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Representations of the electromagnetic and the average velocity field for a cold magnetised 
plasma are derived in terms of scalar potential functions. These Hertz potentials are solutions 
of a coupled system of integro-differential equations of second Qrder. Different from other 
approaches, the analysis is carried out in the time domain and is therefore especially suited for 
the investigation of transient wave phenomena. Furthermore, the dielectric tensor operator of 
the plasma is derived. Mter solving the system of integro-differential equations for a special 
limiting case, the applicability of the method presented is demonstrated and generalisations are 
discussed. 

1. Introduction 

By looking at the literature on electromagnetic waves one finds two different 
viewpoints in treating problems arising. As many electromagnetic sources operate in 
the steady-state time-harmonic regime, wave phenomena are frequently investigated 
in a time-harmonic approach (in mathematical terms this means the basic equations 
in space and time are subjected to a Fourier transformation with respect to time). 
Within the last decade increasing interest has emerged in the study of transient wave 
phenomena. In this context one is therefore definitely interested in the time-dependent 
behaviour of the electromagnetic fields. [For an introduction to the techniques and 
applications of transient electromagnetic fields see Felsen (1976).] 

The present paper presents a time-domain approach to the electrodynamics of 
a cold magnetised electron plasma. It is shown that the electromagnetic field 
equations and the" equation of motion for the velocity field can be reduced to a 
system of integro-differential equations for two scalar potentials (and certain auxiliary 
functions). Secondly, the forthcoming mathematical procedure serves to present the 
successful application of the inverse operator technique (Felsen and Marcuvitz 1973) 
to mathematical problems in physics. 

The basic partial differential equations are 

EO oE(x, t)/ot - \1 X H(x, t) - "0 qv(x, t) = - J(x, t), (1) 

\1 X E(x, t) + /Lo oH(x, t)/ot = - M(x, t), (2) 

"oqE(x, t) + "0 m{ (%t)1 -wc(b X I) J • v(x, t) = o. (3) 
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Equations (I) and (2) are Maxwell's equations for the electric and magnetic field 
vectors E and H in the presence of applied electric and magnetic current density 
distributions J and M. The vacuum dielectric constant is EO and lLo is the vacuum 
permeability. The background electron charge and mass density are given by 110 q 
and 110 m (110 is the electron number density). The electromagnetic fields are coupled 
to the average velocity field v by the electron current 110 qv acting as a source term 
in Maxwell's equations. Finally (3) is the linearised equation of motion for the 
velocity field (I is the unit tensor). The plasma is rendered anisotropic by a static 
magnetic field given by Bo = ~ b (b is a unit vector). The electron gyrofrequency 
is we = q ~I m. In this paper it is assumed that 110 and ~ are constant, but the 
method presented can be generalised to inhomogeneous media with 110 and ~ being 
functions of the coordinate in the direction of b. 

Equations (1}-{3) are valid in a cold magnetised electron plasma, i.e. the background 
pressure of the plasma (which is proportional to the plasma temperature) is assumed 
to be zero. Furthermore, only plasma electrons are treated as mobile and the equation 
of motion has been linearised by omitting the term (v. '\7) v. 

The most important application of this model is found in the Earth's ionosphere 
where the plasma temperature is (almost) zero and the static magnetic field is the 
Earth's magnetic field. 

Section 2 presents a reduction of the system (1J-'-(3) to a system ofintegro-differential 
equations for the electromagnetic field components which are parallel to the direction 
of the static magnetic field Bo. In Section 3 scalar Hertz potentials are introduced 
and it is shown how the electromagnetic and the dynamical velocity field can be 
represented in terms of these scalar potentials. The solution of the integro-differential 
equations for an isotropic plasma is presented in Section 4. Section 5 demonstrates 
the applicability and possible generalisations of the method presented and finally the 
dielectric and the conductivity tensor operator are derived in the Appendix. 

