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Abstract 

The solution of the two-term approximation for the Boltzmann equation for electron drift and 
diffusion in an atomic gas between closely spaced electrodes has been obtained with the neglect of 
energy losses by elastic collisions. Although the omission of elastic collision energy losses 
(equivalent to using an infinite atomic mass) may appear to be a drastic oversimplification it does 
approximate the real physical situation where the cathode and anode are separated by a distance 
less than the thickness of the so-called boundary layer. The theory may be used as a guide in develop­
ing future, more accurate analytic theories of electron swarms between closely spaced electrodes. 
The present work has some special advantages however not so far achieved with previous analytic 
work on electron transport in the boundary layer region. There is no restriction to special model 
momentum transfer cross sections and the results can be written in easily interpreted analytic forms. 
The effects of inelastic collisions, the subject of a second paper, can also be included. In an attempt 
to obtain a better physical understanding of boundary effects, the present paper studies the 
influence of electron reflections from the electrode surfaces. Expressions are obtained which 
eliminate the electrode sensitive terms and relate experimentally measurable quantities to the 
momentum transfer cross section alone. 

1. Introduction 

For a nonzero electric field E and regions sufficiently close to an absorbing 
electrode the energy gained from the field by electrons which collide elastically with 
gas atoms or molecules is not perfectly balanced by the energy exchanged in collisions. 
Consequently the average energy of the swarm increases near an absorbing electrode 
(Lucas 1966; Sakai et al. 1972; Lowke et al. 1977; Braglia and Lowke 1979; 
Robson 1981, 1982; Chantry 1982; Braglia 1982; K. Ness and R. E. Robson, 
unpublished data). This phenomenon is also contributed towards (or against) by 
'diffusion heating' (or 'diffusion cooling') by which either the slowest (or fastest) 
electrons, depending on the energy dependence of the momentum transfer cross 
section, are more rapidly removed from the swarm by diffusion to the electrode 
(Parker 1965; Robson 1976). The width of this 'boundary layer' is of the order of 
Ie = (M 12m)!I, where I is the mean free path, M is the gas atom or molecule mass 
and m is the electron mass. Here Ie is the characteristic drift length for significant 
energy losses by elastic collisions. We introduce a new analysis of electron fluxes 
restricted to the small distances inside the boundary layer such that energy losses 
due to elastic collisions are, in the first approximation, unimportant. This requires 
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D2 ~ i'; where D is the length scale of electrode-electron source separations. We 
further require I ~ D for the Boltzmann equation to be applicable. Our treatment 
of the transport problem is equivalent to the infinite atomic mass limit mlM --+ 0, 
although the results can be used to estimate the importance of energy losses and 
show that I. for finite M 1m is the characteristic length for elastic collision energy 
losses (see Section 6). In this paper elastic collisions alone are considered in order 
to establish the basic ideas. In Part II (p. 45) it is shown how the theory can be 
extended to include inelastic collisions. 

The results obtained in this paper may be regarded as generalizations of those 
due to Hertz (1925) and Langmuir (1931) on the drift and diffusion of electrons 
between closely spaced electrodes such that energy losses can be neglected. The early 
work has been generalized by allowing for an arbitrary energy dependence of the 
momentum transfer cross section. Further, the usual boundary condition of zero 
electron number density is avoided (which eliminates unphysical results obtained at 
very low densities) and is replaced by a flux relation which depends on the electron 
reflection probability at the electrode. The electron fluxes to the electrodes from 
a source in the gas are found to be insensitive to the reflection probabilities. The 
electron number density extrapolates to zero inside the electrodes at a distance of the 
order of one mean free path so that the usual zero number density boundary 
condition gives virtually identical results. If one electrode (the cathode) is the source 
of electrons, however, the zero number density boundary condition is approximately 
valid only for the anode. 

Theoretical expressions which eliminate entirely effects from the electrodes are 
derived. These expressions relate experimentally measurable quantities to the 
momentum transfer cross section alone and may be useful in obtaining this cross 
section at energies above some lower limit depending on the identity of the atoms, 
the electrode spacing and gas pressure. The absolute scale of the cross section 
however has to be set by more traditional swarm techniques because elimination 
of the unknown electrode properties leads to relations which only give the form of 
the energy dependent momentum transfer cross section. Expressions are also obtained 
which enable the electron energy distribution to be scanned by a retarding field 
between electrodes inside a boundary layer. 

