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Abstract 

The transport and diffusion of neutrally buoyant, conservative contaminants in an open, finite 
depth channel is analysed at times before uniform mixing over the depth has occurred. Analytical 
expressions for the total mass at a given depth, the centre of mass and the variance of the contaminant 
patch are presented. 

1. Introduction 

The transport and diffusion of a contaminant in a shallow, wide open channel is 
analysed. The current field is horizontally uniform and any horizontal boundaries 
are far enough from the release position that the contaminant does not interact 
with the boundaries within the times considered. The flow may thus be considered 
two dimensional and such a model could be applied to estuaries or coastal waters 
with a well-defined current field and negligible secondary circulation. This is often 
the case when the predominant currents are tidally driven and the coastline or 
embayment geometry simple. 

The vertical current profile is modelled by a power law variation. This formulation 
has been suggested as a good approximation to the actual shear distribution in a 
channel, and has the advantage of making the problem tractable analytically 
(Fukuoka 1973). In fact the power law has been shown to be a valid approximation 
for a wide range of naturally occurring boundary layer flows and also well represents 
the velocity in the region of the bottom boundary. The wall region of a boundary 
layer has been shown to be well described by Prandtl's If7th power law (Hinze 1959; 
Schubauer and Tchen 1961), although this law slightly overestimates the fluid velocity 
near the wall. 

The vertical diffusivity profile is also assumed to vary according to a power law 
formula. Reynolds analogy is assumed to hold and this leads to a specific relationship 
between the exponents in the power laws for the velocity u(z) and the diffusivity 
Kziz). As pointed out by Csanady (1973), the choice of a diffusivity profile amounts 
to a guess of the properties of the concentration field and may lead to erroneous 
conclusions. The final arbiter must be the model's ability to reproduce any existing 
experimental data; however the author feels that the choice of a power law is at 
least better than the constant velocity and diffusivity assumption. 

Theoretical analyses of diffusion in an open channel have mainly extended the 
asymptotic treatment by Taylor (1953, 1954). Aris (1956) derived the same results 
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as Taylor in terms of the integral moments of the concentration distribution. Elder 
(1959) extended Taylor's work to turbulent flow and conducted a series of experiments 
on dye diffusion in a flume. Before the asymptotic stage had been reached, Elder 
observed a skewed longitudinal concentration distribution characterized by a long 
upstream tail. Elder attributed the formation of a tail to the retentive effects of the 
viscous sub layer, although no theoretical analysis was done (see Appendix). 

Surface 

K zz oc z6!7 
H 

u oc z1!7 

z 

L 
x 

Fig. 1. Schematic representation of the velocity u and diffusivity Kzz profiles. 

The reason for the skewness for small diffusion times may be intuitively understood 
from Fig. 1. After release the motion of a tracer patch is influenced by the velocity 
profile which is nearly uniform over most of the depth but has a large gradient near 
the bottom boundary. Consequently the tracer will develop a long tail as material is 
transported from the uniform velocity region towards the bottom. The time of onset 
of tail formation will depend on the release position and the rate of vertical transport. 
Eventually the longitudinal concentration distribution approaches the gaussian 
limit when the tracer is uniformly distributed over the depth. This approach to 
normality has been studied by Chatwin (1970) in an analysis ofPoiseuille flow in a pipe. 

The non-asymptotic stage of diffusion in a channel has not been treated analytically, 
with the exception of Okubo (1967) who considered a linear velocity profile and 
constant diffusivity. Experimental data on the non-asymptotic diffusion of dye 
in a flume has been gathered by Sullivan (1971); however, depth integrated concen­
trations were measured and thus no vertical concentration distribution was recorded, 
which is often of interest in environmental considerations. Sullivan identified three 
stages in the longitudinal diffusion process, depending on the degree of mixing over 
depth. The object of the present work is to obtain analytical expressions for the 
integral moments of the concentration distribution at times less than the vertical 
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mixing time. The vertical mixing time may be comparable to the tidal period in 
some instances; however, for simplicity, the current field is assumed to be steady 
in this analysis. 