2. Reduction of the Field Equations 

The axis of the static magnetic field Bo is the only direction distinguished within 
the field equations. It is therefore natural to decompose all vector fields into transverse 
and longitudinal components with respect to this axis, namely 

with 

E = EI+Eb, 

J = JI+Jb, 

H = HI+Hb, 

M = MI+Mb, 

v = vl+vb, 

'V = 'VI + (o/Oxb)b (Xb = x.b) 

(4) 

(5) 

for the derivative operator. In the same way the three vector equations (1}-{3) are 
decomposed into longitudinal and transverse parts. By calculating the scalar product 
of b with (1}-{3) one finds that (Ot == olot) 

EO(Ot E) _'VI . (HI X b) -110 qv = -J, 

'VI .(EI X b) +lLo(Ot H) = -M, 

110 qE + 110 m(ot v) = o. 

(6) 

(7) 

(8) 
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Applying b X I to (1)-(3) results in three two-component vector equations which are 
scalarised by calculating their transversal divergence vt: 

EO 0t{Vt .(b X Et)j - V; H +ovt. HtloXb -110 qVt .(b X vt) 

= - V t • (b X f), (9) 

V;E-oVt.EtloXb+J.LoOt{Vt.(bxHt)j = -Vt.(bxMt), (10) 

110 qVt • (b X Et) + 110 mot{Vt .(b X vt)j + 110 mwc(Vt • vt) = 0 (11) 

2 222 (V = V t +0 10Xb)' 

The remaining equations are derived by applying the divergence operator V to (1)-(3). 
One arrives at 

EO 0t(Vt • Et) +Eo 0reoEloXb) -110 q(vt. vt) -110 qovloxb 

= _vt .Jt -OJloxb' (12) 

J.Lo 0t(Vt • Ht) +J.Lo 0reoHloxb) = - V t • Mt - oMloxb' (13) 

110 q(vt. Et) + 110 q(oE/Oxb) + 110 mot(Vt • vt) + 110 moreovloxb) 

-11omwc{Vt.(bxvt)j =0. (14) 

The nine scalar equations (6)-(14) replace the three vector equations (1)-(3) as the 
fundamental differential equations. 

From (6)-(8) one derives 

E = {O/EO(O;+W~)j {vt .(Ht X b)-Jj, 

H = (VJ.Lo 0t){Vt .(b X Et)-Mj, 

v = -(qlmot)E, 

(15) 

(16) 

(17) 

where the electron plasma frequency w~ = 110 q2 I mEo has been introduced. In these 
equations the time derivative operator olot has been treated like an algebraic quantity. 
This is a purely formal way of introducing an integral operator because (Felsen and 
Marcuvitz 1973) 

(VOt)f(t) == f:=-oo fer) dr. (18) 
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Equations (15)-( 17) show the interesting result that the longitudinal field 
components E, H and v can be derived from the transverse components Et, 
Ht and vt. This is due to the special structure of Maxwell's equations and is valid 
for a very general class of electromagnetic media (Weiglhofer 1987 b). 

By eliminating all terms including the transverse components Et , Ht and vt , a 
system of equations for E and H only can be derived from (6)-(14) (v is eliminated 
by virtue of 17): 

He E +Le H = Se(J, M), Lm E +Hm H = Sm(J, M), 

where the integro-differential operators He' Hm, Le and Lm are given by 

He = \7; + (ElE1)02 10x1-(EI C2)02 lot2 , 

Hm = \72 - {(EI -E~)lEl c21 02 lOP, 

Le = -f.LO(E2/El)0210toxb' 

Lm = EO(EE2/El)02 lot OXb· 

The dielectric integral operators E, El and E2 are defined by 

E = 1 +w~/o~, 

El = 1 +w~/(O~+w~), 

E2 = -wcw~/{ot(o~+w~)J, 

(19,20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

and c2 = lIEo f.Lo is the vacuum light velocity. The source terms se and sm are 
comprised of lengthy combinations of the sources J and M. 

Unfortunately the transverse field components cannot be found from the longitudinal 
ones without solving a second set of integro-differential equations. Thus, in the next 
section scalar potentials are introduced to accomplish a full representation of the 
electromagnetic and velocity fields. 