The present work is of relevance to recent efforts to obtain a better understanding 
of electron drift and diffusion in the gas-electrode boundary layer (Lowke et al. 1977; 
Braglia and Lowke 1979; Chantry 1982; Braglia 1982). The need for analytical 
solutions has recently been emphasized by Robson (1981). Instead of Robson's 
limitation to special cases of energy dependent momentum transfer cross sections 
the present work obtains analytical results under the alternative approximation of 
negligible energy exchange by elastic collisions. A straightforward comparison of 
this work with the results of other authors is not possible however, because these 
works do not consider the case of two absorbing electrodes separated by a distance 
less than I. with a source emitting electrons with an arbitrary initial energy distribution 
between them. 

Our results are shown in Section 7 to have an elegant representation in terms of 
generalized electron source strengths and absorption coefficients. The former refer 
to the effective source strength at any point in the gas distant from the actual 'bare' 
electron source. The generalized electron absorption coefficient takes into account 
the effect of electron-atom collisions due to the gas in front of a 'bare' absorbing 
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electrode. In other words an electrode with gas in front of it can be regarded as 
another electrode itself with electron absorbing properties given by the generalized 
absorption coefficient. These generalized quantities are defined by coordinate trans­
formations from the source and absorbing electrode surfaces. Related invariant 
quantities can also be constructed. As shown in Part II, these concepts can be used 
to extend the present work to take into account inelastic collisions. Our approach 
may serve as a guide in future developments of more accurate analytic theories which 
allow for energy exchange by elastic collisions. 

2. Two-term Approximation for Electron Flux without Energy Losses 

The Boltzmann equation for electron transport is given by (Huxley and Crompton 
1974) 

(onIJot)+V r • (nlc)+Vc • (nleEJm)+l(nf) = 0, (1) 

where 1= fer, c, t) is the distribution function, n is the electron number density, 
l(nf) is the collision integral, c is the electron velocity and E is the applied electric 
field. Low electron densities are assumed to avoid space charge effects (electron­
electron collisions). When the electron density gradient has axial symmetry with 
respect to the electric field the distribution function can be written as the expansion 

00 

I(r, c, t) = lo(r, c, t) + L Ik(r, c, t) Pk(cos 0) , (2) 
k=l 

where c.E = -cEcosO and Pk(u) are the Legendre polynomials. For atomic gases, 
where the elastic collision cross section is much larger than the inelastic cross section, 
the two-term approximation k ~ 1 is known to be adequate and is used in this work, 
although very close to an absorbing boundary the assumptions of this approximation 
break down (Robson 1981, 1982). The restriction to atomic gases and, for most 
foreseeable applications, heavy atoms is due to the neglect of energy losses for energies 
up to at least several electron volts. Thus the multiplicity of rotational and vibrational 
energy losses of molecular gases is avoided although electronic transitions are taken 
into account in Part II. 

lt is useful to define go = I1fo and gl = nil and to introduce the mean free path 
I (e) related to the momentum transfer cross section qm(e) by I (e) = {N qm(e)} -1, where 
N is the number density of the gas atoms. Then the scalar and vector equations 
in the case of infinite plane parallel electrodes become [Huxley and Crompton (1974), 
equations (2.22) and (2.24) modified to the energy variable e] 

3( 1 )~J)etgo oeg1 Eoeg1 _ () 
2m --+--+e ---

ot oz oe ' 
(3a) 

(3b) 

The electron number density is given by 

n(z,t) = J f(z,c,t)dc = 2rc(2jm)3/2 fooo etgo(z,e,t) de, (4a) 
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and the electron flux is 

r(z,t) = f ccos(Jf(z,c,t) de = in(2jm)2 Sooo eg 1(z,e,t)de. (4b) 

For the steady state case, equation (3a) shows that 

eg 1(z,e) = F(e -eo - I: eE(Z')dZ'). 

The structure of the variable in F suggests the influence of simple energy conservation, 
which we bring out explicitly by writing for the case of all electrons produced at their 
source with the same energy 

eg 1(z,e) = Y!5(e -eo -e I: E(z') dZ') , (5) 

where eo is the electron energy at any ZO° As space charge effects are negligible we 
can drop the explicit t dependence of E here. In equation (5) y is a constant 
independent of z and is related to r by 

(6) 

Let e(z) = eo+eE(z-zo) be the electron energy at z. Substituting equation (5) into 
(3b) we find that go(z, e) must be written in the form 

go(z,e) = h(z, e) !5(e-e(z» , (7) 

which again represents an infinitely sharp electron energy distribution at all points 
in the gas. By equation (4a) we have 

n(z) = 2n(2jm?/2e(z)th(z, e(z». (8) 

A relation between rand n(z) is obtained by substituting equations (5) and (7) 
into (3b), multiplying by 8nel(e)/3m2 and integrating over all energies: 

