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Abstract 

We compute the free energy density of a nonlinear diatomic model for a solid which may undergo 
a displacive structural phase transition using (i) a two-component transfer integral operator equation 
and (ii) an ideal gas phenomenology incorporating the stable solutions of the coupled Euler-Lagrange 
equations as elementary excitations. The agreement between the two calculations formally establishes 
that the low temperature excitation spectrum is dominated by both the familiar linearized phonon 
solutions and by nonlinear domain wall or kink soliton solutions. The ideal gas phenomenology 
is then used to compute the kink density, order parameter correlation functions, and the kink con
tribution to the dynamical structure factor. The dynamical structure factor is found to exhibit a 
central peak. 

1. Introduction 

In a previous paper (flenry and Oitmaa 1983, hereafter referred to as Part I) we 
set up the Hamiltonian and the coupled field equations describing a nonlinear diatomic 
model for a solid which may undergo a displacive structural phase transition (DSPT). 
The model consists of a diatomic chain of harmonically coupled nearest neighbour 
atoms including a nonlinear on-site potential on one species. The model differs 
from previously studied models in that it has two species per unit cell. This is an 
important extension because many of the solids which undergo a DSPT have a 
diatomic structure along a certain crystallographic direction. There have been other 
studies of nonlinear diatomic models in this regard. However, most of these models 
include the nonlinear term in the nearest neighbour interactions (Buttner and Bilz 
1978; Yajima and Satsuma 1979; Dash and Patnaik 1981; Mokross and Buttner 
1981; Pnevmatikos et al. 1983). Our model differs from nonlinear diatomic shell 
models (Bilz et al. 1980; Buttner and Bilz 1981) in that in the shell models the non
linear potential is an internal translationally invariant interaction arising from 
electron-ion coupling, whereas in the present model the nonlinear potential is a fixed 
external potential thought of as arising from the inactive sublattices of the crystal. 

In Part I we set up the Hamiltonian and derived the continuum limit equations 
of motion. A number of physically distinct solutions were identified including linear
ized phonons, large amplitUde equal-displacement-field kink and pulse type solitary 
waves, and nonlinear periodic waves. 

* Part I, Aust. J. Phys., 1983, 36, 339-56. 

0004-9506/85/020171$02.00 



172 B. I. Henry and J. Oitmaa 

In this paper we derive topological kink solitary waves for an expanded parameter 
space. These kinks are shown to participate in the statistical mechanics in a crucial 
way. A fundamental result of this paper is that the realistic extension of including 
an additional sublattice as part of the vibrating complex does not preclude nonlinear 
domain walls from the excitation spectrum at low temperatures. 

The plan of this paper is as follows: In Section 2 we present the model Hamiltonian 
[the same as equation (5) in Part I], the equations of motion, and the finite energy 
solutions of these equations. In addition to the solutions reported in Part I a new 
class of kink solitary waves is derived for an expanded parameter space. In Section 3 
we use the transfer integral technique to examine the statistical mechanics for the 
diatomic ¢4 chain. Some order parameter correlation functions are also derived 
using the transfer integral formalism. In Section 4 we calculate thermodynamic 
functions for our model using an ideal gas phenomenology which incorporates the 
finite energy solutions of the coupled field equations as elementary excitations. The 
free energy density calculated in this way is found to agree with the exact calculation 
in the low temperature limit. Finally, in Section 4 we use the phenomenology to 
compute the kink contribution to the dynamical structure factor. In Section 5 we 
present our conclusions. 

In a third paper (Henry and Oitmaa 1985; Part III, present issue p. 191) we will 
examine the dynamics and the statistical mechanics of the diatomic chain using the 
molecular dynamics technique. 

