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Abstract 

Transformation of nonlinear plasma equations from a lab frame S to the space-independent frame 
S' (both inertial) for an electromagnetic (EM) wave in an unbounded plasma reduces the nonlinear 
partial differential equations in S to ordinary nonlinear differential equations in S'. This relativistically 
correct transformation is used (1) to find the intensity induced precessional rotation of the polarization 
ellipse of vibration of an EM wave, (2) in the S-frame Lagrangian of the particles and field produced 
by them to derive the exact nonlinearly correct dispersion relation for a strong circularly polarized 
wave in a cold unmagnetized plasma, and (3) to rectify some much discussed differential equations 
obtained by Akhiezer and Polovin (1956) to study the evolution of longitudinal and transverse 
waves in a cold plasma. 

1. Introduction 

Winkles and Eldridge (1972) first found a special Lorentz transformation (LT) 
from the lab frame S to a wave frame S' (both inertial) in which the four-vector 
of the space-time continuum transforms to a time-like vector for velocities less than 
the vacuum speed of light c. Thus, in place of the nonlinear partial differential 
equations in the S frame, one obtains for solution a set of ordinary nonlinear 
differential equations in the S' frame. An analogous transformation to a space-like 
vector is also theoretically possible, but at velocities invariably greater than c. So, 
for relativistic reasons, this transformation is not used. 

The method of solving the field equations after transforming them to the space­
independent frame also has the advantage that some of the field variables become 
either constant or zero in the S' frame; for instance, the number density and the 
scalar potential become constant and the oscillation of the magnetic field vanishes 
in the S' frame. As a result, some of the nonlinear terms which appear in the S-frame 
calculation vanish in the S' frame. For this reason, investigations of some nonlinear 
effects, particularly the self-action effects (e.g. self-focussing, self-steepening, self­
phase modulation, self-precession etc.) in plasmas and other media are expected 
to be interesting and easier by this method. 

Subsequent to the discovery of this useful LT, several investigations on expanding 
its scope and applicability have already been reported. Among these may be mentioned 
the work of Clemmow (1974, 1975, 1977), Chian and Clemmow (1975), Kennal 
and Pellat (1976), Shih (1978), Decoster (1978) and Clemmow and Harding (1980). 
In addition, Akhiezer and Polovin (1956), Wong (1963) and Wong and Lojko (1963) 
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also used similar transformation relations for the study of nonlinear propagation 
of waves through plasmas, which are relatively simpler but relativistically incorrect. 
Hence, it is possible to find the relativistically correct derivation of the main equations 
and solutions reported by these authors. 

Our motivation in the present paper is to broaden the base of the work started 
by Winkles and Eldridge (1972) so that problems involving nonlinearly evolved 
self-precession of a strong EM wave and other self-induced effects in plasmas and 
other media can be easily investigated with the help of this transformation technique. 
In the present paper, for a cold, unmagnetized and collisionally undamped electron 
plasma, we derive the expressions for the Lagrangian if' in S', starting from the 
Lagrangian if in the S frame, for a strong circularly polarized wave and hence 
obtain the exact nonlinear dispersion relation. The intensity-induced shift for a wave 
parameter for these waves follows easily from this relation. Another significant 
aspect reported here is the derivation by this method of the intensity-induced pre­
cessional rotation of the polarization ellipse of vibration for an EM wave. In addition, 
the complementary effects of the nonlinearly induced wave number shifts in the same 
plasma are derived as a consequence of the birefringence of the nonlinearly correct 
left and right circularly polarized components of the wave. This self-induced rotation 
has wide possibilities for generalization and application. It was first derived analyti­
cally in a plasma by Arons and Max (1974) using the direct method of obtaining a 
secular free solution by a convenient process of successive approximation. Also, we 
determine here the relativistically correct differential equations, the nonrelativistic 
simplified versions of which were obtained by Akhiezer and Polovin (1956) and further 
extensively considered by Akhiezer et al. (1975) and others for the study of nonlinear 
evolution of longitudinal and transverse waves in a cold plasma. 