8neE f 00 ago(z, e) 8n a f 00 r = - 3m2 0 e lee) ae de - 3m2 az 0 e lee) go(z, e) de 

8neE ( _ d/(e») 8n d ( ) = 3m2 h(z,e) I(e) +eTe - 3m2 dz el(e)h(z,e) , 

where e must now be understood as e(z). By using the identities 

dejdz = eE, d(e/c)/dz = tmdc/dz = eE/2c, 

and reexpressing h(z, e) in terms of n(z) it is found that dl/de is eliminated. The 
final formula is 

r = (eEl/3mc)n(z) -tel dn(z)/dz, (9) 

where c and I are to be understood as functions of z. The first term on the right­
hand side represents the contribution bf electron drift, whereas the second is due 
to electron diffusion with the diffusion constant tel. Equation (9) is essentially 
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equivalent to that derived by Hertz (1925) and used by Langmuir (1931) for electron 
fluxes between close electrodes. The only difference now is that equation (9) has 
been established for arbitrary energy dependent I(B) rather than constant I. 

B 

I 
I 
I 
I 
I 
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E 

A 

Fig. 1. Monoenergetic electrons are emitted isotropically from an infinite 
plane source S between parallel collecting electrodes A and B. An electric 
field His directed perpendicularly out of A. The electron flux to A depends 
on the electron source strength and the· relative absorption coefficients 
of A and B at the source. The effective source strength and absorption 
coefficients can be defined at any value of z (see Section 7). 

3. Electron Flux between Infinite Plane Parallel Electrodes 

Let an electron source S of strength S electrons per second per unit area be located 
in the gas a distance d from electrode B and distance L - d from electrode A (see 
Fig. 1). The electrons are considered to be emitted isotropically with energy Bs. The 
electron flux to either electrode A or B is nonzero only if E is such that the electron 
energy BA = Bs+eE(L-d) or BB = Bs-eEd at the electrode is equal to or greater 
than zero. We take E as positive if BA > Bs. 

Equation (9) can be rewritten in the form 

r = eE l(e) (n(e) _ dn(e)) 
3m e de 

(10) 

and can be solved to give nee) by the following procedure. Let ns and es be the electron 
number density and speed at the source and let us introduce pee) by writing 

nee) = (ens/es)p(e). (II) 

Equation (II) substituted into (10) and specialized to r A gives (returning to the 
variable B) 

2eE l(B)ns dp(B) 
3 B-d~ , 
mes " 
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from which we find 

pee) = 1 _ 3I'A mcsJ' ~ 
2eEns 's e'l( e') . 

(12) 

We have pee) ~ 1 always because 1-p(e) is unchanged by a change in the sign of E. 
To progress further, the influence of the electrodes needs to be introduced at least as 
an auxiliary procedure for eliminating ns, so as to relate I' A (and I' B) to S. 

It is shown later that provided the mean free path is much smaller than d and 
L - d, the electrodes and the assumed boundary conditions do not actually have much 
bearing on the fluxes I' A and r B. Electron-atom collisions dominate. Because of 
this and the fact that we are more interested anyway in developing relations that 
eliminate the influence of the electrodes altogether, we choose a convenient model 
to represent the complex events that may occur at the electrode surfaces. We do 
not however choose the usual boundary conditions nA = 0 and nB = 0 used by many 
authors [and by Langmuir (1931) for closely spaced electrodes], because they produce 
unphysical results at sufficiently low densities (namely I' A + r B larger than S). Our 
new formula is qualitatively correct at very low densities and compares favourably 
with the corresponding exactly solved flux in the zero density case. 

Equation (4b) for r involves an integration over all 0 between 0 and n. However, 
near the surface of an absorbing electrode the reverse flux for 1n ~ 0 ~ n originates 
only from reflected electrons. We model the surface effects at A by defining an 
incident flux r AI for 0 ~ 0 ~ 1n and a reflected flux r AR for 1n < 0 < n, such that 

where r A is the reflection probability. The net flux r A is then related to r AI by 

(13) 

where r AI is evaluated from equation (4b) but restricted to 0 ~ 0 ~ 1n. This gives 

J ooJ-'-" r AI = 2nnA 0 : c3 {Jo(L-d,c)+cosOfl(L-d,c)}cosOdOdc 

(14) 

The first term on the RHS of equation (14) is the 'random flux' at A. Combining 
equation (14) with (l3) leads to 

(lSa) 

where 
(ISb) 

is an effective absorption coefficient similar to that introduced by Hurst and Liley 
(1965) in their discussion of the Townsend-Huxley experiment (see also Huxley and 
Crompton 1974, pp. 381-6). Note that our theory is restricted to monoenergetic 
electrons so that no energy losses in electron-electrode collisions are considered. 

