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Abstract 

We consider a combination of modified Korteweg-de Vries waves and ordinary Korteweg
de Vries waves, known as mKdV-KdV waves. The Infeld-Rowlands method is developed to 
study the instability of mKdV-KdV waves in the limit of long wavelength perturbations. 

1. Introduction 

It has been shown by several authors (Infeld et al. 1978; Jeffrey and Kakutani 1970, 
1972; Benjamin 1972; Kadomtsev and Petviashvili 1970; Zakharov 1975) that the 
Korteweg-de Vries (KdV) waves are stable. Instabilities of the modified Korteweg
de Vries (mKdV) waves have been investigated by Fomberg and Whitlam (1978) and 
Murawski (1987). In this note we consider the combined form of these equations 
(e.g. Funakoshi 1985) 

ut -6al u2ux -3a2 uUx + uxxx = o. (1) 

The stability problem for the wave-like solutions of this equation is discussed in the 
next section, and we close this note by presenting numerical results. 

2. Stability Problem 

In order to find travelling wave solutions of equation (1) we make the transformation 

u = B(~=x-et). (2) 

By integrating (1) twice, we transform it as follows: 

B~ = al .n4 +a2 B3 + eB2 +2aB + 1== F(B) , (3) 

where I and a are integration constants. Two arbitrary parameters a and e have to 
be chosen for the existence of double roots of the equation F(B) = o. 

Suppose a nonlinear wave given by (3) is perturbed by a long wavelength linear 
wave with small amplitude /) u (Infeld and Rowlands 1979): 

u = B(~) +/)u(~) exp{i(k~+ wt)} , (4) 
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Fig. 1. Real roots of equation (17) versus the parameter I. This case corresponds to periodic 
waves which are bounded both by linear and shock waves, and where al = 1 and c = -10: 

(a)a2 = -10, a= 87·5; 
(b) a2 = -5, a = 20·3125; 
(c) a2 = -1, a = 2·5625; 
(d) a2 = 1, a = -2·5625; 
(e) a2 = 5, a = -20·3125; 
(f) a2 = 10, a = -87·5. 
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Fig. 2. Real roots of equation (17) versus the parameter I. This case corresponds to periodic 
waves which are bounded both by linear and shock waves, and where at = 10 and e = -10: 

(a)a2 = -10, a= 3·125; 
(b) a2 = -5, a = 1·328125; 
(e) a2 = -1, a = 0·250625; 
(d) a2 = 1, a = -0·250625; 
(e) a2 = 5, a = -1.328125; 
(f) a2 = 10, a = -3·125. 
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Fig. 3. Real roots of equation (17) versus the parameter I. This case corresponds to periodic 
waves which are bounded both by a linear wave and a soliton, and where al = 1, a = 1 and 
c = -10: 

(a) a2 = -10; 
(b) a2 = -5; 
(c) a2 = -1; 
(d) a2 = 1; 
(e) a2 = 5; 
(f) a2 = 10. 
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Fig. 4. Real roots of equation (17) versus the parameter I corresponding to periodic waves which 
are bounded both by a linear wave and a soliton, and where al = 10, a = 1 and c = -10: 

(a) a2 = -10; 
(b) a2 = -5; 
(c) a2 = -1; 
(d) a2 = 1; 
(e) a2 = 5; 
(j) a2 = 10. 
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Fig. 5. Imaginary parts of the roots of equation (17) versus I for a, = -1 and 0 = 1: 

(0) a2 = - 10, c = -10; 
(b) a2 = - 5, c = - 2; 
(c) a2 = -1, c = 1.4; 
(d)a2 = 1, c = 2·8; 
(e) a2 = 5, c = -4·2; 
if) a2 = 10, c = -10. 
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Fig. 6. Imaginary parts of the roots of equation (17) versus I for Ul = - 10 and a = 1: 

