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If one imposes the permutation symmetry S. (n is the number of lepton flavours) reducibly on. the 
different families (e, /1, r, ... ), it follows that at least two leptons have the same mass if n > 6. If 
equal lepton masses are excluded, this implies a bound on the number of flavours. 

The question of why there are different families of leptons (and how many), with 
practically identical properties, is one of the most fundamental and long-standing 
problems in elementary particle physics. 

Since all known leptons appear to have the same properties, except for their highly 
non-degenerate masses, it is natural to assume that, prior to spontaneous symmetry 
breaking, there is a permutation symmetry corresponding to the direct interchange 
of the family labels e, 11, L, .... To implement this scenario and at the same time 
stilI generate distinct lepton masses it proves essential to extend the Higgs fields to 
a non-singlet representation of the permutation group. The simplest choice of one 
Higgs doublet for each family is assumed. The Lagrangian of the model is taken 
to be the usual Weinberg-Salam-Glashow-Ward SU(2) x U(1) model (Weinberg 
1967) with n families of leptons, quarks and Higgs bosons, supplemented by an Sn 
permutation symmetry. The present model (Christos 1979, unpublished results; 1980, 
Oxford preprint 54/80) is a natural extension of the n = 2 and 3 models considered 
earlier (Derman and Jones 1977; Derman 1978, 1979). 

The most general quartic Higgs potential takes the form [where ¢i == (¢t, ¢?)] 

n 

V(¢l'¢Z'''',¢n) = I [-I1Z(¢i¢i)+J.(¢i¢i)2] 
i= 1 

n 

+ I [t(X{(¢i ¢j) +h.c.} + [3(¢i ¢i)(¢} ¢j) +y 1 ¢r ¢j 12 
i<j 

n 

+te I [(¢r ¢;)(¢l ¢) +h.c.] 
i*j 
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n 

+ I [tw{( 4>[ 4>j)( 4>Z 4>;) + h.c. }+ta{(4)[ 4>i)( 4>Z 4» + h.c.} 
i#'i'"k j<k 

n 

+~ I [(4)[ 4>j)(4)Z 4>,)], 
i#'i'"k*' 
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(1) 

The last term in (1) is absent in the n = 3 case. 
For simplicity we take the minimum of the potential (1) to occur at 

<4>t> = 0, <4>?> = pdJ~ = real. (2) 

This corresponds to the assumption of no spontaneous violation of both charge 
conjugation and time reversal invariances. With this choice the potential takes the 
form 

n 

V(Pl,P2,···,Pn) = I (-t/1Zpt+APi) 
i=l 

n n 

+ I UIXPiPj +i(f3+y+(j)pt pI} +te I pf Pj 
i<j i*j 

n n 

+t(w+a+O) I ptpjPk+i~ I PiPjPkP" (3) 
i*j*k i*j*k*l j<k 

Since (2) is assumed to be the minimum of the potential, it follows that 

Vi == oV(P)/OPi = ° (i=l, ... ,n). (4) 

These are third-order polynomial equations in the p. The difference, Vk(P)- V,(p) 
(k =II), can then be written as (Pk-PI)Fdp), where Fkl(p) is a second-order poly­
nomial in the P and is symmetric under the interchange of k and I, and under the 
Sn-2 permutation operations on the P, bar Pk and P" Similarly, the difference 
Fkl(P)-Fp,(p) can be written as (Pk-PP)Gklip), where Gklip) is linear in the P and 
is symmetric under the interchange of k, I and p, and under the Sn-3 permutations 
on the P, bar Pk, P, and Pp- If Pk =I P, =I Pp =I Pk it follows from (4) that Fk,(p) = ° = Gklip). The specific form of Gklip) is given by 

(5) 

where X = 4A-2y-2f3-2(j-e+w+a+O and t/J = 3e-3w-3a-3e+12~. Suppose 
now that four of the Pi are distinct, say Pl, PZ, P3 and P4' From the difference 
G123(P)-G124(P) = i(X-t/J)(P3-P4) = 0, it follows that X = t/J. This is viewed as 
an unnatural constraint (not implied or protected by any symmetry) among the 
coupling constants in (1). Excluding such unnatural constraints, implies that the Pi 
can take on at most three distinct values. 
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This means that the possible vacua of the S4' Ss and S6 models are characterized 
by (p =/= p' =/= P" =/= p) 

[1]4 P1 = P2 = P3 = P4 = P; 
[2]4 P1 = P2 = P3 = p, P4 = p'; 
[3t P1 = P2 = p, P3 = P4 = p'; 
[4t P1 = P2 = p, P3 = p', P4 = p"; 