The reverse flux at A corresponds to a distribution function of the form 

f(L-d, c) = foCL-d, c) +cosOf{(L-d,c); !n < 0 < n, 
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which leads to 

(16) 

where the primed variables f' and rA refer to tn < e < n. But because 
r A = rAI-rAR we see from equations (14) and (16) that r A= rA' In particular 
this is satisfied by h = f{ so that in effect the two-term approximation is being used 
right up to the electrode surfaces. This feature is retained in our later definition 
of generalized absorption coefficients IXA(Z) where Z is an arbitrary distance from the 
source S, i.e. - d < z < L - d. Our model of boundary effects is equivalent to 
Robson's (1981) equation (25) where the half-range expansions are equivalent to each 
other and the full two-term approximation. 

By combining equations (11) and (15a) we find 

r A = IXA(c;,ns/4cs)PA' (17) 

and r A can now be eliminated from equation (12) to give 

1 A A 1 31X 8 f eA d8' 
PA = + 4eE es 8'1(8')' 

(18) 

Analogous expressions exist for r nand PB' To eliminate ns we use the continuity 
equation S = r A + r B which gives 

ns S 
2mcs = IXA8APA +IXB 8nPn 

Finally we obtain 

(19a, b) 

4. Discussion of Electrode Effects 

Due to the electron-gas atom collisions PA ~ 1 and PB ~ 1. To see this consider 
the limit E -+ O. Then equation (18) becomes 

1 3IXA8AL-d 
-=1+----
PA 4 1(8A) , 

and because 1(8A) ~ L-d, PA is dominated by electron-atom collisions and is very 
small if IXA is not too small. Written out fully equation (l9a) is 

r A { (1 3 f eA d8' ) / (1 3 f es d8' )} - 1 

S = 1 + IXA 8A + 4eE es 8'1(8') IXn 8n + 4eE eB 8' 1(8') 
(20) 

For d ~ I and L-d ~ I the terms in (20) that depend on I are usually the most 
important. In other words, electron-atom collisions rather than the boundary con­
dition dominate the fluxes, provided that rA and rB are not too close to unity. 

For d -+ 0 equation (20) becomes 

(21a) 
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Because the electron source is considered to emit electrons isotropically, S here cannot 
be regarded as the flux SCi of electrons ejected from a cathode B. To get Sei from 
S we note that half of the electrons in S are incident on B of which the fraction r B 

is reflected. Thus the actual flux that appears from a cathode is given by 

and equation (21a) can be rewritten as 

(2Ib) 

Equation (21b) generalizes Langmuir's (1931) result as follows. Firstly a general 
energy dependent /(s) has been allowed for. Secondly, Langmuir solved equation (10) 
using the boundary condition nA = 0. This has the effect of eliminating the first two 
terms on the RHS of (21 b) with the consequence that at sufficiently low densities 
r A exceeds Sei. This is not a particularly serious omission because equation (10) 
would not be valid at such low densities anyway. However, small corrections for 
low density saturation effects are probably necessary under the gas pressure conditions 
of negligible energy losses by elastic collisions. The approximate validity of nA = ° 
is discussed further below. Thirdly, equations (21) show clearly that r A is not sensitive 
to the boundary condition at A provided that 1 - r A is not too small. This provides 
some further justification for the usual boundary condition nA = 0, deduced assuming 
perfectly absorbing electrodes (McDaniel 1964), even though in practice electrodes 
can be quite reflective of low energy electrons (see Section 9). The physical 
significance of this is that it does not matter much whether electrons are initially 
reflected from A or whether they suffer changes of energy in doing so because the 
chance of their getting back to the cathode is practically zero anyway. An electron 
initially reflected by the anode is multiply reflected between the gas and the anode 
until eventually absorbed. 

In the limit N -+ 0, r A tends to the saturation value 

(22a) 

The Boltzmann equation analysis fails as / becomes comparable in size with L so 
at best the low density limit of equation (21a) is only qualitatively correct. The 
exact flux (r A)O is calculated in the Appendix for the model of isotropic elastic 
scattering from the electrodes. When electrode B is the cathode we find for SA~ SB 

(22b) 

(22c) 

The qualitative similarity with respect to rA and rB of equation (22a) with (22b) and 
(22c) lends confidence to the belief that our model of the boundary effects is not 
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drastically wrong and that equations (19) and (21) have acceptable forms for electrode 
effects on the fluxes. 