2. Assumptions and Basic Equations 

We consider a cold, homogeneous, stationary plasma subject to a strong radiation 
of intensity less than about 3 x 1022 W cm - 2 resulting in a relativistic electron 
velocity; the ion motion, small in comparison with the electron motion at the high 
frequencies of these radiations, is neglected. The forces arising due to other sources 
(e.g. collision, gravitation, ponderomotive force etc.) are negligible. Thus, the 
plasma equations in the lab inertial frame S can be written as 

op 1 ot +(v. 'V)p = -eE-ec- (v x H), (Ia) 

oN 
Tt+'V.(Nv) = 0, (lb, c) 

'V.E = 4ne(Ni -N) , (ld, e) 

'V.H=O, (1f, g) 

where Ni and N are the number densities of ions and electrons, mo and - e are the 
rest mass and charge of an electron, and the other symbols have their usual meaning. 
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For not very strong relativistic effects, if we expand p in equation (lg) in powers 
of v2 / c2 then only the first two terms need be retained because these are sufficient 
for effects correct up to third order;' thus the effective part, for this purpose, of 
equation (1a) is 

ov a (V2V) eE e - +(v. Y')v + - - = ~ - ~ -(vxH). at at 2c2 mo mo c 
(2) 

The vector and scalar potentials A and ¢ in the Lorentz gauge are given by 

H= Y'xA, 
1 oA 

E=~--+Y'-I, 
c at 'f" 

Y' • A = ~ ~ o¢ . 
c at (3a, b, c) 

Following Landau and Lifshitz (1975, p. 209), the Lagrangian ff of the particles 
and the fields produced by them is 

ff = ~ L mi NiO c2(1 ~ vl/c2}t + p¢ + A .j + (E2 ~ H2)j8n, (4) 
i 

where p and j are the charge density and electric current vector respectively and 
NiO is the equilibrium state number density of the i th species of particles: 

p = LeiNi , 
i 

For the problem under consideration we have 

The corresponding Hamiltonian :Yf is given by 

(Sa, b) 

:Yf = (v.aff/ov)~,!l' = moN o yc2 +eN¢ ~(E2-H2)/8n, (7) 

where "I = (1 _V2/C2)-t. 

3. Space-independent Frame 

The LT from the S frame to the S' frame which is moving with relative velocity 
Vo parallel to the z-axis is given by 

x = x', y = y', z = Yo(z' + Vot'), t = yo(t' + Voz'/c 2 ) , (8) 
where 

Po = Vo/c. 

Following Winkles and Eldridge (1972) we assume 

Vo = c2/V= kc 2/w, 

(9) 

(10) 

v (=w/k) being the phase velocity of the wave. For transverse waves V> c, and 
so Vo < c. Hence, the velocity of S' relative to S is physically attainable, and there­
fore the wave phase reduces to 

w(-kz = w(1-P5)t(' = w'T, (11) 
where 

(' == T, w' == w(l- P5yt = w/Yo' (12a, b) 
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In place of equation (11), Akhiezer et al. (1975) considered the simple linear trans­
formation relation 

rot-kz = roT (13) 

for an investigation of nonlinear effects; Boyd and Sanderson (1969, p.27) took 
the special value V = c for similar studies. The relativistically correct improvement 
of the equations derived by Akhiezer et al. (1975) is given by equation (35) in Section 
4. Based on equation (11) the partial derivatives with respect to z and t are changed 
to ordinary derivatives with respect to T. Some useful relations are 

az VaT 
-= V---at Yo Dt ' 

(14) 

From equation (1.4-5) of Hughes and Young (1966) we have 

(15) 

where p = vic and P' = v'/c. Transformation of v, E and H from the S frame to the 
S' frame gives 

v~+ Vo v = --"'--"-
z 1 + Po fJ~' 

(16a, b) 

Ex = Yo(E~ + /30 H;), Ey = Yo(E; - /30 H~), Ez = E;, (17a) 

Hx = Yo(H~ -/3o E;) , Hy = Yo(H; +/3oE~), Hz = H; = O. (17b) 

Following Section 1.7 of Hughes and Young (1966) and using equation (15) 
we find that mass is transformed as 

m = m'Yo(1 +/30/3;), (18) 

and momentum components as 

Px = p~, Py = p~, pz = Yo(p~ +mo Vo 1"). (19) 

The potentials A and ,p of equations (3) form a four-vector, so their transformation 
to the S' frame gives 

Az = Yo(A; + /30 ,p'), 

,p = Yo(,p' + /30 A~). 

The Lorentz gauge condition of (3c) when transformed to the S' frame gives 

2 a 2 a 
- YO_(A' +/3 A.') = - YO_.(A.' +/3 A'). 

