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Abstract 
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An earlier discussion of loss-cone driven cyclotron masers is extended to cover the case where the 
emission occurs close to the cutoff frequency of the 0 mode or the x mode. In general, wave growth 
may occur in one or two bands, and when two bands are allowed the lower band is close to the cutoff 
frequency. With the exception of the x mode at 8 = 1, growth in the lower band is allowed only for 
OJp/D. > 8 and cos28 > t for the 0 mode and for OJp/Q. > {s(s-I)}-!- and cos28 > (s-I)/8 for the 
x mode, and growth in the lower band has no particularly favourable features when allowed. For 
the X mode at 8 = 1 both bands are allowed for all OJp/D. $ 1 and growth in the lower band is 
possible over a wide range of angles in a very narrow frequency band. The spatial growth rate can 
be quite large due to the small group speed. However, the large spatial growth rate is offset by the 
short pathlengths for growth in a slowly spatially varying magnetic field due to the very narrow 
bandwidth of the growing waves. It is found that growth in the lower band is at best no more effective 
than growth in the upper band. We discuss the relative merits of growth in the two bands in a 
suggested application to terrestrial kilometric radiation. We also discuss cyclotron theories for type I 
solar radio emission, pointing out that our results do not favour such theories, and for solar microwave 
spike bursts. 

1. Introduction 

In an earlier paper (Hewitt et al. 1982; hereafter referred to as HMR), we discussed 
the properties of loss-cone driven electron cyclotron maser emission. In HMR we 
specifically excluded discussion of emission close to the cutoff frequencies of the x 
mode and the 0 mode. In the present paper we extend the discussion of HMR to 
these excluded cases, i.e. to emission in regions with refractive index n = kc/ro ~ 1. 

The main interest in growth near a cutoff frequency is associated with the possibility 
oflarge spatial growth rates due to small group speeds Vg ~ c. Here we are concerned 
with the possible importance of this effect for terrestrial (or auroral) kilometric radia
tion (TKR) and for certain solar radio emissions. For TKR the relevant growth is 
in the x mode at the fundamental s = 1. It has been noted by a number of authors 
(Omidi and Gurnett 1982; Melrose et al. 1982; Wu et al. 1982; Dusenbery and 
Lyons 1982; HMR) that growth in this case can occur close to the cutoff frequency, 
but this has not been explored in detail previously. Solar radio emissions for which 
cyclotron maser theories have been proposed include type I bursts (Twiss and Roberts 
1958; Fung and Yip 1966; Mangeney and Veltri 1976) and microwave spike bursts 
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(Holman etal. 1980; Melrose and Dulk 1982; Sharma et al. 1982). Observationally, 
the former is in the 0 mode and consists of short narrow-frequency bursts superim
posed on a broadband continuum. Fung and Yip (1966) argued that the bursts 
could be due to what they referred to as a 'double frequency' solution, which is 
closely related to emission close to the cutoff frequency (see Section 2). 
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Fig. 1. Effective growth region 
(dotted area) for the x mode at 
s = 1 is plotted for OJp/Q. = 0·1 
as a function of OJ and O. (The 
parameters used are the same as 
those for Fig. l1a of HMR. 
The V = 0 curve coincides with 
the right-hand boundary.) The 
lower band is so narrow in 
frequency for 0 ;;: 110° that its 
bandwidth cannot be resolved 
here. Between the upper and the 
lower bands at fixed 0 the 
growth rate is negative. 

Another reason for considering emission near the cutoff frequency involves (a) the 
growth rate for n = kcjw ~ 1 and (b) the effect of refraction on the escaping radiation. 
The effect of refraction has been invoked in some cyclotron theories for Jupiter's 
decametric (DAM) radio emission; for example, by Ellis and McCulloch (1963) and 
by Goldstein and Eviatar (1979). We believe that the angular dependence of the 
maser operating at kcjw ::;:j 1 can account well for the inferred angular dependence 
of DAM (Hewitt et al. 1981) and that emission at n ~ 1 is not required for DAM. 
However, refraction may be important in solar microwave spike bursts, which seem 
particularly favourable for interpretation in terms of loss-cone driven cyclotron 
maser emission. A difficulty is that emission at s = 1 cannot escape through the 
second-harmonic absorption layer (where w = 2Qe). To overcome this difficulty 
Melrose and Dulk (1982) suggested that the observed emission is at the second 
harmonic. An alternative possibility (Holman et al. 1980) is that the emission is at 
theJundamental and that when it reaches the second-harmonic absorption layer it is 
propagating nearly along the magnetic field; the absorption coefficient goes to zero 
at sin e = 0 as sin2e, leaving a 'window' at small e through which the radiation can 
escape. The geometry seems to preclude e ::;:j 0 at the second-harmonic layer except 
if the maser operates close to the cutoff frequency, allowing emission at relatively 
small e and allowing refraction to further decrease e. 
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A1though we have these various possible applications in mind, our main motivation 
is to explore the properties of growth near the cutoff frequency and to consider 
whether or not it can compete effectively with growth at n ~ 1. Growth at n ~ 1 
can be important only if it has different properties from that at n ~ 1 and also if it 
can compete with growth at n ~ 1 for the available free energy. 