It is of interest to calculate the distance (A into A for which n(z) extrapolates 
to zero. This can be found from the definition 

(A = -nA/ e~~)L· 
By equations (9) and (15a) we have 

which then gives 

(23a) 

where 

(23b) 

If rtA "1= 0 and provided that OA ~ teEI(oA)' which is certainly needed for the Boltz­
mann equation analysis to apply, we find 

That n(z) extrapolates to zero about a mean free path inside the anode agrees with 
Lowke et al. (1977) who used the boundary condition 10 = - f~. In our approach 
the ratio of the drift and diffusion contributions to r A is equal to eE(A/2oA ~ 1 
so that the flux between closely spaced electrodes is diffusion dominated. The same 
applies to any boundary layer (Huxley and Crompton 1974, pp. 121-4; Lowke et al. 
1977). These overall results also apply of course to electrode B. In conclusion, nA ~ 0 
and nB ~ 0 are acceptable boundary conditions when I is much smaller than the 
source-electrode separations L-·d and d. For d = 0, ns = nB cannot be approximated 
by zero however, because r B ~ Sand nB is given by the B electrode version of 
equation (15a). 

5. Electron Flux for More General Electrode Geometries 

Consider a small surface area das at the source S defined at an equipotential 
surface between electrodes A and B (see Fig. 2). Let ds be a line element anywhere 
along the electric field lines. Then at any two points Sl and S2 the elements of electric 
flux E (Sl) • da1 and E (S2) • da2 are equal for the same flux tube. Let daA and daB 
be the surface elements at A and B corresponding to das and let da be the surface 
element anywhere between A and B. Equation (9) is now generalized for a current 
element at s given by 

dJ(s) = {eE. da I n(s )}/3mc - tel da. dn(s )/ds, 

where ° (and c) are parametrically dependent on s by 

o(s) = o(so) + J S e E(s') • ds' . 
So 
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Because da and ds are perpendicular we can drop the vector notation hereafter. The 
expression for dJ(s) is actually independent of s due to continuity of the electron 
flow along the flux tubes. End effects, due to the finite size of any practical apparatus, 
are ignored so that electron fluxes due to density gradients perpendicular to the 
electric field lines are omitted. 
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Fig. 2. Electron flux and electric field configuration for a non-planar 
source and collecting electrode geometry. The solution of the drift and 
diffusion problem closely follows that for plane geometry because, by 
assuming no transverse electron density gradients, the current is constant 
along each electric flux tube; 

The analysis leading to equations (19) goes through again virtually unchanged. 
One simply notes that E(s)da is a constant along the flux tube. We then have 

(24a, b) 

where 

..!.. = 1 + 30CASA daAJBA ~ 
PA 4eE(s) da BS s'I(e')' 

(24c) 

and similarly for PB' 
Following Langmuir (1931) we can write from the definition of the capacitance 

CAB 

(25) 

where K is the permittivity of the medium between A and B. It is readily checked 
that if we set OCB = 1 and I = constant, let B become the source and ignore the 
electrode corrections to the flux, then dJA is precisely the formula given by Langmuir. 
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6. Energy Losses to Elastic Collisions 

We establish general conditions for negligible energy losses due to elastic collisions 
with an atomic gas between electrodes of arbitrary geometry. Let dX be the average 
number of collisions per electron for the drift distance ds. We have 

dX = cds/l(e)cd(S), (26) 

where cis) is the diffusion modified electron drift velocity related to dJ by 

dJ/da = n(s) cis) . (27) 

Equation (26) follows from cdt/l(e) collisions in the time interval dt = ds/cis) that 
it takes the electrons to flow the distance ds. It has been assumed that the collision 
rate is dominated by the local random flux. This corresponds to c ~ cis). In 
equation (26), cis) can be eliminated using (27), while n(s) can be eliminated using 
(11). In equation (27), dJ/da can be evaluated from (24a) and (24b). Considering 
only the flux to A we have 

4e da ds 
dX = -----p(e)-. 

IXAeAPA daA lee) 
(28) 

Equation (12) can be rewritten in the form 

pee) = PA +idJA- s -.-- -,-, mc 1 J'A de' 
ns eE. da e et( e ) 

(29) 

where dJA has been eliminated using the obvious generalization of equation (17). 
Equation (29) can then be used to eliminate PA from (28). The final expression is 
obtained by eliminating ds by de = eE (s) ds, and E (s) can be eliminated by using 
the invariance of the electric flux E (s ) da. Our final expression is 