V aT z 0'1' C aT 'I' 0 z 

(20a) 

(20b) 

(21) 

Since the terms containing A~ cancel from both sides and since a constant potential 
is ignored here, we have 

,p' = O. (22) 
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Also, the z component of (3b) on transformation to the S' frame becomes 

2 a 2 a 
E' = - YO_CA' +R ,/,1)_ YO_CA' +R ,/,1). 

z C or z 1'0'f' V or z 1'0 'f' 
(23) 

From (22) this equation reduces to 

2 aA' 
E' = _1£.(V+c)_Z 

z cV or' (24) 

4. Transformation of Field Equations to Space-independent Frame 

With the help of the transformation relations of Section 3, the Maxwell equations 
(lc) and (ld) give 

(25) 

(because there is no applied d.c. magnetic field) and 

(E' E') = 4neN o( v~, v~) 
x' y Yo(1 +PoP~)' 

'1 4neNo(v~+ yo) 
Ez = (1 RIP)' Yo + 1'0 I'z 

(26a, b) 

where No is constant and a derivative with respect to T is denoted by a dot. 
From equation (16b) we see that Vz = 0 when v~ = - Yo' Thus, we write 

(27) 

and expand 1/(1 + Po P~) in powers of p~. Then equations (16) give 

(vx' vy ) = Yo(v~, v~)(l - Y6 Po DP; + Y6 P6 Dp~2 - ... ), (2Sa) 

Vz = Y6Dv;(1-Y6PoDP; +Y6P6DP~2 - .".), (2Sb) 

and equations (26) reduce to 

(E~,E;) = (Yomow;le)(v~,v~)(1-Y6PoDP;), 

E~ = (Yo mo w;le)Dv;(I - Y6 Po DP;) , 

where the electron plasma frequency wp = (4nNo e2lmoyt. 

(29a) 

(29b) 

If Nand N' are the electron number densities in the Sand S' frames respectively, 
then from Section 1.6 of Hughes and Young (1966) we obtain 

moN' = m'No, moN = mNo, 

NIN' = mim' = (PoiY6)(1 +Y6PoDP;), 

Nh = (Y6IPo)No, 

(30a) 

(30b) 

(30c) 

(30d) 

where N~ is the unperturbed state value of N '. Equation (30a) shows that in the S 
frame the number density is not constant and nor is charge neutrality (Ne = NJ 
necessarily ensured, although the total charge of the plasma is constant in all inertial 
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frames of reference. Transforming now the equation of continuity (1 b) to the S' 
frame with the help of equations (14), (16) and (30c) we find that 

N' = N~ = (Y~/Po)No = const., 
and hence 

(jN' = O. 

With (25) equations (17) give 

(Ex, Ey) = Yo(E~, E;), 

(31) 

(32) 

(33a, b) 

(33c) 

From equations (25) and (33) the components of the equation of motion (1a), when 
transformed to the S' frame, become 

(34a) 

., e z pz 1 E' (' ) 
pz = 1 +PoYo(Yo-l)(jP; moY~Y'Vo-

e(p' E' +P' E') + x x y y 

1 +PoYo(Yo-l)(jP; 

y~V(V- Yo) -2VoV + V~ +(jv;{V(Y~-Yo+l)- yo} 
x ~~ 

moy'c2(V - Vo+(jv;) . 

Differentiating (34a) with respect to T and using (29a) we find that 
2 , 

.. , Yowpq.L 
q.L = - (1 + q'2}t + Po y~ (jq~' (35) 

where q' = p'/mo c and q~ = (q~, q;). 
Equation (35) is more general than the first and second equations of (8.1.2.16) 

in Akhiezer et al. (1975). Equation (34b) with the help of (29) and (34a) can be 
similarly reduced to a form which is more general than the third of these equations 
of Akhiezer et al. (1975) and which is relativistically correct. Therefore, the 
investigations reported by these authors on the nonlinear evolution of longitudinal 
and transverse waves using their equations (8.1.2.16) can be generalized and made 
relativistically correct, even if only approximately, with the help of (34) and (35). 