2. Hamiltonian and Finite Energy Excitations 

The Hamiltonian for the discrete lattice is taken to be 

N 

H = L tM;ilt +tM2Vt +!Y(Ui-Vi_l)2 +!Y(Ui-Vi)2 + V(Ui) , (1) 
i= 1 

where Ml and M2 are the masses of the two types of atom. Nearest neighbour atoms 
are coupled by linear forces with force constant y. The Ml atom also moves under 
the influence of a nonlinear on-site potential V(u). The analysis in this paper may 
be readily extended to include anyon-site potential which has at least two degenerate 
minima (cf. Currie et al. 1980). However, for computational purposes, we consider 
the ¢4 potential 

The discrete lattice equations of motion are 

Three physically distinct solutions of these equations are: 

(i) The ground state solution 

Un = Vn = ±uo; Uo = (AjB)t. 

This is the minimum energy configuration for the chain. 

(2) 

(3a) 

(3b) 

(4) 
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(ii) Small amplitude phonons, 

Vn = Vo +VLsin(qa(n+!)-wt), (Sa, b) 

with dispersion 

These solutions describe small oscillations about the ground state. The lower branch 
wL ( - ) is a quasi-acoustic mode and the upper branch wL ( + ) is a quasi-optic mode. 

(iii) Nonlinear periodic solutions 

Un = Fo sin(wt-qan) , 

Vn = Go sin(wt-qa(n+!) + Gsin(3{wt-qa(n+t)}) , 

with amplitudes given explicitly in Part I and with frequency 

(7a) 

(7b) 

(7c) 

Similar nonlinear periodic solutions (called 'periodons') have been reported by 
Buttner and Bilz (1981) in a nonlinear diatomic shell model for a ferroelectric which 
may undergo a DSPT. 

In the displacive regime, 

(8) 

a Taylor series expansion can be used to connect displacement fields of like atoms in 
neighbouring unit cells. The continuum Hamiltonian 

now involves the displacement fields u(x,1) and v(x, t). The coupled Euler-Lagrange 
equations of motion which follow from equation (9) are 

(lOa) 

(lOb) 

These equations reduce to the equation of motion for the monatomic ¢4 chain [see 
Krumhansl and Schrieffer (KS) (1975)] in the limit M2 ~ O. In the absence of the 
nonlinear on-site potential the equations reduce to the continuum equations of 
motion for a harmonic diatomic chain. The excitation energy for a solution to the 
field equations is found from 

(11) 
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Continuum limit descriptions of the ground state solution (equation 4), the low 
amplitude phonons (equations 5), and the nonlinear periodic waves (equations 7) 
can also be obtained from the field equations (Henry and Oitmaa 1983). 

A more interesting class of solutions consists of the localized travelling waves 
(solitary waves) u(x, t) = f(s) and vex, t) = g(s) with s = x-ct, where c is the speed 
of the travelling waves in the lattice. In previous work (Henry et al. 1982) we derived 
equal-displacement-field kink and pulse type solitary waves which propagate at the 
characteristic velocity 

(12) 

Explicitly these solutions are: 

(i) Equal-displacement-field kink, for Ml < M 2 , 

vex, t) = u(x, t) = ±uo tanh(s/eK); 

(ii) Equal-displacement-field pulse, for M2 < M 1, 

v(x,t) = u(x,t) = ±.J2uosech(s/ep); (14) 

The pulse solution is an infinite energy solution. The kink however is topologically 
stable and has a finite energy of excitation. The kink excitation energy, derived by 
inserting the kink profile (equation 13) into the energy equation (11) is 

(15) 

At velocities other than the characteristic velocity Co the g field may be separated 
out of the coupled equations resulting in a quartic equation for the f field: 

{c4M 1 M z _(tyaZ)2}:~ + {2yc2(Ml +Mz)_y2az}::t 
2 dZ oV oV 

+c MZds2 of +2y of = 0, (16a) 

(16b) 

For velocities c < CA, where 

(17) 

is the speed of sound in the lattice, the fourth order term in equation (16a) may be 
neglected to a reasonable approximation (Henry 1984), in which case equation (16a) 
reduces to a second order nonlinear differential equation which can be written in 
the form 

(18) 
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Note that this equation is exact for the particular velocity 

(19) 