We find it convenient to refer here to growth at n ~ 1 as being in the 'upper band' 
and that at n ~ 1 as being in the 'lower band'. As explained further below, this 
terminology arises from a consideration of the dependence of the growth rate on w 
and 8 (for sQe less than the relevant cutoff frequency). On an w-8 plot we find that, 
provided I 8 - tn I is greater than some minimum value, growth at a given 8 occurs 
in two frequency ranges separated by a range of w where the waves are damped. 
The lower frequency band is very close to the cutoff frequency and has a very narrow 
bandwidth (an example is plotted in Fig. 1). 

In Section 2 we describe the kinematics of the resonant interaction which allow 
maser emission close to the cutoff frequencies. Our detailed numerical results are 
presented in Section 3 and discussed in terms of a semiquantitative theory in Section 4. 
In Section 5 we discuss growth in the upper and lower band for the x mode at s = 1 
in relation to the application to TKR, and in Section 6 we comment on the possible 
solar applications. The conclusions are summarized in Section 7. 

2. Kinematics for Maser Action near the Cutoff Frequencies 

The kinematic restrictions on cyclotron maser emission were developed in HMR 
in terms of the properties of the resonant ellipse in v 1--v II space. The condition 
V 2 > 0 for the ellipse to exist excludes a certain region of w-8 space. The V = 0 
curve is plotted in Figs 11a and 14 of HMR. However, before discussing this descrip
tion of the kinematics, it is instructive to consider an alternative approach due to 
Ellis (I 962) and Fung and Yip (I 966). 

The cutoff frequency of the 0 mode is at w = wP' and the cutoff frequency for 
the x mode is at w = Wx with 

_ lQ + 1(Q2+4 2)-!-Wx -"2 e "2 e wp. (1) 

Ellis (1962) developed an electron cyclotron emission theory for DAM, and in 
discussing the kinematics for the emission he used a plot of n2 versus w. He plotted 
both the dispersion relation for the x mode, i.e. n2 = n~(w, 8), and also the Doppler 
condition for a single electron, i.e. 

w -sQe(l-Pi-PTi)! -nwP Il cosO = 0 (2) 

for s = 1. At n2 = 0 the Doppler curve (2) starts at the point w = sQe(l- Pi - PTI)! 
and as w tends to infinity the Doppler curves tend to a finite maximum value, 
which in practice is ~ 1. On the other hand, the dispersion curve for n2 starts at the 
point n2 = 0, w = Wx and tends to n2 = 1 as w tends to infinity. It follows that for 
sQe(l - Pi - Pn)! > Wx the two curves must cross at one and only one point, and for 
sQe(l- pi - Pn)! < Wx the two curves either intersect at two points or not at all. 
Hence a given electron resonates with only one wave at a given angle 8 in the former 
case, and two or none in the latter case. Fung and Yip (1966) extended Ellis's graphical 
technique to include the 0 mode and higher harmonics. They called these two cases 
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'single' and 'double' frequency solutions respectively. The forbidden region in w-e 
space (cf. Figs lla and 14 of HMR) corresponds to those wand e for which there are 
no values of v 1- and v II for which the Doppler curve (2) intersects the relevant refractive 
index curve. 

In the present case we are concerned with maser emission involving a distribution 
of electrons rather than a single electron. In place of (2) we have the kinematic 
requirement 

(3) 

for the resonant ellipse to exist. By replacing the inequality in (3) by an equality 
and changing variables, the condition 

(4) 

defines the boundary of the region where resonance is possible. On an n2-w plot 
resonance is possible only to the left of the curve defined by (4). 
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Fig. 2. Square of the refractive index as a function of wjQ. for the 0 mode (left solid curve) and the 
x mode (right solid curve) above their respective cutoffs for (a) wpjQe = O· 3 and 8 = 120°; (b) 
wpjQe = 0·3 and 8 = 150°; (c) wpjQe = 1·1 and 8 = 120°; (d) wpjQ. = 1·1 and 8 = 150°. 
Dashed curves are given by equation (4) with the same values of 8 and with s = 1 (left) and s = 2 
(right). 

In Fig. 2 we plot the refractive index curves for the 0 mode and the x mode and 
the curve (4) for s = 1 and 2 for several different values of wpjQe and cos e. The 
following features are evident: 

(1) For sQe greater than the cutoff frequency for the given mode, the curve (4) 
and the refractive index curve intersect at one and only one point for a given cos e. 

(2) For sQe less than the cutoff frequency the curves intersect at two points or 
not at all, depending on the value. of cos e. 
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(3) The x mode at s = 1 is exceptional due to De < Wx always being satisfied. 
In this case there can be zero or two intersection points, but never one. 

(4) The boundary separating the regimes of zero and two intersection points 
corresponds to the two curves touching; this occurs for a particular value of cos2lJ 
and two intersections occur only for cos2 lJ greater than the value so determined. 

These properties have been deduced using (4), which corresponds to the resonant 
ellipse having a vanishing semimajor axis. For the x mode at s = 1 the curve V = 0 
is plotted in Q)-lJ space in Fig. 14 of HMR, and the minimum value of cos2 lJ is 
determined by the position of the nose in this curve. The case of the x mode at s = I 
is discussed further in Section 4. For the other cases the condition for two intersection 
points to occur and the minimum value of cos2 lJ may be determined analytically, as 
shown in Appendix I. The requirement that sDe be less than the cutoff frequency 
leads to 

(5a, b) 

for the 0 mode and x mode respectively. The smallest possible value of cos2 lJ at 
which the two curves touch is when sDe is equal to the cutoff frequency and the two 
curves are tangent to each other there. This leads to 

cos2 lJ > (s-I)/s (6a, b) 

for the 0 mode and the x mode respectively. Thus two intersection points occur for 
the 0 mode at s = 1 and the x mode at s = 2 only for wp > De and wp > .J2 De, 
respectively, and for cos2 lJ > t. 

