possibly such a restriction is excessively severe since octets and sextets of colour arise 
naturally in SOs supergravity models (Gell-Mann 1977; Gell-Mann et al. 1978). 

In the case of Es ~ SU'?, X E6 , we would have in the fermionic (217) irrep of E8 
a colour octet of flavourless states, 27 coloured quarks and anti quarks and 78 colour­
less leptons. In the bosonic (217) irrep there would be the expected 8 gluons of the 
colour octet, 27 leptoquarks and anti quarks and 78 colourless vector bosons. Again 
we note that in any supersymmetric theory, even for N = 1, we have colour octets 
of both fermions and bosons. Detailed discussion of possible Es models is premature 
and must await further developments in theory and experiment. 

Concluding Remarks 

The problem of resolving Kronecker products of Es irreps and branching rules 
to the principal maximal subgroups of Es has been solved to the extent of possible 
applications in physics. Sufficient information has been given to permit a considerable 
extension if required. It would seem to be important that physicists have available 
to them at least a sketch of the basic properties of Es, and this has been the aim of the 
present work. 
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