Equation (18) can be solved exactly (Henry and Oitmaa 1983). In the case of the 
¢4 potential the solution is given by 

fI(S) (3Bc2 M 212 - ao - c2 M 2 A) df 
s = 2 2 2 2 4 2 2·6' 

1(0) ±{C-(2yc M2A +2yaoA)f +(yaoB +4AByc M 2)1 +2yc M2B j } 

(20) 
where 

(21) 

and C is an integration constant which is determined by the boundary conditions for 
the solution. In Part I we derived nonlinear periodic solutions from equation (20) 
which are the continuum analogue of the discrete lattice periodic waves (equations 7). 
The quadrature (20) also however permits kink solutions. Employing the kink 
boundary conditions 

dJKjdsls=±oo = 0, (22) 

in equation (20) yields the kink integration constant 

(23) 
with the restriction that 

(24) 

The kink quadrature is now found by inserting equation (23) into (20). After a bit 
of algebra we derive 

f fK(S) (ao +c2M2A -3Bc2M z f2) df 

±s = fK(O) {1-(BjA)F}{yao(A2jB)(1 -2Bc2M zf2jaO)}t· 

The following special cases may be immediately derived: 

(i) c = 0; static limit, 

_ ffK(X)~(ya2/B)t. df 
+x - 2 ' - fK(O) (A/B)f 

then 

JK(x) = ±uo tanh(xgo); 

The g field for this case follows from equations (16b) and (26) with c = 0: 

(ii) M2 = 0; monatomic limit, 

_ ffK(S) {(ya Z -2M1 c2)/B}t df 
+S - Z' - fK(O) (AfB)-f 

(25) 

(26a, b) 
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then 

fK(s) = ±uo tanh(s/~); (28a, b) 

This is precisely the KS kink solitary wave with the coupling reduced by a factor of 
two. 

The kink quadrature also permits kink solutions for more general values of the 
parameters. If we introduce the dimensionless quantities 

J = !luo, 

m=M2 /M1 , 

the kink quadrature can be written in the form 

s= 

with 

y = y/A, 

s = s/a, (29) 

(30) 

(31) 

Imposing the physical conditions that s is purely real and that JK(S) is bounded for 
all S, we arrive at the solution 

±s = (ge2m/2y}'J: sin- 1(]K/aO) 

+ (2e 2 mfY)t(ao -1)ttanh -1 {]K(aO -1)t/(ao - Ji)t} , (32) 

with ao > 1 and 0 ~ I JK(S) I ~ 1. The dimensionless g field in this case is given by 

-;4- 1 -2 d2l' -2-_ c m-T6Y JK l' em, - 3 -
gK = 2-(-2- 1-) d-2 +JK + 2 (--2- 1 )UK -fK) , y c m - 4Y s Y c m - 4Y 

(33a) 

with 

d2JK 2y (3e2m/Y)JddJK/ds)2-JK+Ji. 
ds2 = e2m 1+ 2ao-3fi 

(33b) 

dJK = (2Y )t(l-NJ(ao-!i)t. 
ds e2m 1+2ao-3Ji 

(33c) 

The condition ao > 1 restricts the velocity as follows: 

e < y/[2{m +y(1 + m) }]t. 

Note that this condition is satisfied for all velocities less than the acoustic velocity CAo 

The excitation energy for these kinks is found using equations (11), (29) and (33c). 
Explicitly, we have 
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-.Hfi- 1)+tut-1)}/(l-Ji)(ao- J"i)t] , (34) 

where EK = EKB/A2. The integrand in equation (34) can be written as an explicit 
function of JK by making use of equations (33), together with the following expressions: 

d - -4- 1 -2 d 31' d'l' -2- dl1 
~ = c m-TIY ~ ~ c m 3~2-1 ~ 
d - 2 C2 t-) d-3 + d- + r( 2 l-{ifK )d-' s Y c m- Y s s Y c m-,rY S 

d3jK = 2y {(I 2a J(2)3c2m(dlK) 3 
d -3 -2- + O+:lK - d-scm Y s 

-2 6c2m l' dJK d21K 
+(1+2ao- 3fK)-_-JK-d_ d-2 Y s s 

(35a) 

-(1 +2ao -6aoN. +31t)~;}/(l+2ao-3Ji)2. (35b) 

The kink solutions described by equations (32) and (33) occur for all three mass 
ratios: m < I, m = 1 and m > 1. The excitation energy and the domain wall width 
Li [where J(tLi) = tanh 1] vary as the square root of the coupling. This feature is also 
exhibited by the equal-displacement-field kinks; however, the excitation energy of 
the equal-displacement kinks is greater than the excitation energy of the above kinks 
for similar values of m and y (Henry 1984). 