[l]S P1 = P2 = P3 = P4 = Ps = P; 
[2P P1 = P2 = P3 = P4 = p, Ps = p'; 
[3]S P1 = P2 = P3 = p, P4 = Ps = p'; 
[4P P1 = P2 = P3 = p, P4 = p', Ps = p"; 
[W P1 = P2 = p, P3 = P4 = p', Ps = p"; 

[1]6 P1 = P2 = P3 = P4 = Ps = P6 = P; 
[2]6 P1 = P2 = P3 = P4 = Ps = p, P6 = p'; 
[3]6 P1 = P2 = P3 = P4 = p, Ps = P6 = p'; 
[4]6 P1 = P2 = P3 = P4 = p, Ps = p', P6 = p"; 
[5]6 P1 = P2 = P3 = p, P4 = Ps = P6 = p'; 
[6]6 P1 = P2 = P3 = p, P4 = Ps = p', P6 = p"; 
[7]6 P1 = P2 = p, P3 = P4 = p', Ps = P6 = p". 

The residual (i.e. unbroken) vacuum permutation symmetries of the above vacua can 
be read off by inspection; for example, the vacua [2]4, [3P and [7]6 have respectively 
an S3' S3 x S2 and S2 x S2 X S2 permutation symmetry. 

The fermion (lepton) masses are generated by the Yukawa interaction and (2). 
The most general Sn invariant Yukawa Lagrangian is given by 

n n n 

ft'y = L alt¢iri + L (bli¢tfj +cli¢jri +dlj¢iri) + L eli¢jrk> (6) 
i=l i*j i*j*k 

where the Ii = (Vi' ei-)L are the left-handed lepton doublets and ri = (ei)R are the 
right-handed lepton singlets. 

As an explicit example, let us consider the [2]4 vacuum of the S4 theory. This 
vacuum has a residual S3 permutation symmetry. In this case, the mass matrix takes 
the form 

a' b' b'l 
I 

c' (X' [3' [3' . "I' 
I I 

b' a' b' I c' [3' (X' [3' I "I' 
M= 

I MMt = 
I 

I I 

b' b' a' I c' [3' [3' (X' I "I' I I ---------- -----------
d' d' d'i e' "I' "I' "I' I B' 

I I 

where a', b', (x' etc. are some functions of a, b, c, d, e and the p. The S3 vacuum invari­
ance is clearly visible in the submatrix. The fermion masses are obtained by diagonal­
izing M by a biunitary left-right transformation, or equivalently MMt (or MtM) 
by a unitary transformation. It is easy to see that (x' - [3' is an eigenvalue of MMt 
with two eigenvectors. 
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This result is quite general. As long as there is a residual S3 vacuum symmetry 
(or anything larger) there will always be at least two degenerate eigenvectors. If one 
is to exclude the possibility that any two leptons have the same mass (based on the 
present trend me ~ mil ~ mT), all such vacua can be ruled out. This means that the 
only acceptable vacua for the S4' S5 and S6 models are [3]4, [4]4, [Wand [7]6. Since 
only three distinct values of the Pi are possible, it is easy to see that Sn models with 
n > 6 always have at least a residual S3 permutation symmetry, and consequently 
lead to degenerate lepton masses. If we exclude this possibility, this means that the 
hypothesis of imposing a permutation symmetry on the lepton families naturally 
leads to a bound on the number of lepton flavours, n ~ 6. It would be interesting 
to see if this feature also occurs in other horizontal unification schemes. 

A direct consequence of models which mix families is that there are decays in which 
the ordinary (additive) lepton number conservation laws are violated. In the per­
mutation models considered above, there does however remain a multiplicative 
lepton number conservation law (Feinberg and Weinberg 1961). This is because all 
of the acceptable vacua of these models seem to at least contain a residual S2 per­
mutation symmetry. Consequently, every state of the theory has associated with it a 
'lepton parity' (± 1). In models like [3]4 and [W there are two parities, each of which 
is separately conserved in any process. For [7]6 there are three. The details of these 
conservation laws and the decays that may be possible depend on the model (i.e. 
the value of n and the vacuum structure) and the 'lepton parity' assignments of the 
individual leptons (for further details see Derman 1979; Derman and Tsao 1979). 

The application of the permutation symmetry to the quark sector leads to a similar 
set of results, and in particular to the bound on the number of quark flavours, 
n* ~ 12. This agrees with anomaly cancellation arguments which require that 
n* = 2n. 

Similar considerations have also lead Derman and Tsao (1979) to a bound on 
the number of flavours. However, these authors apparently overlooked the vacuum 
structure [7]6 of the S6 model and consequently obtained the wrong bound (n ~ 5). 
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