(a) U2 = -10, c = 1; 
(b) U2 = - 5, c = 3; 
(c) u2 = -1, c = 4·5; 
(d) u2 = 1, c = 5; 
(e) u2 = 5, c = 6; 
(f) U2 = 10, c = 4·5. 
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where the stretched coordinates are introduced 

~=x-ct, t t, (5) 

and 

W = wt k + U2 k2 + ... , Su = SUo + kSUl + .... (6) 

Writing equation (1) in the moving frame coordinates ~ and t, introducing (4), and 
dropping terms proportional to k 3 and S u2, we find that 

(LSu)~ = -i wSu +3i kBSu(2al B +a2) -3i kSu,;~ +3k2Su,;, (7) 

where 

2 2 
L==a~-6alB -3a2B-c, W = w-kc. 

From zeroth and first orders of k, after substitution of (6) into (7), we get 

SUo = B~, 

SUl = DG+iRQ1-!i(Wl+C)~, 

f BPd~ 
B~ T = S(P)~B~+ Qi~), 

P = 0,1,2, S(O) = {3, S(1) = -y, S(2) = K, 

i - 1 D = -{{31+(Wl + c)K-2R-y+2}-jil, 
2{3 

R == -(a +i R). 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

Here, R is an integration constant and Qp are periodic functions with the same period 
as B, i.e. A. 

Equation (7) leads in second order of k to 

where 

Wl<SU1)-6al<B2SU1)-3a2<BSU1) = 0, 

3<BB~~) -3i<B8ul~~) -i wl<BSU1) 

+6ial<B3SU1) +3ia2<B2SU1) = 0, 

1 fA . 
<J) = ~ ofd~. 

(14) 

(15) 

(16) 

Finally, from equations (10), (12), (14) and (15), a cubic equation in wt may be 
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obtained: 

wi+~wT+'2W,+~ =0. (17) 

The coefficients ~, '2 and ~ depend on a, c, I, /3, 'Y, K, <B> and <B2>. 
3. Numerical Results 

Let us first investigate the case of periodic waves which are limited both by linear 
and shock waves. In this case the polynomial on the right-hand side of (3) should be 
symmetric around the axis x = v and satisfy the following equation: 

F(v+B) = F(v-B). (18) 

Here, v is a function of a" a 2, c and a. A numerically obtained plot of w, versus 
the parameter I is shown in Figs 1 and 2. Three real roots of equation (17) support 
the statement that the nonlinear waves are stable. In Fig. 1 we have a, = 1 and 
c = -10, with a 2 equal to -10, - 5, -1, 1, 5 and 10. The case a2 = 0 corresponds 
to the KdV equation examined previously (Murawski 1987) and for this reason is not 
discussed here. The parameter a is chosen to satisfy the symmetry condition (18). 
The case a, = 10 is considered in Fig. 2. 

Secondly, we consider a set of waves bounded both by a soliton and a linear wave. 
We set a = 1 and c = - 10, and a 2 follows the same range of values as in the case 
above. Three real roots of (17) are shown versus the parameter I for a, = 1 and 10 
in Figs 3 and 4 respectively. The waves are stable. 

The case a, < 0 is more complicated. We can keep a = 1, but c has to be chosen 
for the existence of double roots for the equation F(B) = 0, and we distinguish three 
regions determined by the three parameters Imin < lay < Imax corresponding to double 
roots of B~ = o. In the region Imin < I < lay waves are unstable for all values of the 
parameter I, but in the region lay < I < Imax all waves are stable. Imaginary parts 
of Wt for Imax < I < Imax +2 are presented in Figs 5 and 6 for a, = -1 and -10 
respectively. For some values of the parameters the region lay < I < Imax disappears, 
but the waves are still unstable. 

In conclusion we note that for a, > 0 all waves are stable, but for a, < 0 waves 
are unstable for both I < lay and I > Imax. Nevertheless, the waves for lay < I < Imax 

are stable. 
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