3. Exact Statistical Mechanics 

The classical canonical partition function for the nonlinear diatomic chain is 
given by 

(36) 

where the Hamiltonian H is given by equation (1). Planck's constant h is included 
in the integral in the usual way to represent the 'volume' that each state occupies in 
phase space. Integrating over the velocity coordinates we can write the partition 
function in the factored form 

z = Z~Z;zu,v, (37) 

where 

z· = (2nM k T'h2)tN u 1 B' , (38a, b) 

The configurational contribution Zu.v is now a two component path integral: 

zu,v = f:: dUN f:: dVN ... f:: dU l f:: dVl 

N 

X TI exp[ -PU-Y(Ui+l-Vi)2+tY(Ui-Vi)2+tV(Ui)+tV(Ui+l)}]' (39) 
i=l 

This can be reduced to a one-component path integral by first performing the inte
grations over all the 'v' field coordinates. The result is given by 

(40) 
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where the u-field configurational factor 

(41a) 

with 

is equivalent to the configurational contribution to the canonical partition function 
for the monatomic ¢4 chain, with the harmonic coupling reduced by a factor of two. 

The u-field configurational contribution is evaluated most easily using the transfer 
integral technique [Scalapino et al. (1972); Krumhansl and Schrieffer (1975); see 
also Henry and Oitmaa (1984) for an illustrative application]. We outline the approach 
here using the bra-ket notation. This notation is convenient for calculating correla
tion functions. Following Kogut (1979) we begin by introducing the operator T 
such that 

(u'l 1'1 u) = feu, u'), (42) 

where the state 1 u) corresponds to a particle having a displacement u. The path 
integral (equations 41) can now be expanded in the following way: 

Zu = f· .. f <UN+ 1 1 1'1 UN) dUN (UN 1 T 1 UN- 1 ) dUN- 1 ... <u 2 1 T 1 Ul) du 1 • (43) 

Using the completeness relation for the 1 u) basis, 

f du 1 u)(u 1 = 1, (44) 

we arrive at 

(45) 

For periodic systems where U1 = UN +1 this simplifies to 

(46) 

In order to find a suitable transfer operator T we introduce the transfer integral 
operator equation (TIOE) 

f +OO 

-00 du f(u,u')t/lnCu) = Ant/lnCU') , (47) 

in which the form of the kernel ensures that the eigenfunctions {t/ln} form a complete 
set on the interval u E (- 00, + 00). Inserting equation (42) into (47) yields 

(48) 

where 1 t/ln) is a state vector corresponding to the eigenfunction t/ln(u). Now using 
the completeness relation (44), we get 

(49) 
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Multiplying each side of equation (49) by f du' I u') and using the completeness 
relation (44) again yields 

(50) 

Finally, using the completeness for the I t/ln) basis, 

(51) 
n 

we derive 
(52) 

n 

The u-field configurational contribution to the canonical partition function is now 
obtained by combining equations (41) and (52). The result is 

(53) 

where 2" are the eigenvalues of the transfer integral equation (47). In the thermo
dynamic limit N -t 00 the configurational contribution can be expressed as 

(54) 

where Ao is the largest eigenvalue of the TIOE. In the displacive limit yfA ~ I, the 
TIOE may be replaced by the differential eigenvalue equation (see e.g. Henry and 
Oitmaa 1984) 

(55) 

with 

Vo = In(pyf4n)f2p. (56) 

The eigenvalues e. and eigenfunctions CPs of the differential eigenvalue equation are 
related to the eigenvalues A.. and the eigenfunctions t/I. of the TIOE according to 

CPs = exp{ -!PV(u)}t/I •. 