So far we have appealed only to the condition (4) for a resonance to be possible 
at all. As explained in HMR, effective growth is restricted to a small range of resonance 
ellipses which fit into and are approximately touching the boundary of the loss cone 
in V.L-VII space. For these ellipses we have V> 0 and then (4) is replaced by, for 
w2 ~ s1D; and V2/e2 ~ 1, 

(7) 

The centre of the resonance ellipse is at (vII' V.L) = (Ve, 0) with, for v~/e2 ~ 1, 

Ve/e = ncoslJ. (8) 

The upper band for growth corresponds to n ~ 1 and cos lJ ~ ve/e in equation (8) 
and to (W2-s2D;)/W2COS2(J ~ 1 ~ V 2/e2cos2(J in (7). For the lower band (7) and (8) 
are satisfied (for given favourable V and ve) in a different way as discussed in detail 
in Section 4. For V much greater than the optimum value the resonant ellipses pass 
through regions of vrvil space where 8//8v.L is negative, and these regions lead to 
negative contributions to the growth rate. 

The separation of growth into two bands can be understood by fixing Ve and lJ 
and considering how V varies with w according to (7) and (8). One finds that the 
optimum values of V can be obtained either for n2~ (W2-s2D;)/W2cos2lJ ~ 1 ~ 
V 2/e2cos2(J, which is the upper band, or near the cutoff frequency. In between, one 
can satisfy (7) and (8) only for much larger values of V which correspond to damping 
rather than growth. It is for this reason that the two bands in Fig. 1 are separated 
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by a region of damping. This effect is also apparent from the results of Omidi and 
Gurnett (1982) who found two growth bands (labelled I and III) separated by a 
band (labelled II) where damping occurs. 

We are concerned here with the lower band. It is reasonably well defined by the 
vicinity of the lower of the intersections of the curve (4) with the refractive curve, as 
illustrated in Fig. 2. The lower band is characterized by frequencies close to the cutoff 
frequency, small refractive indices and narrow bandwidths. 

3. Numerical Results 

The numerical results reported here are for the distribution function defined by 
equations (11) and (12) of HMR. This is a hot Maxwellian distribution, with electron 
number density nH and temperature T, with a hole at pitch angles oc > OCo and with 
the distribution falling off as [sin{Hn-oc)n/(n-oco)}t for oc > OCo > tn. Here we 
consider only the case N = 6. 

Scaling 

In HMR we chose nH = 1013 m - 3, T = 108 K and OCo = 1500 , and also Qe/2n = 
3GHz and a cold electron density nc = 1015 m- 3 . These parameters are appropriate 
to an application to solar microwave spike bursts (Melrose and Dulk 1982) but not 
to TKR or other possible situations of interest. However, as stated in HMR, the 
growth rate divided by Q e depends only on the ratios nH/nc. wp/Qe and w/Qe. As 
a consequence our detailed results here and in HMR may be scaled to apply to other 

. situations. 
The growth rate depends on nc oc w~ only implicitly through the dependence of 

the wave properties on wp/Qe. The choice of parameters stated above implies 
wp/Qe = 0·1. In considering different values of wp/Qe in HMR and here we are 
implicitly considering nc to be the adjustable parameter. 

From equations (11), (21) and (22) of HMR and equation (C4) of Melrose et al. 
(1982) the growth rate of the sth harmonic scales according to 

G H P • rn 0 r n (W)2 c2 (V sinoc )2S-2 
- = - - -ZSlllOCo , 
Qe nc Qe Vrn C 

(9) 

with v! OC T, and where G is a function of the dimensionless parameters w/Qe' wp/Qe 
and N. Throughout we assume nH ~ nc so that one has w~ oc nc; we comment on 
this assumption in Section 5. 

Results for x Mode at s = 1 

The growth rate in the lower band for the x mode at s = 1 was calculated for the 
same range of wpjQe as chosen in HMR when discussing growth in the upper band. 
The results are presented in Figs 3-8. Extremely small values of wp/Qe are excluded 
because they correspond to small resonant ellipses very close to the origin where 
absorption by the cold electrons cannot be neglected. 

In Fig. 3 the maximum temporal growth rate is plotted as a function of 8. As 
expected growth occurs only for I cos 8 I greater than some minimum value which 
increases with wp/Qe. However, unlike in the upper band, the growth rate is insensitive 
to the value of 8 above this minimum. The dependence of the growth rate on wp/Qe 
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involves a rapid rise with wpjQe ;S 0'10, reaching a maximum at wpjQe :::::; 0·15 
followed by a decrease at wpjQe ~ 0·15. The value of the maximum growth rate in 
the lower band, i.e. for wpjQe :::::; 0'15, is comparable with the maximum growth rate 
in the upper band at the same value of wpjQe :::::; 0·15 (and at the most favourable 
angle), cf. Fig. 13a of HMR. A semiquantitative interpretation of these features is 
developed in Section 4. 
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Fig. 3. Maximum relatiw temporal growth rate rmax/Qe in the lower band 
s = 1 x mode as a function of 0 for the four values of wp/Q. indicated. 
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Fig. 4. Maximum relative spatial growth rate (rc/Q. vg)max in the lower 
band s = 1 x mode as a function of 0 for the same four values of wp/Qe 

as in Fig. 3. 

