Determination of $B(E3; 0_1^+ \rightarrow 3_1^-)$ Values for the Stable Isotopes of Cadmium

M. P. Fewell, R. H. Spear, G. K. Adam* and M. T. Esat

Department of Nuclear Physics, Research School of Physical Sciences, Australian National University, G.P.O. Box 4, Canberra, A.C.T. 2601.

Abstract

Values of $B(E3; 0_1^+ \rightarrow 3_1^-)$ for the stable isotopes of Cd have been determined from particle spectra obtained using Coulomb excitation by 16O projectiles. The results are: $0.16 \pm 0.04 \, e^2 b^3$ (106Cd), $0.150 \pm 0.010 \, e^2 b^3$ (108Cd), $0.115 \pm 0.013 \, e^2 b^3$ (110Cd), $0.114 \pm 0.009 \, e^2 b^3$ (112Cd), $0.131 \pm 0.015 \, e^2 b^3$ (114Cd) and $0.100 \pm 0.011 \, e^2 b^3$ (116Cd). The corresponding E3 strengths are 34, 31, 23, 22, 24 and 18 single particle units (s.p.u.) respectively. Examination of these and other data reveals no evidence for shell effects in $B(E3; 0_1^+ \rightarrow 3_1^-)$ values near the $Z = 50$ proton shell, in contrast to the situation for $B(E2; 0_1^+ \rightarrow 2_1^-)$ values.

1. Introduction

Properties of the 2_1^+ states of even-mass nuclei have been thoroughly studied throughout the periodic table providing, inter alia, valuable insights on the interplay between rotational and vibrational degrees of freedom. Studies of 3_1^- states are much less complete; such studies are important for understanding the octupole vibrational mode of nuclei (Bohr and Mottelson 1975). It has been found that in some mass regions (e.g. Hg–Pb), the characteristics of the octupole excitation are more stable as a function of mass than are those of the quadrupole excitation (Baxter et al. 1981), suggesting that the octupole excitation is less sensitive to single-particle effects. To further the systematic study of E3 excitations, we present in this paper a determination of $B(E3; 0_1^+ \rightarrow 3_1^-)$ values of the even-mass stable isotopes of Cd.

In previous studies of these nuclei, we measured static electric quadrupole moments Q_{2+} of the first 2^+ states (Esat et al. 1976) and investigated vibrational excitations via inelastic 4He scattering (Spear et al. 1977). The vibrational character of the even-mass Cd isotopes was inferred to be remarkably uniform from the following observations: (a) the regularity of the single-quadrupole-phonon and single-octupole-phonon excitations in inelastic 4He scattering; (b) the consistency of the mixing of one- and two-phonon 2^+ states required to fit E2 matrix-element data; and (c) the constancy of Q_{2+} among the isotopes. We presented no information on $B(E3; 0_1^+ \rightarrow 3_1^-)$ values. However, it has since been realized that the (16O, 16O')

* ANU Vacation Scholar.
Fig. 1. Spectra of 16O ions scattered from 108,110,112,114Cd at bombarding energies of 44.03, 44.03, 43.03 and 41.03 MeV respectively. Peaks corresponding to excited states in the primary isotopes are indicated. Other structure evident in the spectra is due to isotopic contaminants. Channels containing zero counts have not been plotted.

Fig. 2. Spectra of 16O ions scattered from 106,116Cd at a bombarding energy of 43.85 MeV. Peaks corresponding to excited states in the primary isotopes are indicated. Other structure evident in the spectra is due to isotopic contaminants in the targets. The full curves are fits to the data obtained as described in Section 2. The dashed curve for 116Cd represents the calculated contribution from isotopic contaminants. Channels containing zero counts have not been plotted.
spectra obtained at energies below the Coulomb barrier by Esat et al. (1976) could be analysed to extract \(B(E3) \) values. The present paper presents the results of such an analysis for \(^{108,110,112,114}\text{Cd} \), supplemented by new data for \(^{106,116}\text{Cd} \).

Previous \(B(E3) \) measurements have been reported for \(^{110,112,114,116}\text{Cd} \) by McGowan et al. (1965) and for \(^{112,114}\text{Cd} \) by Jonsson et al. (1978), both from \(\gamma \)-ray spectroscopy. Jonsson et al. obtained values considerably larger than those of McGowan et al. for \(^{112,114}\text{Cd} \), and suggested that the discrepancy might be due to the neglect of \(\gamma \)-ray anisotropy effects by the other authors. As far as we are aware, no previous information exists on \(B(E3; 0^+ \rightarrow 3^-) \) in \(^{106}\text{Cd} \) and \(^{108}\text{Cd} \).