The maximum eigenvalue of the TIOE 

A.o = exp( - peo) 

(57) 

(58) 

(59) 

therefore corresponds to the minimum eigenvalue of the SchrOdinger-like equation 
(55). The eigenvalue eo may be obtained from a standard WKB tunneling result. 
At low temperature the result is given by (see e.g. Henry 1984) 

The free energy density for the diatomic ¢4 chain is defined by 

f = lim-kB TlnZ~Z~Zu.vfL. 
L-+a:> 

(60) 

(61) 
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Now using equation (49) we get 

<fg) = ~ A~-m f <t/ln 1 Uj+rn)g(Uj+m) dUj+m <Uj+m 1 I'm 1 u) 

X feu) dUj <uj 1 t/ln)/Zu' 

Thus in the thermodynamic limit N --+ 00, we have 

<fg) = Aom f t/I~(Uj+rn)g(Uj+rn) dUj+rn <uj+m II'm 1 uj) f(u j) 

x t/lo(u) duj . 

(70) 

Using the completeness of the {t/ln} it is possible to expand the above equation as 
follows: 

<fg) = ~ Aom f t/I'6(Uj + rn) g(uj+ rn) dUj+rn <uj+rn 1 t/ln) 

x <t/ln 1 I'm 1 t/ln)<t/ln 1 u) feu) t/lo(u) dUj. 

Dropping the subscripts and using equation (50) together with the orthonormality 
of the {t/In}, we finally derive 

An example is the displacement-displacement static correlation 

(72) 

In the strong coupling and low temperature regime the sum in equation (72) will be 
dominated by the lowest pair of tunneling states of the differential eigenvalue equation 
(55). Explicitly, using equation (59), we have 

with the lowest tunnel split eigenfunctions 

1P1(U) = /H t/lo(u- uo)- t/lo(U + uo)} , 
(74a, b) 

where t/lo(u) is the n = 0 single-well state. Using the eigenvalues of the two lowest 
levels, equation (60) in (73) yields 

<U(O) u(x) ~ u~ exp( -I x I/AJ, (75a) 

with the correlation length 

Ac = tn(ya2 /A)texpaf3uMyA)t}. (75b) 
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4. Kink/Phonon Ideal Gas Phenomenology 

The classical partition function for the nonlinear diatomic chain may also be 
written in the functional integral form 

Z(u,V,u,v) = f c5(u)c5(v) c5(u) c5(v) exp ( -p fd; H), (76) 

where the Hamiltonian density H is defined by equation (9). The dominant contri
bution to the above path integral will come from the steepest descent trajectories 
minimizing J (dx/a)H, i.e. from all solutions of the Euler-Lagrange equations of 
motion. These dominant contributions acquire gaussian corrections from trajectories 
nearby to the extremal ones corresponding to interactions between the different 
sectors of the solution space. These ideas are the primary motivation (Bishop et al. 
1980) for an attempt to construct a phenomenological ideal gas type model which will 
include all sectors of solution space as quasi-particles. The success of such an ideal 
gas phenomenology for nonlinear monatomic chains has been well documented 
(Krumhansl and Schrieffer 1975; Currie et al. 1980; De Leonardis 1980). 

At sufficiently low temperatures PE~ ~ 1 (with E~ the rest energy of the kinks 
in the chain), where the kink density is also very low, interactions may be neglected 
in a first approximation. 

We now derive the free energy density for an ideal gas of noninteracting kinks, 
anti-kinks and phonons on a chain of length L. In this section we closely follow the 
derivation of Currie et al. (1980). The number of kinks in the system is variable, 
and thus it is convenient to commence with the grand canonical partition function 

00 00 

Zo = L L exp{p(pN -EN,.)}, (77) 
N=Or=l 

where ENr is the energy of the rth state of N particles of the system and fl is the chemical 
potential. In the absence of interactions the grand partition function factors into 

Zo = exp( - pLFo) Z~·K , (78) 

where Fo is the phonon free energy density and 

_ 00 _ 

Z~·K = L ZK.K(T, V,N)exp(pflN) (79) 
N=O 

is a weighted sum of partition functions for systems with fixed numbers N = 0, 1,2, ... 
of particles. The kink and anti-kink have the same chemical potential fl. 