The spatial growth rate is equal to the temporal growth rate divided by the group 
speed vg• The spatial growth rate is plotted in Fig. 4 for the same parameters as in 
Fig. 3. It increases as wpjQe decreases, and this is due to a rapid decrease in Vg as 
wpjQe decreases. The strong dependence of Vg on wpjQe is due to the difference between 
the frequency range in which amplification occurs and the cutoff frequency being a 
sensitive function of wpjQe. This is illustrated in Fig. 5 where the differences 
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(w - wJ/Qe are plotted for the frequencies at which the growth rate is half its maximum 
value. It is shown in Appendix 2 that, for w ~ Wx' Vg varies with w as (w - wx)t for 
the x mode, and hence one infers that vg/c is of order {(w-wx)/Qe}t for w ~ W x' 
Thus the strong dependence of the spatial growth rate on wp/Qe is ultimately due to 
the frequency of emission approaching the cutoff frequency rapidly with decreasing 
wp/Qe and hence causing the group speed to approach zero. 
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Fig. 6. Relative effective bandwidth 
I'1w/Q. of the lower band s = 1 x mode 

as a function of 0 for the same values of 
wp/Q. as in Fig. 3. 
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Fig. 5. Relative differences (w-wx)m. 
between the frequencies at which the 
spatial growth rate in the lower band 
s = 1 x mode is half its maximum 
value and the cutoff frequency as a 
function of 0 for the same values of 
wpm. as in Fig. 3. 
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The difference between the two curves in each pair in Fig. 5 defines an effective 
bandwidth for the growing waves. This bandwidth is plotted in Fig. 6; it decreases 
rapidly with decreasing wpjQ •. Hence, at small values of wpjQ., we have quite large 
spatial growth rates, but the growing waves are restricted to a very narrow bandwidth. 

The effectiveness of amplification depends on the optical depth for amplification, 
which is equal to the maximum possible number of e-folding growths. We may estimate . 
this optical depth by mUltiplying the spatial growth rate by the pathlength over 
which amplification can occur. This path length is limited by the restriction that Q. 
must change by less than the bandwidth of the growing waves. Thus the maximum 
pathlength for amplification may be estimated from the ratio of the bandwidth of the 
growing waves to 1 grad Q. I. There is an additional geometric factor which could be 
taken into account: the pathlength for amplification is inversely proportional to the 
cosine of the angle between Vg and gradQ.. We discuss this geometric factor in 
Appendix 2 where we argue that it is unlikely that its effect is large. 
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Fig. 7. Product of the relative spatial growth rate and the relative effective 
bandwidth of the lower band s = 1 x mode as a function of (J for the same 
values of (J)pjD. as in Fig. 3. 

In Fig. 7 we plot the product of the spatial growth rate times the bandwidth of the 
growing waves; this product is proportional to the maximum optical depth for ampli
fication. From Fig. 7 one infers that the optical depth decreases with decreasing 
wpjQ.. Thus, contrary to what the dependence of the spatial growth rate on wpjQ. 
would suggest, amplification becomes less and less effective as wpjQ. is decreased. 
The results,plotted in Fig. 7 also suggest that amplification is most effective at the 
smallest allowed values of 1 cos e I. The optimum values are wpjQ. ~ 0·15 and 
1 cos e 1 ~ O· 45. In Section 4 we discuss how these optimum values should depend 
on the assumed values of 1X0 and T. 

The resonant ellipses at which the maximum growth occurs for different,values 
of wpjQ. are illustrated in Fig. 8. A notable feature is that the size of the ellipses 
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decreases with decreasing wpjQe. Specifically, the ellipses are nearly circles, and the 
radius of the circle and the distance of its centre from the origin are roughly propor
tional to wpjQe. One feature not shown in Fig. 8 is that the ellipses are roughly 
independent of 8 over a wide range above the minimum allowed value of 1 cos 81. 
This is in contrast to the sharp dependence on 8 of the ellipses for growth in the upper 
band; this sharp dependence may be regarded as the cause for the growth being 
restricted to the surface of a hollow cone (see e.g. Hewitt et al. 1981 and HMR). 
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Fig. 8. Resonant ellipses for maximum spatial growth rates in the lower band 
s = 1 x mode for the four values of OJp/Q. indicated. These ellipses are essen
tially independent of B. 
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Fig. 9. Maximum relative temporal growth rate rmax/Q. in (a) the s = 1 0 mode and (b) the s = 2 
x mode as a function of B for the values of OJp/Q. indicated. In (a), for values of OJp/Q. > 1, growth 
can occur in both the upper band (solid curves) and the lower band (dashed curves). The dotted 
sections of the curves for the more weakly growing band are schematic. In (b), growth in both 
bands can occur when OJp/Q. > 1·414; growth rates in the bands are comparable only for a narrow 
range of values of OJp / Q. near 1 ·417. 
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As pointed out above, very small values of wpjQe have been excluded from our 
discussion. The reason is that the resonant ellipse for wpjQe = 0·01 is so close to 
the origin (cf. Fig. 8) that we cannot neglect damping by thermal electrons, as pointed 
out in connection with Table 2 of HMR. Another reason is that the form of the loss 
cone we have chosen, specifically rf. > rf.o independent of V.L' is over-idealized and in 
practice the loss cone disappears below some value of v (see e.g. Croley et af. 1978). 
A further problem with very small values of wpjQe is that the contribution of the hot 
electrons to the dispersion of the waves cannot be neglected, specifically for nH ~ nco 
This final point is discussed further in Section 5. 

