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Abstract 
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An algorithm is described for the determination of an experimental (learned) peak shape function, 
which has been used succesfully in crystal structure refinements from powder data. The function 
gives an optimal fit to almost any peak shape since it is not based on an analytical expression. It 
is determined from a single peak in a pattern by first fitting this peak with the proposed algorithm 
which ensures that the function is smooth and has only one maximum and two inflection points. 
The learned function is then normalised and decomposed into a symmetric and an asymmetric 
part. These are stored in tabulated form, permitting linear interpolation. As with an analytical 
function, a FWHM and asymmetry function describing the 26 dependence of the peak shape can 
be applied. 

1. Introduction 

In powder structure determinations and refinements it is important to have a peak 
shape function which gives an optimal description of the observed peak. The crucial 
parts of a peak which make fitting particularly difficult are the peak 'tails' and the 
asymmetry often observed in low angle peaks. The closer the agreement between 
the assumed and the observed peak shape the more correct will be the distribution 
of the integrated intensities among overlapping peaks and thus the better will be the 
refinement. This applies to the Rietveld technique, the integrated intensity method 
of structure refinement and of structure determination by direct methods. A better 
description of the peak shape will also lead to more accurate lattice parameters and 
improve the results of quantitative analysis of multiple-phase mixtures. 

It has not been easy to find analytical functions to describe the peak shapes found 
in X-ray powder data. A review of a number of such functions used has been given by 
Young and Wiles (1982), who point out that there is still a need for a better function. 
The best choice appears to be either a Pearson VII [(x) = 1/(1 + kx2)m where m 
is a variable to be optimised], or a Voigt which is a convolution of a Lorentzian 
and Gaussian or a pseudo-Voigt (Hecq 1981). All these functions are symmetric and 
some kind of asymmetry must be introduced to model a real X-ray peak. To allow 
for this asymmetry Parrish et al. (1980) used three overlapping Lorentzians per peak 
in their profile fitting procedure. 

• Paper presented at the International Symposium on X-ray Powder Diffractometry, held at 
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We have taken a different approach to finding the best peak shape function; namely 
to use the experimentally observed peak profile. Of course, this cannot be used as 
measured because of the scattered nature of observed peaks. Some kind of fitting or 
smoothing has to be done. Such experimentally determined shape functions have, for 
instance, been applied by Mortier and Costenoble (1973) who used a Fourier series. 
Baerlocher and Hepp (1980) determined a standard peak shape function by fitting an 
expression involving a quotient of two polynomials to a single non-overlapping peak. 
Pyrros and Hubbard (1983) proposed similar rational functions as profile models in 
powder diffraction. Although polynomials generally give a good fit, they are not 
flexible enough to describe all observed peak shapes equally well, or else have a large 
number of parameters. Fourier series as well as more general polynomials tend to 
introduce additional wiggles, especially when strongly scattered data have to be used. 

These problems can be overcome with a special algorithm. This algorithm fits a 
smooth well-behaved curve to any kind of peak, whether it is strongly asymmetric, 
Gaussian or mainly Lorentzian in shape. The procedure, described in the next section, 
also works with badly scattered, low count rate data. A FORTRAN program, PEAK, 

has been written with this algorithm. It produces, in numerical form, a continuous 
function for which the second derivatives exist. From this curve, a normalised 
numerical function is generated which can be used like· an analytical function. The 
form of this function is very suitable for powder patterns since it allows the half-widths 
at half-maximum as well as the peak asymmetry to vary as a function of 20. The 
values of the function and its derivatives at an arbitrary point are rapidly obtained 
by a linear interpolation. In this paper we briefly describe the ideas behind the 
peak fitting algorithm, give the definition for the peak $hape function and show some 
examples of its application. 