For non-asymptotic diffusion times, the vertical discharge location influences 
the pollutant concentration distribution downstream. Thus the depth positioning 
of a proposed outfall may be tested by the model. The results indicate that for a 
discharge position close to the bottom, almost the entire release mass will reside 
in the lower half of the channel for short diffusion times. This prediction must be 
related to the greater longitudinal spreading ability of the lower layer, and a trade-off 
between toxicity effects on the benthos in the vicinity of the outfall versus long-term 
contaminant dilution must be made in a particular case. 

2. Moments of Concentration Distribution 

In order to allow for an analytical treatment the following assumptions are made: 

(1) the flow is considered two dimensional and any horizontal variations are 
neglected; 

(2) the vertical velocity profile is well represented by a power law; 
(3) Reynolds analogy holds which implies a power law variation for the vertical 

diffusivity; 
(4) the tracer is released instantaneously at a point (0, zo); 
(5) the depth of the channel is a constant. 

The coordinate system is chosen so that the x-axis is parallel to the current, the 
y-axis across the current and the z-axis vertically upwards (see Fig. 1). If we ignore 
lateral diffusion, the convective-diffusion equation may be written 

OC DC (PC 0 ( OC) 
-;- +(azm)-;;- = Kxx-;Z +:;- Kzz;- , 
ut ex uX uz uz 

where a is a constant. The initial and boundary conditions are given by 

C(X,z,t=O) = M(j(x) (j(z-zo), 

Kzz ocjoz = 0, at z = ° and H, 

c(x, z, t) -+ 0, as x tends to infinity, 

(1) 

(2a) 

(2b) 

(2c) 

where H is the channel depth (see Fig. I) and M the release mass. If Reynolds 
analogy is applicable then Kzz = T(dujdz)-l, where T is the kinematic shear stress. 
In an open channel flow driven by a constant pressure gradient, the shear stress is 
given by (Fukuoka 1973) T = U*2(l -zjH), where u* is the frictional velocity. 
This leads to Kzz = bz1 - m(l -zjH); however, since the velocity shear is greatest 
near the channel bed (Fig. 1), it is reasonable to assume that 

Kzz = bz1 - m , b = u*2jma, where 0< m < I. (3a, b) 

Equation (1) proves to be too formidable for a direct analytical solution but it 
is possible to derive from it more manageable equations for the moments of the 
concentration distribution using the method of Aris (1956). The pth moment of the 
concentration distribution at a depth z and time t is defined by 

Biz, t) = f~oo xP c(x,z, t) dx, (4) 
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with p = 0,1,2, .... Integrating equation (1) over x and applying the boundary 
condition (2c) gives 

iHyo = ~(K oeo) 
ot oz zz oz ' 

(5) 

where eo(z, t) the zeroth moment is the total amount of material that has reached 
a given depth z after time t. As was pointed out by Saffman (1962), eo is independent 
of the current profile u(z) since, although the distortion of the patch by the shear 
increases for vertical concentration gradients, it does so for both positive and negative 
gradients. Thus, there is no net effect on total vertical transport of material. The 
associated boundary conditions are given by 

eo(z, (=0) = M 8(z-zo); KzJ}e%z = 0, at z = ° and H. (6a, b) 

Multiplying equation (1) by x and integrating gives 

oe1_~(KzzOe1) = u(z)eo(z,t), 
ot oz oz 

(7) 

where the first moment defines the centroid of a patch slice by the relation 

x(z,t) = e 1(z,t)/eo(z,t). (8) 

Equation (7) must be solved subject to the initial and boundary conditions 

e1(z, t=O) = 0, Kzz oe1/oz = 0, at z = ° and H. (9a, b) 

Multiplying equation (1) by xZ, integrating and applying the boundary conditions 
gives the equation for the second moment 

oez _ ~(Kzz o~z) = 2Kxx eo +2u(z) e 1, 
ot oz oz 

(10) 

which must be solved subject to conditions analogous to equations (9). Similarly, 
the equations for the higher order moments may be derived if required. The variance 
of the patch slice at depth z and time t is given by 

a;(z,t) = e z(z,t)/e o(z,t)-{e1(z,t)/eo(z,t)}z. (11) 

Alternatively, a less detailed treatment of the patch statistics may be carried out 
by defining the depth integrated moments 

cpp(t) = f: eiz, t) dz. (12) 

Then the centroid of the entire patch is given by 

x(t) = CP1/M, (13) 

where CP1 is obtained by integrating equation (7) over the depth. The variance of 
the entire patch is defined by 