Growth for 0 Mode at s = 1 and x Mode at s = 2 

As shown in Section 2 growth very close to the cutoff frequency is possible for the 
o mode at s ~ 1 and for the x mode at.s ~ 2, but only under special circumstances. 
In Fig. 9 we plot the growth rates for (a) the 0 mode at s = 1 and (b) the x mode at 
s = 2 for ranges of wpjQe which include the regions identified in Section 2, specifically 
by equations (5) and (6). It is clear that the growth rates near the cutoff frequencies 
in these cases are very much smaller than for more favourable choices of parameters. 
There seems no plausible situation in which growth in the lower band would be 
important for the 0 mode or for the x mode at s ~ 2. 

4. Interpretation 

In Section 6 of HMR we developed a semiquantitative theory which describes 
most of the properties of the loss-cone driven maser. Here we extend that theory to 
account for the additional features found above for growth at s = 1 and 2 of the 
x mode and at s = 1 of the 0 mode just above their cutoff frequencies. 

The features requiring explanation for the x mode at s = 1 include: 
(i) The temporal growth rate is roughly independent of cos e for I cos e I greater 

than a minimum value which decreases with decreasing wpjQe • 

(ii) Growth occurs in a range of values of (w-wx)jQe which decreases very 
rapidly with decreasing wpjQe below some optimum value, which is wpjQe ~ 0·15 here. 

(iii) The resonant ellipse corresponding to maximum growth has its semimajor 
axis V and the distance Vc of its centre from the origin roughly proportional to 
wpjQe ;$ 0·15. 

(iv) This resonant ellipse is insensitive to the value of cos e above the minimum 
for I cos e I mentioned in (i). 

The features requiring explanation in the other cases include: 

(v) Growth of the 0 mode at s = 1 is possible near the cutoff frequency only 
for wp ;;: Qe and cos2e ;;: !; the maximum growth rate is much smaller than in the 
case w ~ Qe ~ wp' 

(vi) Growth of the x mode at s = 2 is also possible near the cutoff frequency 
for Wx ;;: 2Qe and cos2e ;;: 1; the maximum growth rate in this case is also much 
smaller than for w ~ 2Qe ~ W x' 

Minimum Value of I cos e I 
The value of I cos 0 I below which growth of the x mode at s = 1 is not possible 

is implied by an argument given in Section 6 of HMR. The boundary curve V = 0 
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in Fig. 14 of HMR does not extend to values of 1 cos e 1 less than about 2wp/Qe, as 
implied in equation (l9b) of HMR. Growth corresponds to an ellipse with V> 0 
and must be restricted to 1 cos e 1 larger than 2wp/Qe. Inspection of Fig. 3 in Section 3 
suggests that 

(10) 

is a reasonable estimate of the minimum value of 1 cos e 1 for wp/Qe much less than the 
optimum value of ~0·I5. The inequality (10) is consistent with the semiquantitative 
theory of HMR. 

Dependence of Resonant Ellipse on wand e 
Now consider the properties of the resonant ellipses for the x mode at s = 1. 

The ellipses are nearly circular and may be described in terms of the parameters Vc 

and V specifying their centres (VII = vc' V.l = 0) and semimajor axes (V.l ~ V). 
From the results of HMR, in the semirelativistic approximation, we have 

Vc/c = ncose, 

and near the cutoff frequency for the x mode we have 

(1 I) 

(12) 

Favourable ellipses for growth due to a loss-cone distribution have V ~ 
1 Vc 1 sinlXo ~ 1 VC I· Hence in (12) we require 

The approximation (13) applies for w-wx ;5 w~/Qe, when we have w-Qe ~ 
W x- Qe ~ w~/Qe to within a factor of 2. Then (11), (13) and (14) imply 

W-Wx ~ (W-Qe)21+C~S2e ~ (Wp)41+c~s2e. 
Qe Qe cos e Qe cos e (15) 

Moreover, on inserting (15) in (13) and thence in (11), one finds 

(16) 

The result (16) with V ~ 1 Vc 1 sinlXo accounts for property (iii) listed at the beginning 
of this section, namely that the size of the resonant ellipse is proportional to wp/Qe. 
It also accounts for property (iv), namely that the properties of the resonant ellipse 
are roughly independent of cos e. 

Property (ii) implies that the value of (w-wx)/Qe at which maximum growth 
occurs decreases rapidly with decreasing wp/Qe. According to (15) this variation 
should be as the fourth power of wp/Qe ~ 0·15. Inspection of Fig. 5 shows that our 
numerical results are consistent with a variation of (w-wx)/Qe as the fourth power 
of wp/Qe. 

It may be concluded that our semiquantitative theory accounts for the properties 
(i)-(iv) for growth of the x mode at s = 1 near the cutoff frequency. 
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The 0 Mode at s = 1 and x Mode at s = 2 

In the other cases considered, namely the 0 mode at s = 1 and the x mode at 
s = 2, growth near the cutoff frequency is possible only for a very restricted range of 
the parameter wp/Q., and even when possible it is quite weak. Inspection of our 
numerical results shows that the underlying reason is that the resonant ellipses are 
much larger than is favourable. That is, the allowed value of Vc and V place the 
ellipse at such high values of v that there are few electrons to drive the instability. 