Linearized Equations and Their Solution 

In the linearized approximations (26a) and (28a) the transverse components give 

When considered together these equations yield solutions for simple harmonic 
oscillation with a frequency w' given by 

(37) 

When transformed to the S frame with the help of (11), (12) and (37) this equation 
leads to the standard dispersion relation of the linearized theory: 

(38) 
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Nonlinear Equations for Secular Free Solution 

For convenience we adopt rotating (complex) coordinates, using the substitutions 

(39a, b) 

and find that the nonlinear field equations correct up to third order reduce to 

(40) 

(41) 

""f eE~ ePo ) avz = - --3 - (E+ v_ +E_ v+ , 
moyo 2mocyo 

(42a) 

E~ = (mo w; yo/e)bv;. (42b) 

From (40) and (41) we obtain 

(43) 

while equations (42) give 

(44) 

We now write 

E± = H(a±b)exp(iOo)+(a+b)exp(-iOo)} = acosOo ±ibsinOo , (45) 

where a and b are the amplitudes of the EM wave along the principal directions of 
its polarization ellipse and 00 = wp T. Then equations (36b) and (44) give 

v± ;:: (e/moyowp)(-asinOo ±ibcosOo)' 

bv; = - e2(a2 _b2)W2 cos 280/m~ Vy~ W;(3W2 + k 2c2) , 

(46) 

(47) 

where we have used (9) and (10) to find an expression for 4y~ - 1 in the denominator 
of (47). Now we evaluate all terms on the RHS of (43) which give the first harmonic 
field effect and obtain 
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Nonlinearly Induced Birefringence for Precessional Rotation and Wave Number Shift 

It has already been mentioned that the left and right circularly polarized components 
of a wave propagate at different rates due to plasma nonlinearities and thus give rise to 
the effect of birefringence. When these components propagate at the same rate, the 
polarization ellipse does not experience any precessional rotation about the direction 
of propagation. But, as argued by Maker et al. (1964), when the two rates differ, the 
two wave components undergo a different phase retardation, which results in a 
rotation of the polarization ellipse through an angle <p, equal to half the difference 
in the phase delay of the two components of the wave. The spatial rate of the pre­
cessional rotation can therefore be evaluated from the relation 

(49) 

where k± are the wave numbers of the two wave components. 
To find k± we must use in the LHS of (48) the nonlinearly correct expression for 

E± in place of that of (4S). To determine the appropriate nonlinear complex 
expressions for the first harmonic fields, following the plane polarized wave evaluation 
of the Faraday rotation angle by Krall and Trivelpiece (197S, p.18S), the more 
general elliptically polarized wave is written as 

(SO) 

where 

8± = w± . (Sla, b) 

The frequencies w± are determined from the relation (12b). This form of E± enables 
us to find the nonlinearly developed birefringence effect of an elliptically polarized 
wave. 

Equation (48) now gives 

w;f - w; = {k2c2 /2(4- X)}(IX +11? - !w2{3(1X2 + 112) +21X11}, (S2) 
where 

(S3a, b) 

and IX and 11 are the dimensionless field amplitudes of the elliptically polarized wave. 
Putting the value of w± from equation (12b) in (S2) we find the nonlinear dispersion 
relation correct up to third order for the left and right circularly polarized components. 

Next we write k ± = k + bk ± and w ± = w, and consider the spatial evolution 
problem. Retaining only first order terms in bk± we obtain 

-1 X(1X2+112) (3 I-X) 
bkjk = tk (bk+ +bL) = 4(I-X) 4 - 4-X ' (S4a) 

(S4b) 

bk being the average of the two wave-number shifts. These two equations are 
identical, apart from notation, to the results (24) and (2S) of Arons and Max (1974). 
Equation (S4b) gives the precessional rotation of the polarization ellipse of transverse 
vibration of the wave as a function of the field intensity. As shown in (49) this 
is a consequence of the birefringence effect because solving (S2) with the help of 
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(12b) shows that w/k+ and wjL have different values. Chakraborty (1978, Ch. 12) has 
applied several other methods to find this effect [see also the forthcoming review by 
Chakraborty et al. (1983)]. 

For radiation generated by an Nd-glass laser we have typically A = 1'06I1m, 
w = 1'78x1015 s-1, No = 5x102°cm- 3 and a laser power W= 1016 Wcm- 2 • 

Therefore, taking (X2 = 1]2 ~ 0 005 we find that tJk = 1·05 X 102 cm -1, and as 
the wave travels through a length of 5·5 x 10- 3 cm its polarization ellipse rotates 
through an angle of 10. The power of 1016 W cm - 2 is less than the threshold power 
(~ 1020 W cm - 2) necessary to generate self-focussing and other distortions due to 
the nonlinearly growing inhomogeneity in a dense plasma. 