17;(t) = (cpz/M)-(CP1/M )Z, (14) 

and CPz is obtained by integrating equation (10) over the depth. 
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3. Solution for Zeroth Moment 

The Laplace transform of 8 0(z, t) is defined as 

eo(z, w) = too eo(z, t)exp( -wt) dt. (15) 

Multiplying equation (5) by exp( - wt), integrating and applying the initial condition 
gives 

d ( deo) -- Kzz - -weo = -M <5(z-zo). dz dz (16) 

This non-homogeneous equation can be written in an equivalent form that does 
not involve the delta function (Stakgold 1968). Thus, we have 

d ( deo) -dz Kzz dz -weo = 0, for ° < z < Zo and Zo < z< H, (17a) 

eo(z=zo+) = eo(z=zo-), (17b) 

deo I _ deo I - -~ 
dz Z=Zo+ dz z=zo- - Kzz(zo) ' (17c) 

where equation (17b) represents the continuity requirement on eo at z = zo, and 
(l7c) gives the jump condition that must be satisfied by the derivatives of eo. 

Substituting for Kziz) in equation (17a) and simplifying gives 
2- -

2 d eo deo w 1+ -Z -- +(l--m)z- - -z meo = 0. dz2 dz b (18) 

By comparison with Bessel's equation the general solution of (18) may be written as 

eo(z, w) = AztmIvC¢) + Bztm LvC¢), (19) 

where A and B are constants to be derived by application of the boundary conditions 

v=m!(l+m), ¢ = (w!b)t2zt (1+m)!(1+m) = kwt , (20a, b) 

and Iv denotes the modified Bessel function of the first kind of order v. From equations 
(20a) and (3a) the value of v is in the range ° < v < 1-

The solution given in equation (19) must satisfy the boundary conditions 

Kzz(z)aeo!az = 0, at z = ° and H. (21) 

Differentiating eo and applying the limiting form of the Bessel function for small 
argument, that is, 

IvC¢) --+ (1¢y!r(1+v), as ¢ --+ 0, (22) 

where r is the gamma function, yields the solution that satisfies the boundary 
condition at z = 0, namely 

e01(z,w) = Bl ztmLvC¢), (23) 

for ° :::::; z < Zo and Bl a constant. 
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Next the boundary condition at z = H must be considered. Differentiating 

equation (19) and setting the resultant expression, evaluated at z = H, equal to zero 

gives the solution that satisfies the boundary condition at the surface. This is given by 

6 0iz, w) = B2 ztm{Iv _ 1(¢H) LvC¢) -I1 - v(¢H) Iv(¢)}, (24) 

for Zo < z < Hand B2 a constant, and 

¢H = (w/b)t2H H1 +m)/(1 +m) = hwt. (25) 

The constants Bl and B2 are determined by matching the two solutions 6 01 

and 602 at z = Zo0 The continuity and jump conditions given in equations (l7b) 

and (17c) yield the following set of linear algebraic equations in the unknowns Bl 

and B2 : 

deo1 de02 M 
-B1 - d- +B2 - d- = b l-m· (26a, b) 

Z Z Zo BleOl(ZO)-B2e02(ZO) = 0, 

These equations have a unique solution if and only if the determinant of the coefficients 

is nonzero. In fact this determinant is the Wronskian of 6 01 and 6 02 evaluated 

at Zo, and since the two solutions are independent their Wronskian cannot vanish. 

Thus equations (26) can be solved to give 

where 

Bl = r[{IV-l(¢H) LvC¢zo) -I1 -vC¢H) IvC¢zo)}/I1 -vC¢H)], (27a) 

B2 = rLv(¢zo)/I1 -vC¢u), (27b) 

Mnztm 
r=, 

b(l + m) sin vn 

A-. _ (wjb)t2zH1 +m) 
lPzo _ 0 l+m = lwt (2Sa, b) 

Thus the final solution for 6 0(z, w) becomes 

60(z, w) = BlztmLvC¢), 0 < Z < Zo (29a) 

= B2 Ztm{IV_l(¢H) LvC¢) -I1-vC¢u)IvC¢)}, Zo < Z < H. (29b) 

The inversion theorem for the Laplace transform states that 

0 0(z, t) = -. exp(wt) 80(z, w) dw, I jY+i", 
2nl y-i", 

for t > 0, (30) 

where y is such that all singularities of 6 0 lie to the left of the line (y - i 00, y + i (0). 

