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We develop power series expansions for both the Mie theory scattering amplitudes and the scattering 
phase matrix elements in terms of the variable s = sin2 W, where () is the scattering angle. It is 
easily seen that s is the natural variable for such expansions. These expansions should prove 
particularly useful whenever the forward diffraction peak, rather than the entire phase function, 
is of primary interest. Possible applications include the analysis of solar aureole data and the 
modelling of laser beam propagation in fogs and dust clouds. 

1. Mie Scattering 

The scattering of an electromagnetic wave by small particles is usually characterized 
by four scattering amplitudes S1' 8 2 , S3 and S4' which may be defined by (van de Hulst 
1957; Liou 1980) 

(1) 

where the subscripts I and r denote the field components parallel and perpendicular 
respectively to the scattering plane, and the superscripts i and s denote incident 
and scattered waves respectively. Note carefully that the presence of the imaginary 
i factor in the denominator effectively exchanges the roles of real and imaginary 
parts of these amplitudes, by comparison with the usual quantum mechanical 
definitions. 

Clearly, in the case of spherical particles (the subject of Mie theory), symmetry 
requires that 

(2) 

For a spherical particle of complex index of refraction m and size parameter 
x = kr = 2nr/ A, Mie theory gives (Stratton 1941; van de Hulst 1957; Deirmendjian 
1969; Liou 1980) 

00 2n+ 1 
Sl«(J) = L ){annnCcos(J) + bllnn(cos (J)}, (3a) 

»=1 n(n+ 1 

* Dedicated to the memory of Professor S. T. Butler who died on 15 May 1982. 
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(3b) 

where 

( 0) _ P~(cos 0) 
nn cos - . 0 ' sm 

(4a, b) 

and an and bn are complex functions of x and m, but not O. 
Of more direct interest is the scattered intensity and polarization, usually expressed 

via the Stokes parameters: 

1" M11 M12 0 0 Ii 

QS M12 MI1 0 0 Qi 

-M34 Ui 
(5) 

Us 0 0 M33 

VS 0 0 M34 M33 Vi 

where 

Ml1 = (SI si +S2 S';J/2k2r2, M12 = (S2S~ -SI S i)/2k2r 2 , (6a, b) 

M33 = (S2 si +SI S';}/2k2r2, M34 = i(S2 si -SI SjJ/2k2r2. (6c, d) 

The scattering cross section is given by 

Us = :2 J: (SI st +S2 Snsin 0 dO 

= 2nr2 Jo" Mll sin 0 dO, (7) 

and the normalized phase function by 

(8) 

so that 

J2"J" o 0 P(O) sin 0 dO dq, = 1. (8') 

Finally for completeness we may note that the extinction (total) cross section may 
be obtained from the optical theorem: 

where 
00 

S(O) = SI(O) = S2(O) = t L (2n+l)(an +bn)· 
n=1 

2. Power Series Expansion 

We start by defining the variables 

11 = cos 0, 

s = sin2tO = ·HI-11). 

(9) 

(10) 

(11) 

(12) 



Power Series Expansion 

The first step is to expand nnand Tn in terms of s. Noting that 

Pn(/.l) = F(n+l, -n;l;s), 

where F is the standard hypergeometric function (Spiegel 1968), and that 

nnCe) = (djd,u)PnCe) = -tn(n+l)F(n+2, -n+l;2;s), 

we readily obtain 
n-1 

nnCs) = L (-IYC~si, 
i=O 

where 

i (n+i+l)! 
C = . 

n 2(n-i-l)!(i+l)!i! 

Similarly, noting that 

we readily obtain 

n 

TnCS) = L (-IYD~ Si , 
i=O 

where 

Di = {n(n+l)(2i+l)-i(i+l)}(n+i)! 
n 2(n-i)!(i+l)!i! 

(n-i)(n+i+l)+2in(n+l) i 
=. Cn· 

(n-i)(n+i+l) 
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(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

The power series expansions for S1 and S2 may now be obtained by substituting 
equations (15) and (18) into (3): 

where 

00 

S 1 = L (- l)j!X j sj , 
j=O 

00 

S 2 = L (- 1 )j f3 j sj , 
j=O 

00 2n + 1 j j (2j + I)! 
!Xj = n=t+1 n(n+I)(anCn +bnDn) + U+l)!U-I)!b j , 

00 2n+l j j (2j+l)! 
f3j= L ( l)(an Dn+ bn Cn) + '. 1'(. ,aj • 

n=j+111 11+ U+ ). )-1). 