To see why the ellipses are moderately large consider the requirement V2 ~ v~ 
for a loss-cone distribution. For both V 2 , v~ ~ e 2 we have, from equations (7) and (8), 

(17a, b) 

For sQe > wc, where Wc = wp or Wx is the cutoff frequency, V < Vc requires 
W > sQe > wc' which precludes emission arbitrarily close to the cutoff frequency. 
This places a lower limit on n2 and hence on v~. For sQ. < Wc we require W > Wc > 
sQ. and then the term w2 - s2Q; cannot be arbitrarily small. In this case there is a 
lower limit on the final term in (17a) and hence on v~ in order for V2 to be positive. 
In brief, one concludes that the condition v~/e2 ~ (w2 _s2Q;)/W2 ~ V2/e 2 implied 
by V2 ~ v~ in (17a) precludes values of w very close to sQe and hence very close to 
the cutoff frequency. 

Although this discussion does not rule out growth of the 0 mode at s = I and the 
x mode at s = 2 near cutoff from ever being important, it imposes another severe 
constraint. Already in Section 2 we inferred that the growth is restricted to a very 
small range of wp/Q. and is restricted also in angle. The foregoing discussion suggests 
that it could be favourable only if the resonant ellipses implied by the kinematic 
restrictions occur in a region of velocity space with a large value of ~t'/ av 1.' We have 
not explored this point systematically, but our results suggest that one requires 
electrons with f3 ~ O· 1, for example, an energy of several ke V. Even if this additional 
condition is satisfied, we would not expect the growth to be important for s ~. 2. 
The reason is that the growth rate is proportional to n2s - 2 , and growth at small n 
is intrinsically unfavourable for s ;:. 2. 

5. Application to TKR 

The suggestion that the terrestrial kilo metric radiation is due to a loss-cone driven 
cyclotron maser has received wide support recently (W u and Lee 1979; Omidi and 
Gurnett 1982; Wu et al. 1982; Melrose et al. 1982; Dusenbery and Lyons 1982). 
However, it is not clear whether growth in the upper or lower bands is the more 
favourable. A related point is the neglect of the contribution of the hot electrons to 
the dispersion in the lower band. In this section we restrict our discussion to these 
two points. 

Apart from our work here and in HMR, calculations relevant to the comparison 
between the upper and lower bands for growth of the x mode at s = 1 have been 
presented by Omidi and Gurnett (1982) and Wu et al. (1982). However, neither set 
of calculations provides a clear answer to which band is the more favourable. ·Omidi 
and Gurnett calculated the growth rate for a fixed 0 = 1000 and for wp/Q. = 0·05. 
They used a distribution function calculated from S3-3 data (see e.g. Croley et al. 
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1978). It is pertinent to point out that the contours provided from the S3-3 data 
involve considerable interpolation and, of more relevance, the distribution does not 
have a pure loss cone. These features could account for Omidi and Gurnett finding 
a greater temporal growth rate in the lower band than in the upper band, in disagree
ment with the results presented here and in HMR. Wu et al. calculated the temporal 
growth rate at fixed values of e.Most of their calculations corresponded to values 
of e which exclude the upper band. The exceptions are for their model C which 
included no cold electrons. They found growth for e = 90° to be the most favourable 
in this case, but cautioned that their result for e = 90° may be unreliable because 
their distribution function contains a loss cone in the downward as well as in the 
upward direction and the resonant ellipses pass through both. (According to argu
ments in HMR the case e = 90° is kinematically forbidden.) Moreover, the case 
where there is no cold plasma is a special one; we return to this point in the next 
subsection. In brief, the Omidi and Gurnett calculation of the growth rates for the 
two bands may not be relevant to a pure loss cone and Wu et al. (1982) did not explore 
the upper band adequately. 

The results found here and in HMR do not lead to a clear indication as to whether 
emission in the upper or the lower band is to be preferred. The important parameter 
is the spatial growth rate times the bandwidth of the growing waves. According to 
Figs 2, l2a and 13a of HMR the maximum value of (rc/Q. vg)(Aw/Q.) for the upper 
band is between 10- 5 and 10- 6 , which coincides with the maximum value of the 
relevant parameter for the lower band according to Fig. 7 in Section 3 above. Growth 
in the upper band leads to emission over a narrow range of angles and frequencies, 
and growth in the lower band leads to emission over a broad range of angles and an 
extremely narrow range of frequencies. Wu et al. (1982) suggested that the evidence 
for the radiation pattern for TKR being a filled cone (Green et al. 1977), rather than 
on the surface of a hollow cone as for DAM, tends to favour emission in the lower 
band. This is a valid argument, but not a compelling one because scattering or 
specular reflections off locally higher density structures in the source region could 
allow a strongly angle-dependent emission mechanism to lead to escaping radiation 
over a broad range of angles. 

We conclude that neither existing calculations, including our own, nor physical 
arguments lead to a strong case for preferential growth in either the upper or lower 
bands. We favour growth in the upper band, as stated in HMR, primarily because 
growth in the lower band is as favourable only for a restricted range of wp/Q.. The 
actual value of wp/Q. in the source region is not well determined, and it could be 
very low. Very low values of wpjQ. lead to the possibility of an alternative version of 
the cyclotron instability. 