The inversion integral is now evaluated for the two domains for which 6 0(z, w) is 

defined. 

Domain 0 < Z < Zo 

Substituting for 60 from equations (29) in equation (30) gives 

rztm fY+ioc> Lv(¢) 
0 0(z,t) = -2. . exp(wt)I (¢ , {Lv(¢zo)Iv- 1(¢H) 

nl Y-l'" l-v H 

-IvC¢zo)I1 -vC¢H)} dw, (31) 

with ¢H = hwt, ¢zo = lwt and ¢ = kwt, where h, k and I are constants. The 

integrand in equation (31) can be shown to be a single-valued function of w (Watson 
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1958). It has simple poles at w = ° and -a;;/h2 , where ±:Xn> n = 1, 2, ... , are the zeros, all real and simple, of J 1 _ vC a) = 0, where J v is the Bessel function of the first 
kind of order v. Since v is real, the zeros of Jv are symmetric with respect to the 
coordinate axes (Erd6lyi lit al. 1953). Hence only the positive values of an will be 
considered. 

B' 
B 

D 

---- ----·A 
'A' 

Fig. 2. Contour C used in 
evaluation of the integral in 
equation (31). 

In order to evaluate the contour integral in equation (31) the procedure outlined 
in Carslaw and Jaeger (1959) is adopted. The contour is completed by a large circle 
C of radius R (see Fig. 2) such that no pole of the integrand lies on C. From the 
theory of Bessel functions of order in the range t to t (Watson 1958), the only 
positive zeros of J1 -vCa) lie in the intervals {mn+tG--v)n, mn+-!-G-v)n}, with ° <: v < -!- and m = 0, 1, 2, .... Hence if R is set equal to m 2n2 / h2 then no pole of the 
integrand lies on C. 

Since the integrand is regular on C and in the whole w-plane except for simple poles on the real axis, then Cauchy's Residue Theorem is applicable. Thus, from 
Fig. 2 we have 

f exp(wt) eo(z, w) dw = f exp(wt) eo(z, w) dw + f exp(wt) eo(z, w) dw. (32) C AD DDA 

When R tends to infinity the integral over the arc BDA tends to zero, and thus 

eo(z, t) = ~ ztm lim f F(w) dw = rztm f res{F(w), wp }. (33) 2nl R--+oo AD p 

If we evaluate the residues at w = ° and -a;;/h2 , the final solution for the zeroth 
moment in the domain ° :::::; z < Zo becomes 

M M(l+m) 1 00 eo(z, t) = H + H1+m (zzo},m P!;l exp( -ta;lh2)L v{(zIH)t(1+m)ap } 

x Lv{(zo/H)t(l +m) ap }/{Lv(ap )}2 . (34) 
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Domain Zo < z ~ H 

The analysis proceeds exactly as above and since the first term of the integrand 
in this case is identical to the first term in F(w) above, and the contribution from the 
second term is identically zero, the evaluation of the residues yields the same final 
solution for Bo(z, t). 

Hence the solution given in equation (34) in fact holds over the entire z domain, 
that is for ° ~ z ~ H. The solution has the correct asymptotic behaviour in that 
as t tends to infinity the second term in equation (34) tends to zero. Thus we have 

lim Bo(z, t) = MIH, (35) 
t-+ co 

which states that the tracer is uniformly distributed over the depth at large times. 
The factor h2 in equation (34) has dimensions of time and may be interpreted 
as the vertical mixing time Tm. From equation (25) h2 is given by 

h2 = Tm = 4Hl+mjb(1 +m)2. 