5. Exact Dispersion Relation for Circularly Polarized Wave from S' Frame Lagrangian 

In equation (6) the Lagrangian 2 of the particles and the field produced by them 
is valid in the lab inertial frame S. When transformed to the S' frame with the help 
of the relations in Section 3 it becomes 

2' = N {2(1 1'6 (·R,2 p,2 + 2 tJp'2))t - 0 moc - (1 +YoPOtJfJ~)2 Px + y 1'0 z 

- 1 +Y7;otJP~(A~P~ +A~P~ +Y6A~tJP~) -eyo Po A;} 

+(E~2+E;2+E~2)/81C . 

The equation of motion in the S' frame is 

(ojoT)(y'v') = -(e/mo)E' = (e/mo)A.', 

and so 

y'v' = -eA'/moc. 

For a circularly polarized wave in the S' frame we write 

and find that 

Then we get 

A' = (-ssinw'T,scosw'T,O), 

tJP~ = 0, A~ = 0, 

P~ = (2 2 es 2 4 ' , 1'0 e s +moc)2 

E; = O. 

v' = 
ece -ssinw'T, scosw'T, - Vo) 

YoCe2s2 + m6 c4)t 

Therefore the Lagrangian becomes 

(55) 

(56) 

(57) 

(58) 

(59) 

(60a,b) 

(60c) 

(60d,e) 

(61) 
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For a variation in s, the Euler-Lagrange equation gives 

(62) 

and so the exact value of w' is given by 

W,2 = w~j(l +e2s2jm~c4)t. (63) 

Transforming to the S frame with the help of (12b), we find the well known exact 
dispersion relation for a circularly polarized wave: 

(64) 

In place of equation (58) we can now put 

E == (a cos (J, a sin (J, 0) (65) 

in the lab frame S, where (J = kz-wt. Then since E = -c- 18Aj8t, we can replace 
s by - acjw and find that (64) becomes 

(66) 

where IX is the dimensionless amplitude parameter eajmo cw. Expanding the RHS in 
powers of 1X2 and retaining only the first two terms of the binomial expansion we 
obtain the result (18) of Arons and Max (1974), if their notation is adopted. Replacing 
w by w+bw or k by k+bk in the LHS of equation (66) and keeping terms correct 
to the first power of the nonlinear increment bw or bk, we easily determine its 
intensity-dependent value. 

It may be mentioned here that as the dispersion relation is exact, the right and 
left circularly polarized components have the same dispersion rates and so the effect 
of nonlinearly induced birefringence is absent for circular polarization. 

6. Remarks 

Intensity-dependent precessional rotation of strong EM waves in plasmas and 
other material media becomes significant under some physically possible conditions 
of phase matching or resonance (Arons and Max 1974; Katz et al. 1975; Lie and 
Wonnacott 1976; Chakraborty 1977; Chakraborty and Chandra 1977; Khan and 
Chakraborty 1979; Bhattacharyya and Chakraborty 1979). Induced magnetization 
(1M) and synchrotron radiation (SR) subsequently produced by the precessional 
rotation should provide useful information on the conditions found inside the material 
body. The 1M and SR and the resultant radiation reaction leading to the damping 
of the accelerated charge motion are processes which change with time. So verification 
of the nonlinear rotation with the help of transformation to the space-independent 
time-like frame is expected to give rise to an elegant and concise method of deducing 
subsequent results. 

In a magnetized plasma the nonlinearly correct refractive index becomes 
inhomogeneous and so nonlinearly correct closed-form solutions are not obtained. 
For this reason Chakraborty et al. (unpublished) have used the WKB approximation 
to derive expressions for the nonlinearly correct evolution of the Faraday effect. 
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But if, from the beginning, equations are transformed relativistically to a space­
independent frame, it is expected that difficulties arising from the nonlinearly developed 
refractive index can be bypassed mathematically. 

An investigation of the Lienard-Wiechert potential and other results following from 
it with the help of the LT to the space-independent frame should be simple exercises. 
Another useful exercise would be the transformation of the inhomogeneous 
Klein-Gordon equation, which has been written in the four-vector covariant form 
by De Jager (1967). The method of an averaged Lagrangian, developed by Whitham 
(1967, 1974) and extended by Dysthe (1974), Sihi (1980) and others to nonlinear 
wave processes in plasmas, is another topic in which the application of the LT to 
a space-independent frame should be made in the study of modulational instability. 
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