(30) 

where da/daA is a function of s and hence is also a function of e. 
The second term on the RHS of equation (30) is second order in /-1 and dominates 

dX. It has been previously derived for a constant mean free path model and infinite 
plane parallel electrodes by Hertz (1925). To see this, we denote the second order 
contribution to the number of collisions between S and A by Xz(S, A), put da = daA 

for plane parallel electrodes and set I = constant. Wefind 

3 JeA 

Xz(S, A) = ( )ZlZ eln(eA/e) de 
eEA 's 
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where eE has been replaced by (BA -Bs)j(L-d). Now we define Bs = Xl eE, 
BA = aeE and L-d = a-xl' such that 

which agrees with Hertz. The first order contribution sensitive to the electrode 
boundary condition has not been previously observed. Although it should be 
qualitatively correct it is perhaps not quantitatively accurate because, near say 
electrode A, ciA) = tll(A CA' which is not necessarily very much smaller than CA as 
assumed in the derivation of dX. The assumptions of the derivation are valid however 
at distances of a few mean free paths from the electrode surface. 

To estimate the energy loss due to elastic collisions we weight dX(B) by 2mBjM 
and integrate over all B between Bs and BA. Thus we have 

(31) 

An accelerating field would partially replenish the energy lost in collisions so that 
the greatest relative effect would occur for zero and retarding electric fields. Consider 
E ~ 0 and BA ~ Bs; in this limit 

(32) 

As expected equation (32) shows that AB ~ Bs if I; ~ (L - d)2. Equation (32) also 
shows that the neglect of collisional energy losses in the theory is inadmissable if 
Il(A is small. Highly reflective electrodes build up the number of electron-atom 
collisions leading to a significant accumulated energy loss by elastic collisions. 

7. Generalized Absorption Coefficients and Source Strengths 

The basic ideas are illustrated here for infinite plane parallel electrodes and are 
easily extended to arbitrary geometry by the method of Section 5. Let Z be the 
distance from S to any point in the gas between Band A. Thus - d ~ Z ~ L - d 
defines the range of z. We assert that the structure of the theory of electron fluxes 
between closely spaced electrodes is independent of the locations of the 'electrodes' 
and the 'source'. Rather than regard electrode A at a separation L-d from S, we 
can consider A to be at any distance 0 ~ Z ~ L - d but with a generalized absorption 
coefficient Il(A(Z) (see Fig. 1). Similarly the bare electrode B can be replaced by a 
generalized electrode at -d ~ Z ~ 0 with the absorption coefficient Il(B(Z), In 
addition, rather than regard the source S as at a distance L - d in front of A, we can 
define SA(Z) as the source strength at a distance of L-d-z from A, for 0 ~ Z ~ L-d. 
We now derive expressions for Il(A(Z), Il(B(Z), SA(Z) and SB(Z), In Part II it is shown 
that these ideas are fundamental to solving the problem of electron fluxes between 
close electrodes taking into account inelastic collisions. 
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Equations (19) are appropriate to defining r A and r B in terms of IXA(Z), IXB(Z), 
SA(Z) and SB(Z) at Z = O. Let e(O)IXA(O) = eAIXAPA' e(O)IXB(O) = eBIXBPB and 
SA(O) = SB(O) = S. Then equations (19) become 

_r_B_ = IXB(O) 
SB(O) IXA(O) + IXB(O) , 

(33a, b) 

where 

1 e(O) 3e(0) I 'A de' 
IXA(O) = IXAeA + 4eE ,(0) e'[(e') , 

(34a) 

1 e(O) 3e(0) I ,(0) de' 
IXB(O) = IXB eB + 4eE 'B e'l( 8') • 

(34b) 

Equation (33a) for r A/SA(O) is essentially the probability of an electron originating 
at Z = 0 migrating to electrode A rather than electrode B. This probability is in 
direct proportion to the absorption probability IXA(Z) at Z = O. It is easily checked 
from equation (17) that 

(35) 

where nCO) is equivalent to ns. Equation (35) is just a logical extension of (15a) 
so that in effect we are treating the electrode A as if it is right at the source at Z = o. 
Equation (34a) tells us how to modify the absorption coefficient to take into account 
electron-atom collisions. 