4. Solution for First Moment 

Equation (7) may be re-written as 

oB t 0 ( OBt) Tt- OZ Kzz(z)Tz = q(z,t), 

(36) 

(37) 

where q(z, t) = u(z) Bo(z, t) is considered to be a source term. The conditions to 
be satisfied by Bt(z, t) are given in equations (9). Applying Green's theorem to 
equation (37) and using the boundary conditions gives 

B 1(z,t) = f~f: G(z,t;z/,t')q(z',t')dz'dt', (38) 

where G (z, t; Zl, t ') is the causal Green function which can be shown to satisfy the 
boundary value problem 

~~ - :z(Kzz~~) = <5(Z-Z/)(j(t-t '), -00 < t,t ' < 00, 0< Z,Z' < H; (39a) 

G(Z,t;z',t') =0, t < t'; KzzoGjoz = 0, at z = ° and H. (39b,c) 

Now the Green function for t > t I can equally well be characterized as the solution 
of the following problem (Stakgold 1968): 

!!E. _ !... (K OG) = 0' at OZ Z% oz ' 
(40a) 

lim G(Z,t;z',t') = (j(Z-Z'); KzzoG/oz = 0, at z = ° and H. (40b,c) 
t~t' 

By comparison with the problem for Bo(z, t) given in equations (5) and (6) the 
Green function may be shown to be given by 

G(Z,t;z',t') =M-1 B o(z,t-t '), fort> t'. (41) 
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Substituting into equation (38) gives 

e l(z,t) = M- l I~IoH eo(z,t-t')q(z',t')dz'dt'. (42) 

Carrying out the integrations indicated and simplifying yields the expression for 
the first moment 

e (z t) = +4MHt(m-2)aztm ~ -- +v~v J (~) ~v+2 MHm-1at 00 [{( 2V 
)/} 

1 'l+m 0 /;:1 r(-V) p -v p p 

J v{(zo/H)t(1 +m)~p} h2 (1- exp( _ t~;/h2»)] 
x {LvC~pn2 ~; 

+4MHt(m-2)aztm P~l [{ (r(~v) +V~;LvC~p») / ~;+2} 

Lv{(z/H)t(l+m)~p} h2 (1- (_ 2/h2»)] 
x {J- ()}2 2 exp t~p 

-v ~p ~p 

M 00 00 { 

+ H 2(1 + m)a(zzo)tm n~1 P~1 J _v{(Z/H)t(l +m)~n} 

J {(z /H)-H1+m)~ } ( h2 

x -:v t) _ ( ni Jnp texp(-ta;/h2)+---z=-i 
-v ~n J -v ~p IXn IXp 

x (1- Jnp){exp( - tIX;/h2) - exp( - t~;/h2n) 

x Sol dk k2v + 1 LvCk~n)J -vCk~p)}, (43) 

where Jnp is the Kronecker delta. The integrals over k in the last term could not 
be evaluated analytically; they were however computed numerically using a Gauss 
16 point quadrature. 

The asymptotic behaviour of the centroid of the patch can now be deduced from 
equation (8). Substituting for the first and zeroth moments evaluated at large times 
gives 

x(z, t-+CIJ) = Hmat /(m+ 1) + C, (44) 

where C is a constant independent of time. Thus the centroid moves asymptotically 
with the depth mean velocity, which is as expected since the tracer is uniformly 
distributed over the depth at large times. 

5. Statistics of Entire Patch 

Integrating equation (7) over the depth and applying the boundary conditions gives 

0cI)1 = I H u(z) eo(z, t) dz . at 0 
(45) 
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Integrating over z and t yields the expression for the depth integrated first moment 

MHmat 'm ~ [{( 2v 
v )/ +2} tP1(t) = +4Ma(HzoY" L... -(_) +vcxnLv(cxn) cx~ 

1 +m n=1 F v 

J v{(zo/H)t(1+m)cxn} ~(1-eXp(-cx;t/h2»)]. 
x {LvCcxn)}2 cx; 

(46) 

The centroid of the entire patch is given by equation (13) with tP1(t) as above. It 
is noted that this result could have also been derived by integrating the expression 
for the first moment given in equation (43) over the depth. 

The depth integrated second moment can be derived from equation (10) by 
integrating with respect to z to give 

atP JH 0/ = 2 0 {Kxx e o(z,t)+u(z)e 1(z,t)}dz. 