2. Experimental Procedures and Data Analysis

The data for inelastic scattering of \(^{16}\text{O} \) from \(^{108,110,112,114}\text{Cd} \) were obtained by Esat et al. (1976) using beams of 40–44 MeV \(^{16}\text{O} \) projectiles from an EN tandem accelerator. Particles were detected with an annular surface-barrier detector located at a mean laboratory scattering angle of 174.6°. Targets consisted of \(\text{CdCl}_2 \) evaporated onto thin self-supporting carbon foils, the partial thickness of \(\text{Cd} \) ranging from 3 to 8 \(\mu \text{g cm}^{-2} \). Full details of the experimental procedures and the isotopic compositions of the targets have been given by Esat et al. (1976) and Spear et al. (1977).

The spectra obtained by Esat et al. for \(^{106}\text{Cd} \) and \(^{116}\text{Cd} \) were no longer available. Therefore, new data were obtained under similar experimental conditions, and with the same targets, using 43.85 MeV \(^{16}\text{O} \) projectiles from the ANU 14UD Pelletron accelerator. Typical spectra are shown in Figs 1 and 2. In each case the peak corresponding to the \(3^- \) state was identified using known values of the \(3^- \) excitation energies (see Table 1) and an internal energy calibration obtained from readily identified peaks in the spectrum.

For the \(^{108,110,112,114}\text{Cd} \) spectra, corrections for contributions from \(\text{Cd} \) isotopes other than the one of interest were negligible and backgrounds were low enough for manual extraction of the peak areas to be quite adequate, given the statistical quality of the data. Representative spectra are shown in Fig. 1. For \(^{106}\text{Cd} \), background problems were more severe, and in the case of \(^{116}\text{Cd} \) corrections for other isotopes were significant. Therefore, these spectra were analysed using well-established lineshape-fitting procedures (Esat et al. 1976; Fewell et al. 1979). The fits obtained are shown by the full curves in Fig. 2.

Although the \(^{106}\text{Cd} \) spectrum is the best that could be obtained under the prevailing experimental circumstances, its quality is noticeably inferior to that of the other isotopes, and the value of \(B(E3; 0^+ \rightarrow 3^-) \) obtained is correspondingly less precise. The peak due to the \(3^- \) state in the \(^{116}\text{Cd} \) spectrum is not completely resolved from that arising from the very small amount of \(^{106}\text{Cd} \) in the \(^{116}\text{Cd} \) target. The contributions to the \(^{116}\text{Cd} \) spectrum from peaks due to elastic and inelastic scattering from all of the isotopic contaminants are shown by the dashed curve in Fig. 2, which was calculated using the known isotopic composition of the target material (Spear et al. 1977) and the previously measured \(B(E2) \) values for excited states of the contaminants (Harmatz 1979; Singh et al. 1985).

Peak areas obtained from spectrum analysis were used to determine the Coulomb excitation probabilities \(P_{\exp} \) for the \(3^- \) states, where \(P_{\exp} \) is defined by

\[
P_{\exp} = \frac{d\sigma_{3^-}}{(d\sigma_{0^+} + d\sigma_{2^+} + d\sigma_{3^-})}.
\]
3. Results

The multiple Coulomb-excitation program of Winther and de Boer (1966) was used to calculate $B(\text{E3}; 0^{+} \rightarrow 3^{-})$ for each value of P_{exp} obtained. The results are summarized in Table 1. The bombarding energies shown have been corrected for the effects of target thickness. While, in principle, corrections should also be applied to the bombarding energies for the effects of electron screening, vacuum polarization and nuclear polarization, the net effect of these is negligible in the present case. The calculation of the $B(\text{E3})$ values included the effects of other states using previously measured matrix elements (Spear et al. 1977). However, values of $B(\text{E1}; 3^{-} \rightarrow 2^{+})$ and of $Q_{3^{-}}$, the quadrupole moment of the 3^{-} state, were not available for any isotope and it was assumed that they were zero. The values of $B(\text{E3}; 0^{+} \rightarrow 3^{-})$ obtained are somewhat sensitive to this assumption; for example, the inferred value of $B(\text{E3}; 0^{+} \rightarrow 3^{-})$ for ^{116}Cd would be reduced by 5% if either $B(\text{E1}; 3^{-} \rightarrow 2^{+}) = 1.4 \times 10^{-7}$ e2 b ($=1.9 \times 10^{-4}$ s.p.u.) or $Q_{3^{-}} = +0.19$ e.b.