3. Scalar Hertz Potentials and Field Representations 

By a special application of the Helmholtz theorem (see for example Plonsey and 
Collin 1961) the two-component transverse fields are decomposed into the transverse 
gradient of a scalar function and the transverse curl of a one-component longitudinal 
vector. The defining equations for the scalar potentials u( x, t), v( x, t), U1 (x, t) and 
'U..2( x, t) are 

Et = - f.Lo 0 l\7t X vb + \7t U1), 

Ht = EO El Ot(\7t X ub + \7t'U..2). 

(28) 

(29) 
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By introducing (28), (29) into (15), (16) one immediately finds the longitudinal 
components 

E = -(E1/E)'V; u-{1/€o EOt)J, 

H = -'V; v-{1/f-Lo 0t)M. 

(30) 

(31) 

The system of coupled integro-differential equations for the scalar Hertz potentials U 
and v is derived from (19), (20), (30) and (31) yielding 

{El/E)He u+ie v= -(1/€OEOt)J +iie{JI,MI), 

{E1/E)im u + Hm v = -(1/f-Lo 0t)M + iim(Jt, MI). 

The source terms iie and iim are given by 

iie(Jt,MI) = -ou/Oxb-f-LoOtV, 

iim(Jt,MI) = €00t{-E 2 U+El u)-OV/OXb' 

(32) 

(33) 

(34) 

(35) 

The auxiliary functions U, U, V and v have been introduced to avoid terms of the form 
(1/'V;)'VI • JI on the right-hand sides of (32) and (33), and to prevent the appearance 
of other than time-integrations in the coupled system of the scalar Hertz potentials. 
They are defined by 

f = -€OEI otl'Vlu{x, t) +'VI X u{x, t)bJ, 

MI = - f-Lo otl'Vlv{x, t) + 'VI X vex, t)bJ . 

(36) 

(37) 

With equations (9)-(14), (28)-(31) and (34)-{37) the functions WI and U2 are 
found to be 

wt = -(1/f-Lo 0t)ou/oxb +{E2/El)V-{1/f-Lo 0t)u, 

U2 = (1/€OEl 0t){ov/oxb+ v), 

so that the transverse fields in terms of scalar potentials are 

(38) 

(39) 

EI = 'Vt{OU/OXb) -f-Lo otl'Vl X vb +(E2/E1)'VIVJ + 'Vlu, (40) 

HI = €o El Ot{'VI X ub) + 'VI{OV/OXb) + 'Vlv. (41) 

Equations (30), (31), (4O) and (41) can be recast into the final form 

E = E-1.{'V X £).{'V X ub) -{f-Lo 0/E1)ET . ('V X vb) 

-{1/€0 EOt)J b + 'VI U, 

H = 'V X ('V X vb) +€o El Ot{'V X ub) 

-{1/f-Lo 0t)M b + 'VI v, 

(42) 

(43) 

where E-1 and ET are the inverse and transpose of the dielectric tensor operator E. 
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In the Appendix (equation A7) it is shown that in the cold magnetised plasma under 
investigation E is 

E = EO{EI I -E2(b X I) +(E-El)bb). (44) 

Finally the velocity field v is calculated from (3). Equation (A3) then leads to 

v = - {qlm(a;+w~)}{ atI +we(b X I) +(w~/Ot)bb). E. (4S) 

Equations (42), (43) and (4S) are the final representations of the fields E, H and v 
in terms of scalar Hertz potentials Ii and v which are solutions of the set of coupled 
integro-differential equations (32) and (33). The appearance of the auxiliary functions 
u and v in the field representation is due to the existence of source terms transverse to 
the axis distinguished in the magnetised plasma. Their presence is a general feature of 
the chosen field representation in terms of the generalised Hertz vector components 
Ii and v. A detailed discussion of the properties of these auxiliary functions may 
be found in Weiglhofer and Papousek (1987), Weiglhofer (1987a) and Felsen and 
Marcuvitz (1973). 

4. Isotropic Plasma 

As a test for the applicability of these results to definite calculations a longitudinal 
electric current distribution in an isotropic plasma is considered. (Note that despite the 
isotropy ofthe medium one still has to distinguish an axis for the field representation.) 
When we = 0 it follows that 

- - 1 2/",2 E = El = +Wp u t ' E2 = 0, (46) 

and therefore the system (32) and (33) decouples into 

{\72 -(a;+w!)/~) Ii(x, t) = -(lIEoEat)J(X, t), 

{\72 -(a;+w!)I~) V(x, t) = O. 