The classical free energy density for phonons in the diatomic 4>4 chain is given by 

F 0 ~ kB T f +1</a In (ro( +)Ii roe - )Ii) dk 
2n -1</a kB T kB T ' 

(80) 

where the two dispersion branches ro(±) are defined by equation (6). The integral 
can be evaluated analytically yielding 

(81) 
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The first term in this equation is equivalent to the classical phonon free energy density 
for a diatomic chain including only harmonic interactions. The other term represents 
the anharmonic contribution to the phonon gas resulting from the nonlinear on-site 
potential. In the strong coupling regime the anharmonic contribution reduces to 
(A/y)~,/a. The resulting expression for the phonon gas free energy density 

(82) 

is equivalent to the oscillating contribution to the exact free energy density (equation 
62b) for the diatomic chain. 

The grand partition function for a gas of NK kinks, and N'K anti-kinks which are 
topologically ordered so that kinks are followed by anti-kinks (and vice versa) is 
given by equation (79) with (Currie et a1. 1980) 

(83) 

where N = NK + NK = 2NK. At low velocities we approximate the kink energy by 

(84) 

where E~ is the rest energy of the kink, and MK is the kink 'mass'. Inserting equations 
(83) and (84) into (79) yields 

- { L(217:M )t } Z~·K = 2 exp exp(f3/l)/i T exp( - PE~) . (85) 

Thermodynamic quantities for the phenomenological ideal gas are now derived 
from the grand canonical partition function, equations (78), (82) and (85): The grand 
canonical potential density is given by 

kB T kB T(217:MK)t (P) (P 0) 0== - TlnZG = Fo - -h- --P- exp /l exp - EK . 

The average total kink number density is 

n:,('t == (NK+N'K)/L = -(oO/O/l)" = 0 

= h-l(217:MKP)texp(-pE~). 

The free energy density is given by 0 with /l = 0: 

(86) 

(87) 

(88) 

The chemical potential is set to zero in the above thermodynamic functions as the 
kink-anti-kink density is assumed to be controlled by temperature alone. 

The kink rest energy is now calculated explicitly by substituting the static kink 
solution given by equations (26) and (27) into the excitation energy (11). The result is 

(89) 
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The same result may be obtained by taking the static limit (Mz ~ M t ) in the dynamic 
equal-displacement-field kink energy (15). The kink mass may be approximated as 
the number of unit cells in a domain wall times the mass of a unit cell. Using the 
domain wall width 2~o from equation (26b), we derive 

(90) 

The free energy density for the ideal kink-phonon gas is finally obtained by inserting 
equations (89) and (90) with (87) into (88). The result is 

(91) 

The kink-anti-kink term in the ideal gas free energy density corresponds to the 
tunneling contribution (63) in the free energy density for the nonlinear diatomic 
chain. The precise equivalence of these two terms would depend upon the inclusion 
of kink/phonon interactions in the phenomenology. Kink/phonon interactions have 
been successfully incorporated in the ideal gas phenomenology for nonlinear mon
atomic chains (Currie et al. 1980). The kink/phonon interaction leads to a change in 
the phonon free energy density. This can be incorporated into the phenomenology 
as a kink self-energy correction term leading to the appropriate renormalization of 
the kink-anti-kink free energy density. We have not developed this extension in 
the diatomic c/J4 chain as we have been unable to find an analytic form for the phase 
shift of phonons in the presence of kinks. However, in Part III we report on molecular 
dynamics experiments which show that the interaction between a single kink and a 
phonon wave packet in the diatomic c/J4 chain is similar to the interaction between 
a single kink and a phonon wave packet in the monatomic c/J4 chain. 