Table 1. Excitation probabilities P_{exp} and deduced values of $B(\text{E3}; 0^{+} \rightarrow 3^{-})$ for 3^{-} states of Cd isotopes from Coulomb excitation by ^{16}O projectiles of energy E

Excitation energies E_{x}, all accurate to ≤ 1 keV, are obtained from the following references: Harmatz (1980), Haese et al. (1982), de Gelder et al. (1983), Peker (1980), Blachot and Marguier (1982) and Blachot et al. (1981)

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>E_{x} (keV)</th>
<th>E (MeV)</th>
<th>$10^{4}P_{\text{exp}}$</th>
<th>$B(\text{E3}; 0^{+} \rightarrow 3^{-})$ (e^{2} b3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{106}Cd</td>
<td>2371</td>
<td>43.85</td>
<td>2.4(6)</td>
<td>0.16(4)</td>
</tr>
<tr>
<td>^{108}Cd</td>
<td>2202</td>
<td>40.03</td>
<td>1.05(15)</td>
<td>0.142(21)</td>
</tr>
<tr>
<td>^{110}Cd</td>
<td>2079</td>
<td>40.03</td>
<td>1.49(27)</td>
<td>0.145(27)</td>
</tr>
<tr>
<td>^{112}Cd</td>
<td>2005</td>
<td>42.03</td>
<td>2.0(3)</td>
<td>0.152(23)</td>
</tr>
<tr>
<td>^{114}Cd</td>
<td>1958</td>
<td>43.03</td>
<td>2.8(4)</td>
<td>0.147(21)</td>
</tr>
<tr>
<td>^{116}Cd</td>
<td>1921</td>
<td>43.85</td>
<td>2.0(5)</td>
<td>0.159(18)</td>
</tr>
</tbody>
</table>

It is essential that data used for Coulomb-excitation analysis should be obtained at bombarding energies sufficiently low for Coulomb–nuclear interference effects to be negligible. All energies used in the present work had been shown by Esat et al. (1976) to be 'safe' at the 1% level for Coulomb excitation of the 2^{+} state. Although it is not necessarily true that energies which are safe for 2^{+} excitation will also be safe for 3^{-} excitation (McGowan et al. 1965; Spear et al. 1978a), it is extremely unlikely that Coulomb–nuclear interference effects at the energies used in the present work would be significant relative to other uncertainties in the results (Spear et al. 1978b).
This contention is supported by the fact that, for all isotopes where more than one bombarding energy was used, the values for \(B(E3; 0^+_1 \rightarrow 3^-_1) \) show no significant trend to decrease with bombarding energy (Table 1). Consequently, all the data analysed are assumed to be free from significant Coulomb–nuclear interference and have been combined to obtain the weighted mean values of \(B(E3; 0^+_1 \rightarrow 3^-_1) \) listed in Table 2.

Table 2. Values of \(B(E3; 0^+_1 \rightarrow 3^-_1) \) in \(\epsilon^2 b^3 \) for the stable isotopes of Cd

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>Present work (B(E3))</th>
<th>McGowan et al. (1965) (\epsilon B(E3))</th>
<th>Jonsson et al. (1978) (\epsilon B(E3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{106}\text{Cd})</td>
<td>0.16(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^{108}\text{Cd})</td>
<td>0.150(10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(^{110}\text{Cd})</td>
<td>0.115(13)</td>
<td>0.106(21)</td>
<td>0.129(25)</td>
</tr>
<tr>
<td>(^{112}\text{Cd})</td>
<td>0.114(9)</td>
<td>0.106(21)</td>
<td>0.129(25)</td>
</tr>
<tr>
<td>(^{114}\text{Cd})</td>
<td>0.131(15)</td>
<td>0.090(18)</td>
<td>0.118(23)</td>
</tr>
<tr>
<td>(^{116}\text{Cd})</td>
<td>0.100(11)</td>
<td>0.075(15)</td>
<td>0.102(21)</td>
</tr>
</tbody>
</table>