Since the contribution of longitudinal diffusion to the variance will be small compared 
with that of shear diffusion, the diffusivity Kxx will be modelled for simplicity as a 
constant independent of z. Carrying out the integration over z and then integrating 
over t gives 

MH2ma2t 2 
tP2(t) = 2KxxMt+ ., 

3m/2 00 [{( 2v 
v (»)/ V+2} + 8MH a2ztm Pf,l r( -v) +vcxpLv cxp cxp 

J v{(zo/H)t(1+m)cxp} K (t- K {l-exp( - t /Kp)})] x 2 p p 
{LvCcxp)} 

32MH2m 
co [{( 2V )2/} +. a2 Pf,1 F( -v) + VCX;Lv(cxp) CX;v+4 

x. K p ., (t-Kp{l-eXp(-t/Kp)})] 

+16MH3m/2a2ztm f f [{(~+VCX~J_iCXn»)/·CX~+2} 
n=1 p=1 F( -v) 

J _v{(ZO/H)t(1 +m)CXp} { 2 
X • () ()y bnpKn{1-(l +t/Kn)expJ-t/Kn)} 

-v CXn J -v CXp 

KnKp (T )} +(l-bnp) _ Knexp(-t/Kn)-Kpexp(-tJKp)+Kp-Kn 
Kp Kn 

X lo1 dk k2v + 1 LvCkcxn) LvCkCXp)] , (47) 

with Kn = h2/cx; and Kp = hZ/cx;. The variance of the entire patch is given by equation 
(14) using this expression for tP2(t). 
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The effective longitudinal diffusivity (also termed the longitudinal dispersion 
coefficient) is defined as the rate of growth of the variance: 

K =! dE; = _1_ (d<P2 _ 2<Pl d<P 1) 

eff 2 dt 2M dt M dt . 
(48) 

Substituting for <P2 and <Pl from equations (47) and (46) respectively gives 

H2ma2t 4H3m/2 
00 [{ ( 2v ) 1 } 

Keff = Kxx + ,< .,2 + 1 +m a2zitm PJ;l r( -v) +voc;Lv(ocp) OC;+2 

L v{(zoIH)!-(l +m)ocp} K p(l-eXp( _ t IKp»)] 
x {Lv(OCp)}2 

16H2ma2 
00 [{( 2V )2/} +. PJ;l r( -v) +voc;LvCocp) OC;v+4 

x. Kp _" (l-eXp(-t IK p»)] 

+8H3m/2a2Z3m f f [{(~ +vOC~Lv(OCJ)/oc~+2} 
n=l p=l r( -v) 

J {(z IHfH1 +m )oc } ( K K 
x -:v 0 ..! Dnptexp(-tjKn)+(l-Dnp)-n_P 

x {exp( -tIKp)-exp( -tIKn)}) Iol dk k2v+1 LvCkocn) LvCkOCp)] 

<P 1(t) (Hma tm ~ [{( 2v 
v ) 1 V+2} - -- -1- +4a(Hzo) L. ---=-) +vocnJ-vCocn) OCn 

M +m n=l r( V 

Lv{(zol n exp(-tIKn) • H)!-(l+m)OC} ]) 

X {LvCocn)V 
(49) 

After substituting again for <P1(t) from equation (46), the terms that depend on t 
linearly cancel, and thus the longitudinal spread of the tracer due to the shear effect is 
asymptotically governed by a constant effective diffusivity. This result agrees with 
the coridusions of Okubo (1967). 

6. Discussion and D1ustration of Theoretical Results 

For the purposes of illustration the following values are chosen for the constants 
in the formulae for the velocity and diffusivity profiles: 

m = 1/7, u* = 0·006 ms-1 , Uav = 0·3 ms- 1 • 

With these values the constants a and b, defined in equations (1) and (3b), are 
calculated to be 

a = 0·25 m6/ 7 S-l , b = I'02x 10- 3 m8/7 S-l. 
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Hence, the vertical mIxmg time as defined in equation (36) has the value 
T m = 3·8 X 104 s, for a channel of depth 10 m. 

The theoretical predictions for the amount of mass that has reached a given 
depth after a time t are computed from equation (34). The results are displayed in 
Fig. 3 for a point source released at Zo = o· 01 H, 0·5 Hand H respectively. The 
large velocity gradient in the bottom region of the flow, coupled with the small 
value of the vertical diffusivity in this region, has a marked effect on vertical mass 
transport for a release at Zo = 0·01 H. The model predicts that, at small diffusion 
times (0 < t / T m < O· 03), almost the entire mass released will be found in the bottom 
half of the channel, that is, 0 < Z < -tH. In contrast, the rate of vertical mixing 
of material released at the surface is appreciably greater (see Fig. 3c). A patch 
released at mid-depth experiences an asymmetric rate of vertical mixing-more 
mass being transported toward the surface than the bottom. These predictions 
are consistent with the diffusivity profile, derived by application of Reynolds analogy, 
and shown in Fig. 1. At large times the approach to a uniform mass distribution 
over the depth is evident for all three release positions. 