2. Procedure for Numerical Fitting of an Obsened Peak 

An idealised experimental peak shape y(20) has the following characteristics: 
(i) the function value is always positive; 

(ii) it increases monotonicaey to a maximum at 200 and then decreases again 
monotonically; and 

(iii) the curvature is positive at the beginning, changes sign at 20., becomes negative 
around the maximum, and becomes positive again at 20b• 

For practical purposes, the region of the peak is limited by the lower and upper 
boundaries 201 and 20u• In addition to the trivial condition 

201 < 20. < 200 < 20b < 20u ' 

these characteristics lead to the following special conditions: 

(i) y(20) > 0; 

(ii) y'(20) > 0 for 201 <; 20 < 200 

y' (20) = 0 for 20 = 200 

y'(20) < 0 for 200 < 20 <; 20u ; 
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(iii) Y" (28) > 0 

y"(28) = 0 

y"(28) < 0 

y"(28) <: 0 

for 

for 

for 

for 
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28, <: 28 < 28a and 

28b < 28 <: 28u 

28 = 28a and 28 = 28b 

28a < 28 < 280 and 

280 < 28 < 28b 

28 = 280 , 

A curve y(28) which obeys· these-and only these-conditions is fitted to the observed 
data yO(28 j)' This is achieved through a series of deformations of a starting curve 
which already possesses the required characteristics. These deformations are such 
that the values of the function, the derivatives and the zeros are changed without 
violating the above conditions. 

To begin, additional 'observed' data points are generated by interpolation with 
rational splines (Spath 1978) in order to obtain a better description of the peak shape, 
especially in the strongly curved regions. From a statistical viewpoint, these data 
points are of equal quality to the measured ones. 

The choice of the starting curve is not critical. The program chooses a function 
which is somewhat slimmer than the observed one. Three types of deformation are 
used in an iterative procedure to fit the starting curve Yl (28) to the observed data 
yO(28 j)' The deformations of type 2 and 3 are almost trivial and pose no problems 
regarding the required conditions. They are respectively the translation along the 28 

-axis to adjust 280 and the scaling of the y(28) values to fit the peak height. With a 
type 1 deformation the 'shape' of the starting curve is adjusted. 

To ensure that the above conditions are always fulfilled, the type 1 deformation 
is performed according to the algorithm illustrated in Fig. 1. For simplicity the 
discussion is limited to the high-angle half of the peak. A similar procedure, with 
the signs reversed, is followed for 28 < 280 , Starting at the maximum 280 the curve 
Yi28) is deformed into Yk+ 1 (28) at successive points 28 i' distributed in proportion 
to the magnitude of the curvature according to 

Yk+ 1 (28) = Yk( t(28») . 

The function t(28), which may be understood as a scaling of the 28 axis, has the 
form 

t(28) = 28 

= 28 + 0:1 e + a4 ~4 

= 28+ a(28-28j ) 

where 8 is the smallest step size used and 

for 28 < 28j -8 

for 28j -8 <: 28 <: 28j +8 

for 28> 28j +8, 

~ = 28-(28j -8), 0:1 = a/482 , a4 = - a/I 683 . 

• The curve y(26) is generated in numerical form, but the omission of the SUbscript on 26 should 
indicate that it can be calculated at any point by spline-interpolation. 
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'Point of rotation' 

28r 8 28j 28j +8 t(28) 
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Yk+l(28) = Yk(t(28» 
/ 
.-...... Yk+l(28) 

-1---__ ...... Yk(28) 

28 

·~;-~·-tl··~------~·~Ir·----------------------------------------
t(29) = 29 

(already deformed part) t(29) = 29+a3e3+a4E' t(29) = 29+a(29-29j ) 

Fig. 1. Deformation of Yk(28) into Yk+ 1 (28) (see Section 2). 

Thus, the 28 axis remains unchanged on the low-angle side of the 'point of rotation' 
28j -a and it is stretched or compressed by the factor 1/(1 + a) for 28 > 28j +a. 
(This implies that a > -1, a condition which can also be deduced from the 
requirements for the first derivative.) The more complicated function; of a in the 
interval 28 j - a <:; 28 <:; 28 j + a preserves the required properties of the curve. The 
parameter a is determined by using a weighting scheme which takes into account the 
relative slope of the curve at the point 28 i 

a = way+(I- w)at (0 <:; w <:; 1). 