(20a, b) 

(2Ia) 

(2Ib) 

If the main purpose of the calculation is to evaluate, say, pee) for small e, then 
the evaluation of the rx j and f3 j coefficients should suffice, and P can be calculated 
via equations (6a) and (8). There are occasions, however, in which the intensity (or 
the elements of the Stokes vector) is required. This may determined from 

00 00 

. - s s* "( l)iA 1 i 11 = 1 1 = L... -j s , . - s s* "( l)iA2 i 12 = 2 2 = L... - is, (22a, b) 
i=O i=O 

00 00 

. - s s* "( l)iA 3 i 13 = 2 1 = L... - is, . - s s* "( 1)iA4 i 14 = 1 2 = L... - is, (22c, d) 
i=O i=O 
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where 

(23a, b) 

(23c,d) 

3. Connection with Legendre Expansion 

The most usual expansion for a function of cos 0 between 0 and 1t is in terms 
of Legendre polynomials. This procedure is often used when scattering functions 
are required for radiative transfer calculations (Chu and Churchill 1955; 
Chandrasekhar 1960; Dave 1970; Herman and Browning 1975). Due to the relation 
between sand f/, (for example equation 12), the expansion of any function of 0 in 
terms of Legendre polynomials can be converted into a power series in s, and vice 
versa. Thus, for arbitrary 1(0), we define 

00 

1(0) = L WnPn(f/,) , (24) 
n=O 

where 

(24') 

and Pn(ft) is the Legendre polynomial of order n. 
This same arbitrary function may also be expanded in terms of s: 

00 

1(0) = L (-1)'A i si • (25) 
i=O 

Inserting equation (25) in (24'), we find 

00 J1 
Wn = (n+t) L (-lYA i 

i=O 0 
Si F(,.-n; n+ 1; 1; s)2 ds 

00 '1'1 

= (-1)"(2n+l).L (-liAI(.~· )I( +Z'~1)1' .=m Z n. n z . 
(26) 

where the integral has been performed using equation (7.512.2) of Gradshteyn and 
Ryzhik (1965). 

Conversion in the other direction is easily accomplished by expanding P" in 
equation (24) as a hypergeometric function in s, giving 

00 n i (n+i)! i 

1(0) = n~o wn i~O (-1) (n-i)!i!i!s, (27a) 

so that 

(27b) 
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4. Applications 

The power series expansion cannot be recommended for the complete recon
struction of the various scattering functions for all sized spheres, as the expansion 
coefficients soon become so large that the least significant figure carried by the 
computer is larger in magnitude than the actual result being calculated. (However, 
it should be pointed out that the A coefficients are essentially the squares of the 
a and P coefficients, so it is clearly more accurate to use the latter to first compute 
Sl and S2, and use them to compute the various scattering functions.) For such 
purposes, the Legendre expansion is clearly superior. 

The series expansion should prove most useful whenever details of the forward 
peak are required, as in this case only comparatively few coefficients will be required. 
(Note, however, that the usual complement of an and bn coefficients will still need 
to be computed, i.e. about x+ 10, where x is the size parameter. In most foreseeable 
applications, these would have to be computed anyway in order to calculate the 
extinction and/or scattering efficiency factors.) Among the uses for which this 
expansion should prove appropriate, we shall examine three. 

In the small-angle scattering approximation to the propagation of a narrow laser 
beam in a medium such as a fog or dust cloud (Box and Deepak 1981), it is common 
to employ simple analytic models of the forward diffraction peak, rather than exact 
Mie theory. Two such model phase functions are the gaussian 

(28) 

and the binomial 

(29) 

In both these expressions, IjJ may be variously interpreted as 0, sin 0, 2 sin to etc., 
and a and /1 are adjustable parameters. By expanding either equation (28) or (29) 
in a Taylor series, and comparing the leading terms with the first few terms of the 
power series expansion of the appropriate Mie theory phase function, it should be 
possible to select optimum values for a and /1, and also to gain a feel for the 
appropriateness of the approximate phase function employed. 

One of the methods of remotely sensing the optical properties of atmospheric 
aerosols is to make narrow band measurements of the scattered sunlight in the region 
of the solar aureole (Deirmendjian 1969; Green et al. 1971). This involves scattering 
angles of up to roughly 20°. This data is then analysed via one of the standard 
methods for inverting the resulting Fredholm integral equation (Twomey 1977; 
Deepak et al. 1982). Since all these methods have a number of problems associated 
with them, particularly regarding their stability, it may prove advantageous to 
convert the measured data into a set of power series expansion coefficients, and 
perform an inversion on them. 

Measurements of optical extinction due to scattering particles are subject to a 
number of errors (Shaw 1976), including the fact that some of the scattered light 
is inevitably received by the detector (Deepak and Box 1978; Box and Deepak 1979). 
For optically thin media, a single-scattering correction procedure has been developed 
(Deepak and Box 1978) which involves integrating the phase function of the 
scattering particles over the solid angle subtended by the detector. In general, this 
should be small, so that it should be possible to perform such integrals analytically 
if the power series expansion coefficients are available. 
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