The centroid of a patch slice is plotted in Fig. 4 for successive time intervals. 
The centroid of a patch released at the surface (dashed curves) has been translated 
further than the centroids of patches released at mid-depth (solid curves) and near 
the bottom (dotted curves). This is due to the greater flow velocity experienced by 
material in the upper layers of the channel. The increased difference between the 
positions of the slice centroids at z = Hand O· I H at successive time intervals is 
evidence of the longitudinal spreading of the patch. The difference in the positions 
of the slice centroids at z = Hand O· I H is greater for a release at Zo = 0·01 H 
than for Zo = H, at each time. This implies that greater longitudinal spreading 
will result for a point release near the bottom than for a release at the surface, and 
demonstrates the enhanced ability of the lower layer of the flow to disperse material 
in the streamwise direction. This is confirmed in Fig. 5 where the variance of the 
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(b) t = 0·1 Tm and (c) t = 0·19 Tm. In each case plots are given for three values 
of the source positions Zo: O'OIH (dotted curve); 0'5H (solid curve); H 
(dashed curve). 
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entire patch is plotted against diffusion time for the source released at Zo = O· 01 H, 
O· 5 Hand H. The variance is greatest for a release near the bottom boundary 
(dotted curve), and least for a release at the surface (dashed curve). 
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The variation of the effective longitudinal diffusivity with time is shown in Fig. 6. 
The magnitude of Keff grows rapidly for short times, and then slowly approaches a 
constant asymptotic value as time increases. The sensitivity to release position is 
also evident with a release at Zo = 0·01 H (dotted curve) being characterized by a 
greater value of Keff than releases at Zo = 0·5 Hand H, particularly at short times. 
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Appendix. Comparison with Experiment 

The model's predictions can only be validated by comparison with existing 
experimental data. Unfortunately no directly relevant field experiments have been 
conducted. This is probably due to the problems associated with accurate sampling 
over depth in the field. 

Conversely, there are difficulties in measuring concentration profiles over small 
laboratory flume depths. Consequently, the parameter measured by both Elder 
(1959) and Sullivan (1971) is the depth-averaged concentration distribution. In 
addition the experimental techniques employed result in a vertical line source release 
rather than a point source release. The preceding theory has been developed for a 
point source because of the relevance to water quality applications. The theoretical 
results may be integrated over vertical source position to give the equivalent statistics 
for a line source. Although the algebra becomes cumbersome, this is certainly a 
possible extension of the theory. 

Elder (1959) measured the longitudinal half-width (the longitudinal distance 
between points at which the dye concentration is half the maximum value) and 
plotted this parameter against the centroid of the patch at various dispersal times. 
The results of several realizations were presented and a mean half-width plotted. 
Elder appears to have assumed the second moment to occur at half the maximum 
value of the gaussian distribution. Corrected values of the variance derived from the 
measured half-widths were used in Elder's paper. 
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Elder's measurements were made at a Reynolds number of R = 3410 and a 
depth of H = 1·27 cm. All the mean velocity profiles measured satisfied the 
logarithmic law and so may be approximated by PrandtI's 1/7th power law. The 
theoretical results for the variance of a patch released at Zo = Hand 0·1 H (curves 
A and B) are shown in Fig. 7 for various centroid positions. The variance for each 
point source release is less than that measured by Elder for a line source release, 
as would be expected. An approximate line source solution (curve C) has been derived 
from the point source solution for comparison with Elder's results (curve D). The 
predicted patch variance is less than that measured at large diffusion times. This 
is because the 1/7th law over-estimates the mean fluid velocity near the bottom 
boundary (Hinze 1959). Otherwise, given the limitations noted above, the predictions 
compare well with the experimental data. In fact the general structure of the rate 
of change of the variance is remarkably well reproduced as can be shown by comparing 
Elder's curves with those of Fig. 5. 
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