(47) 

(48) 

For a free-space radiation problem v 55 0 and only (47) is of interest. Its solution in 
terms of the scalar Green function g(x, x'; t, t') is 

Ii(x, t) = f g(x, x'; t, t'){(lIEoE/at,)J(x', t')} d3 x ' dt', (49) 
r,t' 

withy from 

{\72 -(a;+w!)/c2}g(x, x'; t, t') = -8(x-x/)8(t- t') (50) 

(8 is the Dirac delta function). The solution to (SO) already found by Felsen and 
Marcuvitz (1973) is 

g(x, x'; t, t') = 8(T - rl c)/41T r 

-(wp/41TC).!i {W p(T2 - r21 c2)t} H(T - rl C)/(T2 - r2 1 ~)t , (SI) 
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with the Heaviside step function H(x), the Bessel function ~, T = t- t', and 
r = Ix-x'i. 

5. Applications 

The scalar Hertz potential method can be applied to the analysis of transient 
electromagnetic wave phenomena in layered media where the boundaries between the 
plane layers are normal to the axis b. In its simplest form a three layer problem 
is treated with the top and bottom layer being a vacuum and air respectively. The 
fields are excited by a steady-state source or an electromagnetic pulse in one of these 
two layers. The distortion and modification of the electromagnetic waveS and pulses 
are studied after propagation through the middle layer, which is the anisotropic cold 
electron plasma simulating the Earth's ionosphere. (Detailed results will be presented 
in a forthcoming paper.) One of the difficulties of this approach is the fact that the 
number of matching conditions for the fields at the layer boundaries increases rapidly 
with the number of layers, thus increasing the algebraic complexity considerably. 
As mentioned above, the method can be generalised to inhomogeneous media with 
the basic physical parameters, the electron density 110 and the static magnetic field 
~, being functions of the coordinate xb. Therefore, the layered structure can be 
incorporated into the dielectric integral operators E, El and E2 in an analytic form. 
Then the radiation conditions at xb = + 00 are the only 'boundary' conditions in 
the model, thus making it an interesting alternative to the layered medium approach 
discussed abo,'e. 

6. Conclusions and Outlook 

A system of integro-differential equations for two scalar Hertz potentials has 
been derived for a cold magnetised electron plasma. It has been shown that the 
electromagnetic field and the dynamical velocity field can be represented in terms 
of these two potentials (plus two auxiliary functions due to current distributions 
transverse to the distinguished axis of the medium). 

Thereby one is provided with a definite time-domain approach to the electrodynamics 
of a cold magneto-plasma. Future work will be devoted to an extension of the method 
outlined to the analytical treatment of warm magneto-plasmas where spatial-dispersion 
effects playa crucial role and complicate the analysis. 
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Appendix: Dielectric and Conductivity Tensor Operators 

The conductivity tensor operator iT is defined by 

j = "0 qv = iT. E. 

With the help of (3) we get 

iT = -Eow;{atI-wc(bxI)J- 1 • 

W. Weiglhofer 

(AI) 

(A2) 

The inverse operator in (A2) can easily be calculated (see Chen 1983, example 1.7) 
giving 

- 2{ ) (2 J 2 2 U = -EOWp atI+wc(bXI + wc/at)bb /(at+w c)' (A3) 

which is the desired result for equation (45). 
Finally, the dielectric tensor operator E. establishes a relation between the electric 

field E(x, t) and the electric flux density D(x, t) via the definition 

D(x, t) = E.. E(x, t). (A4) 

From (1) we derive 

aD/at = EO aE/at - "0 qv. (AS) 

With (A4) and (AI) this can be transformed into 

E. = EO I -iT/at. (A6) 

With (A3) and the scalar dielectric operators (25)-(27) we finally find 

E. = EolEl I -E2(b X I) +(E-E1)bbJ . (A7) 
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