Effect of Very Low Cold Plasma Density 

Our calculations have been performed assuming that the number density of the 
hot electrons with the loss-cone distribution is much less than that of the cold elec
trons. Throughout, the parameter wp includes only the contribution of the cold (C) 
electrons, and the actual value of the plasma frequency for the hot (H) electrons 
alone corresponds to WpH/Q. = 10- 2 in our numerical work. Consequently, our 
results are invalid for wp/Q. ;5 10- 2. Wu et al. (1982) pointed out that the case when 
cold electrons are neglected (their case C) is a relatively favourable one. When the 
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cold plasma density is low enough the nature of the instability changes. It has been 
shown by Winglee (1983) that the instability under consideration here, which he calls 
the Wu and Lee instability following Wu and Lee (1979), passes over into an azimuthal 
bunching instability which is important in laboratory gyrotrons (Sprangle and Drobot 
1977; Chu and Hirshfield 1978). Winglee found that if nc ;S nn then both the Wu 
and Lee and the azimuthal bunching instabilities could be present simultaneously; 
then the azimuthal bunching instability occurs over a broad range of angles at 
kc/OJ ~ 1 and the Wu and Lee instability occurs at O· I ;S kc/OJ ;S 1. Growth in 
the Wu et al. (1982) case C is of this type, as is shown by the fact that the emission 
can occur below the (nonrelativistic) cyclotron frequency. 

Although our theory breaks down for OJp/Qe ;S 10- 2 , cyclotron emission is not 
excluded in this regime. A different type of cyclotron instability simply takes over 
for loss-cone distributions with nn :::::; nc and low values of OJp/Qe . 

6. Cyclotron Theories for Solar Radio Emissions 

Now let us comment on the suggested applications to type I solar radio bursts 
and the solar microwave spike bursts. 

Twiss and Roberts (1958) suggested that type I solar radio emission might be due 
to cyclotron maser emission. This idea was analysed in detail by Fung and Yip (1966). 
In their theory type I bursts, as opposed to the type I continuum, come from emission 
at a 'double frequency' solution, which is closely related to emission close to the cutoff 
frequency as considered here; specifically, it requires OJp-sQe ~ OJp for emission at 
the sth harmonic. A later form of the cyclotron theory is that due to Mangeney and 
Veltri (1976). The main difficulty with cyclotron theories is that type I emission is 
strongly polarized in the sense of the 0 mode, whereas cyclotron emission favours the 
x mode. 

Although the foregoing theories did not invoke a loss-cone driven maser, the 
question arises as to whether such a theory might be favourable, especially in view 
of more recent theories for type I emission which involve loss-cone driven instabilities 
producing Langmuir waves (see e.g. Melrose 1977, 1980a; Benz and Wentzel 1981). 
Dulk and Melrose (1983) argued that such a cyclotron emission is unfavourable. 
Their reason is that there is a relatively narrow range of the parameter OJp/Qe over 
which growth of the 0 mode is preferred, especially for 0·3 ;S OJp/Qe ;S 1, and this 
range is not thought appropriate for type I sources. This argument is further strength
ened by our discussion here of growth near the cutoff frequency for the 0 mode. 
The possibility, for example, as suggested by Fung and Yip (1966), that growth near 
the cutoff frequency may be particularly favourable for the interpretation of certain 
features of type I emission is not supported by our results. 

The suggestion that solar microwave bursts might be due to fundamental emission 
near the cutoff frequency of the x mode seems a possible alternative to emission at 
the second harmonic (Melrose and Dulk 1982). The restriction to I 8-tn I ~ 1 for 
the upper band does not apply to the lower band (cf. Fig. 4), and emission at moderate 
8 can occur with refraction causing a further decrease in 8. This may allow some of 
the radiation to arrive at the second-harmonic absorption layer at sufficiently small 
8 for it to pass through the small-8 window, as suggested by Holman et al. (1980). 
A detailed model involving ray tracing is needed to discuss this point quantitatively. 
A basic difficulty remains: if growth in the upper band is faster than that in the lower 
band, then virtually all the free energy should go into the upper band before the lower 
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has time to grow significantly. A related difficulty is relevant to the production of 
the second harmonic, as proposed by Melrose and Dulk (1982): growth at the second 
harmonic must compete with faster growing fundamental x mode or 0 mode radiation 
except for a small range of wp/Qe between about 1 and 1·4. It is not clear whether 
the observed emission escapes because it is generated at the second (or higher) har
monic or because it is fundamental emission which arrives at the second-harmonic 
absorption layer at small O. 

7. Conclusions 

We have explored loss-cone cyclotron emission at close to the cutoff frequencies 
for the x mode at s = 1 and 2 and for the 0 mode at s = 1. Except for the x mode 
at s = I, the region close to the cutoff frequency is not particularly favourable, and 
it is distinctly unfavourable in the sense that emission there is allowed only for special 
values of the parameter wp/Qe , as given by equations (5). 

Growth of the x mode at s = 1 is possible in two bands for all wp/Qe < 1. We 
refer to these as the upper and lower bands. Growth in the upper band was discussed 
by HMR: it is restricted to a narrow range of angles and a narrow range of frequen
cies. It has been shown here that growth in the lower band occurs over a relatively 
broad range of angles and an extremely narrow frequency range. The semiquantitative 
theory developed in Section 6 of HMR has been extended in Section 4 here to include 
the properties of emission in the lower band. 