The extension to any Z is straightforward. The logical generalizations of equations 
(34) are 

(36a) 

(36b) 

The connection between IXA(Z) and IXA can be extended to one between IXA(Z) and 
IXA(Z'), for any z', by replacing IXA by IXA(Z') and eA by e(z') in equation (36a), and 
similarly for IXB(Z), The generalization of equations (33) serves essentially as a 
definition of SA(Z) and SB(Z), For 0 ~ Z ~ L-d for instance we have 

(37a) 

and the 'back flux' to B for positive Z is given by 

rB(Z) IXB(Z) 

SA(Z) = IXA(Z)+IXB(Z)' 
(37b) 

Note that r B(Z) is z-dependent for positive Z unlike the case of negative z, and it 
represents the flux of electrons that have reached at least as far as Z and have been 
finally repulsed by the gas to eventually flow to B. The ratio rB(Z)/SA(Z) is essentially 
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the probability that an electron is repulsed by electrode A and by the gas in the interval 
Z :( Z' :( L - h and flows to electrode B. For Z = L - d this probability is seen to 
be very small, consistent with our discussion of equation (2Ib). Using equations 
(11), (12), (17) and (35) one readily verifies that z = 0 can be replaced in equation 
(35) by any z, for 0 :( z :( L- d. 

A very useful property which follows from equations (36) is the identity 

e(z) (J(A(Z) (J(B(Z) e(z') (J(A(Z') (J(B(Z') 

(J(A(Z)+ (J(B(Z) (J(A(Z') + (J(B(Z') , 
(38) 

for any Z and z'. This invariant under coordinate transformation can be used to 
construct other invariants, e.g. 

S(O) SA(Z) 
e(O) (J(B(O) e(z) (J(B(Z) , 

S(O) SB(Z) 

e(O) (J(A(O) e(z) (J(A(Z) . 
(39a,b) 

Equation (39a) is obtained by eliminating r A using equations (33a) and (37a). 

8. Relations between Momentum Transfer Cross Section and Experimentally 
Measurable Quantities Alone 

The simplest method of separating off unknown electrode sensitive contributions 
to r A and r B is to ensure that d and L - d are sufficiently large that electron-atom 
collisions dominate. However, because these fluxes only involve the ratio(J(A(O)/(J(B(O), 
the price one pays is that only information on the dimensionless form of qm(e) is 
obtained. From equation (19b) we have 

(40) 

The leading factor of interest can be separated off because it is density independent. 
The range of energies covered is controlled by E. For E -> 0 the leading term 
approaches dl(L-d). A similar expression is obtainable if S is an actual fine mesh 
cathode with an absorption coefficient (J(s. In that case accelerating or retarding fields 
are simultaneously possible on opposite sides of S. 

Another approach which avoids the need to observe pressure change effects is 
obtained when B is the electron source (d = 0). From equation (2Ia) we have 
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By combining equations (4Ia) and (4Ib) IXB and S can be eliminated. This gives 
the required relation 

1 
(42) 

A third expression which eliminates the electrode sensitive terms is obtained by 
solving for the RHS integral in equation (42) and taking the partial derivative with 
respect to eB' This leads to 

qm(eB) eB aG(eB, eA) 
--= 
qm(e~ eA OeB 

(43a) 

where 

(43b) 

Alternatively the partial derivative with respect to eA can be taken, leading to 

a[ln{e;'lqm(IlA)}] 1 a{lnG(eB,eA)} 

aeA G(eB, eA) OeA 

This can be integrated again to give 

which simplifies further to 

qm(e) e G(eB,eo) e-eB (ar;,ljoL). 

qm(eO) - ;;; G(eB, e) eo -eB (ar A l/aL).o . 
(44) 

The RHS is actually independent of eB and this can in principle be experimentally 
tested. 

9. Electron Flux for a Distribution of Energies at the Source 

In any practical situation with an electron source that can be used for the close 
electrode configuration (e.g. back illuminated photocathodes), the electrons are 
produced with some distribution of initial energies. Equation (37a) is then replaced 
by, for 0 ::;:; Z ::;:; L-d, 

(45) 

where dSA(z,e) is the effective source strength in the energy range e,e+de. Here 
em is nonzero only if the electric field is chosen to de-accelerate electrons approaching 
the anode so that em = eE(L-d). 
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Where electron-atom collisions dominate O(A(Z, e), equation (45) can be 
approximated by 

(46a) 

where 

(46b) 

Equations (45) and (46a) may be used to obtain rough 'scans' of the energy 
distribution, assuming that the electron reflection probabilities at the electrodes are 
not too strongly energy dependent. An experiment of this type has been performed 
for electrons in Hg vapour (McMahon 1978, 1979, 1983) showing the essential 
correctness of this electron transport theory in the boundary layer. These observations 
also provide some information on the low energy electron-electrode reflection 
probability and suggest quite high reflectivities of 80-90 % (or 0( ~ O· 1). Such 
small absorption coefficients would have a substantial effect on the extrapolation 
distance eA (see equation 23a). For most purposes where the electron drift lengths 
are much longer than I., the effect of electron reflections at the electrodes on the 
drift length is not important. High electron reflection probabilities would be of 
significance however for the Cavalleri and Huxley-Townsend experiments where the 
theoretical analysis assumes perfectly absorbing electrodes in the boundary condition 
n(z) = 0 at all electrode surfaces. For closely spaced electrodes high reflectivities 
can make significant contributions to the electron flux and ideally one would like 
to separate these by experimental means (see Section 8). 