The correspondence between the exact free energy density calculation for the 
nonlinear diatomic chain and the phenomenological calculation based on an ideal 
gas which incorporates kinks and phonons as elementary excitations constitutes a 
'proof' that the low temperature excitation spectrum for the nonlinear diatomic chain 
is dominated by low velocity kinks and by phonons. The low temperature phonon 
solutions (5) and the static kink solutions (26) and (27) are therefore nonlinear 
vibrational excitations in our diatomic model. 

The low temperature thermodynamic functions calculated above are dominated by 
phonon contributions since the kink density is exponentially small at low tempera
tures. An important quantity which bears a strong kink signature is the dynamic 
structure factor for the displacement fields: 

( l)Zf+OOf+OO S(q,OJ) = 2n -00 -00 dt dx exp( -iOJt)exp( +i qx)(u(O, 0) u(x, t». (92) 

Here the wave vector q is in units of n/a in the chain direction. The dynamical struc
ture factor is proportional to the coherent neutron scattering cross section, which is 
directly measured in inelastic neutron scattering experiments. In the harmonic 
approximation (e.g. the self-consistent phonon approximation), when the frequency 
dependence of Seq, OJ) exhibits sharp peaks, the frequency of these peaks as a function 
of wave number q defines a dispersion curve (e.g. the self-consistent phonon dispersion 
law) for elementary excitations in the system (Bottger 1983). An interesting question 
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concerns the contribution of the anharmonic kinks (also elementary excitations) to 
the dynamical structure factor for nonlinear displacement fields. 

At present there have been no exact calculations of the dynamical structure factor 
for nonlinear <jJ4 systems. The most reliable calculations are obtained from molecular 
dynamics simulations (Schneider and Stoll 1976, 1978, 1981; see also Part III); 
however, these calculations still require interpretation in order to isolate contributions 
from the elementary modes. 

An approximate expression for the kink contribution to the dynamical structure 
factor for the u-field displacements in the diatomic <jJ4 chain can be derived from a 
kink/phonon ideal gas phenomenology [cf. the derivation given by Sahni and Mazenko 
(1979) for the monatomic <jJ4 chain]. Following Sahni and Mazenko we begin by 
introducing the grand partition function B for a set of particles with positions {X;} 
and momenta {pJ and governed by a spatial distribution function F(X;) and a 
momentum distribution function G(P;) in the following way: 

00 1 f N dX.dP. 
B = L N' n _I -d F(X;)G(Pi)' 

N=O • ;=1 a P 
(93) 

where P denotes the thermal momentum of these particles and is related to their 
mass M and the temperature kB T as follows: 

P = (2nkB TM}!:. (94) 

By assuming a grand ensemble of N indistinguishable kinks with energies given by 
equation (89), the kink contribution to the time dependent u-field correlation function 
can be estimated by 

(95) 

In order to account for the topological constraint of kinks followed by anti-kinks, 
we introduce the product ansatz (see Mazenko and Sahni 1978) 

N 

UK(X, t) = Uo n tanh{(x -X; -PitjMK)jeo}· (96) 
;=1 

Substituting equation (96) into (95) we obtain 

(UK(O, 0) uK(X, t) = u~exp[no{I(O, 0; x, t)-L}J, (97) 

with 

I(O,O;x,t) = f::: dX f:: ~ exp(-pp2j2MK) 

x tanh( -Xgo)tanh{(x -X -PtjMK)!eo}, (98) 

and the free kink density 

no = exp( -pEf}/a. (99) 
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The integral over the position coordinate in equation (98) may be evaluated exactly 
yielding 

x~nh . -1( tanh{(x -PtiMdgo}tanh(Lgo) )} 
1 +tanh{(x -Pt/Mdgo}cosh(L/eo) 

(100) 

For large L this simplifies to 

I +00 dP 
1(0,0; x, t) = -=- exp( -{3p2 /2MK){L -21 x- Pt/MK I coth{(x - Pt/MK)/eo}. 