The work of several authors might be interpreted as suggesting a preference for 
growth near the cutoff frequency in the interpretation of TKR (see e.g. Omidi and 
Gurnett 1982; Wu et al. 1982; Dusenbery and Lyons 1982). However, until now 
there has not been a detailed comparison of growth in the upper and lower bands. 
Our investigation leads us to favour growth in the upper band, but we cannot rule 
out growth in the lower band. The effective number of growth lengths is comparable 
under the most favourable circumstances for the lower band (otherwise the upper 
band dominates). It may well be that growth in both bands occurs. One would then 
expect TKR to show a double banded structure, with both bands being close to the 
gyrofrequency. There is some evidence for such a double banded structure in spectra 
reported by Benson (1982). 
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Appendix 1. Intersection of Curves n2 = n; and V = 0 

The curve of equation (4), namely 

n 2 = (OJ2-s2Q~)/OJ2COS2(), (AI) 

and the refractive index curve n2 = n;(w,() for either mode (0' = 1 for the 0 mode, 
0' = -1 for the x mode) intersect at two points only for sQe less than the respective 
cutoff frequency and cos2 () greater than a minimum value. This minimum may be 
determined by setting sQe equal to the cutoff frequency and requiring that the slopes 
on2 /ow at n2 = 0 of the two curves be equal. From equation (AI) we have 

(A2) 

For the refractive index curves we use the following formulae (see Melrose 1980b; 
p.261): 

o(wn,,) _ XYT"cos(J (1 l+X I-T;) 
n"---aw- l +2(T,,_Ycos(J)2 +l-Xl+T;' (A3) 

-t y 2sin2()- O'U y 4sin4(J+(1- X)2 y 2cOS2(J}t 
T" = -l/T_" = Y(l-X)cos(J , (A4) 

with Y == Qe/w and x == OJ~/OJ2and with OJ = sQe = OJp for the 0 mode and 
OJ = sQe = OJx for the x mode. For the 0 mode we set X = I at the cutoff frequency 
implying To = 00 except in (1- X)To = - Y sin2(J/cos (), and then (A3) gives 

(AS) 

For the x mode the cutoff occurs at 1 - X = Y when one has Tx = cos (), and then 
(A3) with I-X = Y = l/s implies 

[won;/ow]n~=.o = 2(2s-I)/(s-I)(I+cos2(J). (A6) 

Equating (AS) and (A6) to (A2) leads to the minimum values of cos2 (J implied by 
(6a) and (6b) respectively.* 

* Note that in formula (8c) of HMR we have inadvertently omitted a factor of cos 8/1 cos 81 in the 
expression for T,,: in (8e) (1 should be replaced by (1 cos 8/1 cos 81. 
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Appendix 2. Group Velocities 

The group velocity for the x mode near its cutoff frequency is well behaved, but 
that for the 0 mode near its cutoff frequency has some peculiar properties. 

The group velocity is of the form 

v: = v;(sinO",O,cosO,,), (A7) 

where v; is the group speed and 0" is the angle between the ray direction and B. The 
wave normal direction k is at an angle 0 to B, which is along the z-axis and k is in 
the x-z plane. One has 

(A8) 

and it may be shown that one has (see e.g. Melrose 1980b; p.261) 

(A9) 

XYsinO T" K = ---,--__ -:----:-:---,:-
" 1-X T" - Y cos 0 . 

(AlO) 

For the x mode near its cutoff frequency at 1- X = Y, one finds Tx = cos 0, 
Kx = sinO, nxo(wnx)/ow = (2-Y)/(l-Y)(l+cos20) and tanOx = ltanO. Hence, 
one finds 

Vx 1- Y 2 i 
~ = nx--(1 +3cos 0)2 
c 2-Y 

(All) 

near the cutoff frequency, with the ray direction between the wave normal direction 
and B. The maximum deviation between the ray and the wave normal directions is for 
o ~ 55° when one has Ox ~ 35°. 

For the x mode the ray is at a smaller angle to B than is the wave vector k, and 
hence we are never concerned with rays nearly perpendicular to B. The direction of 
grad Qe is close to the direction of B near the magnetic pole, and hence for the x mode 
the angle between Vg and grad Qe should never be close to In. Neglecting the cosine 
of this angle can lead to errors only of order unity for the x mode. 

The 0 mode near its cutoff frequency has a very strong dependence of no on O. As 
w-wp approaches zero, n; approaches zero except for a range 0 ~ {2(w-wp)/Qe}t; 
for 0 = 0, n; approaches Y/(l + Y). Except for 0 ~ {2(w-wp)/Qe }t, one finds 
To ~ 00, 00 ~ In and 

(AI2) 

Thus the rays are directed nearly perpendicular to B. In this range we may approxi
mate the refractive index by 

(AI3) 

In the opposite limit 0 ~ {2(w-wp)/Qe }t, the group velocity swings rapidly as a func
tion of 0 from 00 ~ In to 00 = ° for a = ° with v~/c ~ yt(1 + Y)3/2/(1 +~:Y + y2) 
at 0 = 0. 
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Over the range of relevance here we have, from (AI2) and (AI3) with co-cop ~ cop, 

(A14) 

However, the very small values of v~ allowed by (AI4) are not obtained in prac
tice because the region co ~ cop is kinematically forbidden by the requirements 
v; ~ V 2 > o. 

Note added in proof In a recent paper Omidi et al. (1983) have remarked that the 
results of Omidi and Gurnett (1982) overestimate the growth in the lower band by 
more than an order of magnitude. Their revised results are consistent with those 
reported here. 
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