4. Discussion

In Table 2 the values obtained for \(B(E3; 0^+_1 \rightarrow 3^-_1) \) in the present work are compared with those previously reported by McGowan et al. (1965) and Jonsson et al. (1978). Both of the latter experiments were based upon detection of the \(\gamma \)-ray emitted in the decay of the \(3^-_1 \) state to the \(2^+_1 \) state. Consequently they determined \(\epsilon B(E3; 0^+_1 \rightarrow 3^-_1) \), where \(\epsilon \) is the branching ratio of the \(3^-_1 \rightarrow 2^+_1 \) transition. We have deduced values of \(B(E3; 0^+_1 \rightarrow 3^-_1) \) from these data using the following values of \(\epsilon \): 0.86 for \(^{110}\text{Cd}\) (de Gelder et al. 1983), 0.82 for \(^{112}\text{Cd}\) (Peker 1980), 0.76 for \(^{114}\text{Cd}\) (Blachot and Marguier 1982) and 0.73 for \(^{116}\text{Cd}\) (Deye et al. 1973). It is evident from Table 2 that the present results are significantly more precise than previous work. They are in excellent agreement with those of McGowan et al. for \(^{110,112,114,116}\text{Cd}\), suggesting that the lack of anisotropy corrections in that work was not serious. They are substantially smaller however than those of Jonsson et al. for \(^{112,114}\text{Cd}\).

Table 3. Transition strengths (s.p.u.) for E3 transitions between the \(0^+_1 \) and \(3^-_1 \) states in Cd nuclei

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>(^{106}\text{Cd})</th>
<th>(^{108}\text{Cd})</th>
<th>(^{110}\text{Cd})</th>
<th>(^{112}\text{Cd})</th>
<th>(^{114}\text{Cd})</th>
<th>(^{116}\text{Cd})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>M(E3)</td>
<td>^2)</td>
<td>34(9)</td>
<td>31(2)</td>
<td>23(3)</td>
<td>22(2)</td>
</tr>
</tbody>
</table>

Table 3 lists values of transition strengths (in s.p.u.) for the E3 transitions between the \(0^+_1 \) and \(3^-_1 \) states in the Cd nuclei. They are derived from the present data using the relation

\[
|M(E3)|^2 = 2.404 \times 10^6 B(E3; 0^+_1 \rightarrow 3^-_1) / A^2,
\]

where \(B(E3; 0^+_1 \rightarrow 3^-_1) \) is expressed in \(\epsilon^2 b^3 \), and \(|M(E3)|^2 \) represents the transition strength in s.p.u. (Alexander and Forster 1978). There is little significant variation in strength from one isotope to another, although there is a trend for decreasing.
strength with increasing mass. The values are consistent with the observations of Kirson (1982) that $B(E3; 0^+_1 \rightarrow 3^-_1)$ values for all even-even nuclei tend to lie between 10 and 30 s.p.u. and that, in contrast to $B(E2; 0^+_1 \rightarrow 2^+_1)$ values, their variation shows no obvious shell effects. These observations are illustrated in Fig. 3, where E2 and E3 transition strengths are plotted in s.p.u. for elements in the Cd region. The E2 data are taken from Endt (1981), except for Cd (Esat et al. 1976) and Sn (Jonsson et al. 1981). The E3 data are obtained from the following sources: Pd, Robinson et al. (1969); Cd, present work; Sn, Jonsson et al. (1981); Te, Tamura et al. (1982, 1984); and Ba, Burnett et al. (1985).

Fig. 3. Transition strengths (s.p.u.) for E2($0^+_1 \rightarrow 2^+_1$) and E3($0^+_1 \rightarrow 3^-_1$) transitions in the mass region near Cd. The E2 data are taken from Endt (1981), except for Cd (Esat et al. 1976) and Sn (Jonsson et al. 1981). The E3 data are obtained from the following sources: Pd, Robinson et al. (1969); Cd, present work; Sn, Jonsson et al. (1981); Te, Tamura et al. (1982, 1984); and Ba, Burnett et al. (1985).

E3 transition strengths are plotted in s.p.u. for elements in the Cd region. The E2 strengths show a pronounced minimum at the $Z = 50$ closed shell, and also decrease markedly at the $N = 82$ nucleus 138Ba. In contrast, the E3 strengths are remarkably uniform and show no indication of shell effects within the accuracy of the data.
References

Manuscript received 12 April, accepted 29 May 1985