-00 P 
(101) 

In the special static case t = 0, equation (101) reduces to 

J(O;x) = L -21 xl coth(1 xl/eo). (102) 

If we now use the interpolating formula xcothx ~ 1 +x (which is valid for large 
and small x), then the kink contribution to the static u-field correlation function at 
long and short ranges is from equations (97) and (102) 

(103) 

In the low temperature regime {3E~ ~ 1, we have from equations (99) and (103) 

(104a) 

where 
Ac = ta exp(f3E~) . (104b) 

The phenomenological calculation of the kink contribution to the static u-field 
correlation function given by equations (104) is thus in good agreement with the 
exact calculation described by equations (75) at low temperatures. This important 
result, which was first derived by Krumhansl and Schrieffer (1975) for the monatomic 
¢4 chain, demonstrates that at low temperatures (well below the kink excitation 
energy) the correlation length begins to increase exponentially with decreasing 
temperature. Phonon based theories cannot account for this feature. 

The time dependent correlation function obtained by inserting equation (100) 
into (97), 

(UK(O, 0) UK(X, t) = 

u~exp( - 2;0 I:: dPexp(-{3p2 /2MK)lx -Pt/MKI coth{(x -Pt/MK)/eo}) , (105) 

is much more cumbersome to evaluate analytically. An approximate expression 
which reduces to the correct form for the static kink correlation function in the limit 
T -+ 0 is given by (Sahni and Mazenko 1979) 
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where 

(106b) 

is a relaxation time which is inversely proportional to the free kink density. The 
kink contribution to the dynamic structure factor is finally approximated by inserting 
equations (106) into (92). The result is 

(107) 

where the static structure factor S~(q) is given by 

(108) 

Equation (107) predicts a central peak [i.e. a peak in Seq, OJ) at OJ = 0], with height 
proportional to To, which grows exponentially as the temperature is lowered towards 
T ~ O. The width of the central peak is proportional to T01 and becomes very small 
as the temperature is lowered. Sahni and Mazenko (1979) have extended the above 
calculation to include kink/phonon interactions. In a first approximation the bare 
kink density is replaced with an interacting kink density. In the presence of the inter
action the central peak broadens and decreases in intensity. 

5. Conclusions 

In this paper we have examined the thermodynamical properties of a nonlinear 
diatomic model for a solid which may undergo a DSPT. This model (the diatomic 
¢4 chain) differs from the conventional model (the monatomic ¢4 chain) in that it 
includes two species per unit cell. The nonlinear on-site potential influences only 
one of the species. 

The equations of motion describing the diatomic ¢4 chain yield linearized phonon 
solutions, nonlinear kink-type solitary waves, and nonlinear periodic waves. Similar 
types of solution have been reported in the equations of motion for the monatomic 
¢4 chain, however some important additional features are obtained for the diatomic 
solutions. The dispersion relation for the linearized phonon solutions in the diatomic 
lattice exhibits two branches corresponding to a quasi-acoustic and a quasi-optical 
mode. The Lorentz invariance of kinks in the diatomic lattice is destroyed. The 
anharmonic phonon solutions in the diatomic lattice are exact solutions of both the 
discrete lattice equations and the continuum field equations. The anharmonic phonons 
appear in the diatomic lattice as nonlinear periodic waves. 

Despite differences in detail the diatomic ¢4 chain shares many of the physical 
features exhibited by the monatomic ¢4 chain. This fundamental correspondence 
is due to the existence of nonlinear vibrational excitations in both lattices which are 
an essential part of the framework for calculating the formal properties. The main 
results may be summarized as follows: 

(1) The low temperature excitation spectrum for the lattice is dominated by both 
linearized phonons and by nonlinear kink-type solitary waves. 

(2) The kink density increases exponentially with increasing temperature. 
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(3) The correlation length for the static displacement-displacement correlation 
function begins to increase exponentially with decreasing temperature at low 
temperatures. 

(4) The kinks are responsible for a central peak in the dynamical structure factor. 
The height of this peak increases exponentially with decreasing temperature. 
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