10. Discussion 

In its present form, this theory of electron drift and diffusion between closely 
spaced electrodes is only applicable to heavy atomic gases. It is desirable to extend 
the theory to nonzero m/ M values where presumably for a monoenergetic electron 
source between closely spaced electrodes the b functions of equations (5) and (7) 
are replaced by less strongly peaked functions with widths depending on m/M. It 
may be possible to go much further with an analytical theory, without previous 
restrictions (Robson 1981) to special collision models, by using the present work 
as a guide. 

Another area in which the present work can be profitably exploited is in the study 
of the distribution function at distances of a few mean free paths or less from the 
boundary. There the neglect of energy losses by elastic collisions is especially accurate. 
At electrode A the two-term distribution function is proportional to 1 + iO(A cos 8 
which assumes unphysical negative values for O(A cos 8 < - t. Such problems are 
solved either by going to a multi-term theory or Robson's (1981) mathematically 
equivalent half-range formulation. The four-term extension of the present work is 
readily obtained and shows that the two-term theory is accurate at distances greater 
than a few mean free paths from the boundary. The present 'full-range' two-term 
theory can also be easily extended by going to the half-range two-term theory. The 
results are almost identical to the present work except that the more accurate 
treatment of the distribution function within a few mean paths of the boundary gives 
a modified expression for the absorption coefficient. This is of no practical con-
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sequence when the electron flux is dominated by electron-atom collisions and for most 
purposes the present full-range two-term treatment is adequate. 
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Appendix 
The two-term approximation leads to equation (22a) in the limit of zero gas 

density. Although this approximation is meaningless when I becomes comparable 
with L, our boundary condition approach does give a reasonable qualitative form 
for the flux. Here we derive equations (22b) and (22c) which apply to elastic isotropic 
reflections of the electrons from infinite plane parallel electrode surfaces. 

Let the electrons be ejected from electrode B with the source strength Sej' 

Consider firstly an accelerating field from B to A. The initial flux incident on A 
is therefore Sej of which r A Sej is reflected. Of the flux Sei' let AA Sei be that flux 
reflected back to B to be either absorbed or reflected. To find AA one has to take 
into account the fact that some electrons are multiply reflected from A before 
developing a sufficiently large velocity component normal to the plane of the electrodes 
to overcome the A to B retarding field. We leave the calculation of AA to later. 
Of the flux AA Sei incident on B, (1- rB)AA Sei is absorbed and a second flux rB AA Sei 

is incident on A. For each of the first, second, third etc. flux incident A, the fraction 
I - AA is absorbed. Then r A is given by the infinite series 

crA)o = (1-AA)Sej{1 +rBAA +(rBAA)2 + ... } 

(AI) 
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The only electrons reflected from A that can make it back to B are those for which 

where 8 is the angle between the normal to A and the electron velocity. We define 
8m by cos28m = 1 -BB/BA- By Lambert's law, the fraction of electrons isotropically 
reflected into 0 :::::; 8 :::::; 8m is 1 - cos 8m • Thus, of the incident flux, the fraction of 
electrons that make it back to B without one or more rebounds from A is 
r A(l - cos 8m). The remaining fraction r A cos 8m require rebounds and each rebound 
gives a further loss of reflected intensity by the fraction r A- The first rebound 
contributes the fraction r A cos 8m r A(l - cos 8m) of the incident flux that gets back 
to B. In this way AA is seen to be the infinite sum 

AA =rA(l-cos8m){1 +rAcos8m +(rAcos8m)2+ ... } 

= rA(l -cos 8m)/(l -rA cos 8m). (A2) 

Combining equations (AI) and (A2), after a little algebra, equation (22b) is obtained. 
When the electric field retards electrons emitted or reflected from B we merely 

need to modify the above derivation to take into account the fact that only some 
fraction YB Sei of the initially emitted electron flux makes up the flux first incident 
on A. Here YB is calculated from an infinite series for rebounds and is given by 

where cos28m = I -BA/BB and AB has the same form as equation (A2). The flux 
reflected from A and thus incident on B is r A YB Sei' The second flux incident on 
A is therefore YB AB r A SCi' of which the fraction I - r A is absorbed. Adding up the 
obvious infinite series gives 

(A4) 

After some algebra equation (A4) finally gives (22c). 
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