The components ay and at are calculated such that they minimise the deviations 
between Yk+ 1 (28) and the observed data yO(28 i) in the direction of y and 28 
respectively. The conditions (iii) above restrict the change allowed in the second 
derivatives y"(28) during the deformation. [The derivatives y'(28) and y"(28) are 
obtained as a spin-off from the spline-interpolation of y(28).] This again leads to 
certain restrictions on a. If these restrictions are violated, a is reduced systematically 
in magnitude until they are fulfilled. [For further details regarding the weight w, the 
step sizes used, and the derivation of the restrictions on a etc., see Hepp (1981).] 

In an iterative procedure using the three deformation types in turn, a calculated 
curve y(28) is obtained which gives a very good fit after only a few cycles (see Figs 
2a and 3). 

3. Numerical Peak Shape Function til 

The function tP describes the intensity distribution of a reflection obtained with 
monochromatic radiation. Similar to most other profile functions it is a function of 
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Fig. 2. (a) Observed (stars) and fitted curve ofa strongly asymmetric X-ray peak. The difference 
is plotted below the curve. (b) Symmetric CPs and asymmetric CPa functions for the fitted curve 
shown in Fig. 2a (not to scale). 

the difference !:J.28 = 28-280, the position of the maximum 280 and the half-width at 
half-height H. Since X-ray diffraction lines, especially at low angles, are asymmetric, 
tP is also dependent on the degree of asymmetry A. Therefore tP is assumed to have 
the following general form: 

1 
tP = tP(!:J.28; H,A) = - tPs(r)!1-AtPa(r)} , 

H 
(1) 

where tP sand tP a are the symmetric and asymmetric parts of the function. Both are 
tabulated as functions of r, where r = !:J.28/ H. The function is normalised so that 
for any value of H and A 

J:oo tP(!:J.28; H, A) d(!:J.28) = 1 (2a) 

with the following conditions: For the symmetric part 

tPs(-r) = tPs(r); tPs(1) = !tPs(O), J:oo tPs(r) dr = 1, (2b) 

and for the asymmetric part 

tPa( - r) = - tPa(r) , tPa(1) = 1. (2c) 

The standard line profile is thus represented by the two functions tPs(r) and tPa(r). 
They are calculated from the fitted curve y(28) described in the previous section. This 
is done by decomposing y(28) into the symmetric part ys(!:J.28) and the asymmetric 
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Fig. 3. Observed (open circles) and 
fitted standard peak for hydrated zeolite 
Rho (peak maximum is 4320 counts 
and R = 0·053). 

part Ya(a20) according to 

Ys(a20) = t {y(20o + a20) + y(20o - a20) J ' 

y (a20) = ys(a20)- y(20o + a20) . 
a Ys(a20) + Ey(20o) 

(3a) 

(3b) 

The small number Ey(20o) forces Ya(a20) to converge towards zero at both ends of 
the interval thus becoming insensitive to fluctuations of the data. 

From this, the symmetric and asymmetric functions <P sand <P a are calculated 
according to equations (2). Their values, together with their first derivatives, are 
stored in a table which permits linear interpolation. Fig. 2 b shows an example of 
a symmetric and an asymmetric part obtained from the peak fit in Fig. 2a. These 
functions can now be used to fit all peaks of a pattern by varying the half-width at 
half-maximum H and the peak asymmetry A. 

4. Results and Discussion 

Two examples are given to illustrate the power and the versatility of the procedure 
described. In Fig. 2a a strongly asymmetric low-angle peak of a new zeolite-like 
material is shown. The data were collected with synchrotron radiation at HASYLAB, 
DESY, Hamburg in steps of 0·01°20, using the Ge(lll) plane as the analyser crystal. 
The peak maximum has 12700 counts. After seven cycles, the fitting procedure 
converged with an R value of 0·023. The remaining differences which can be seen 
below the curve in Fig. 2a are mainly due to counting statistics. It is not possible to fit 
these data-admittedly an extreme case-with any of the commonly used analytical 
functions. Even taking only the symmetric part <P s of this peak from Fig. 2 band 
fitting it with a pseudo-Voigt function did not give a satisfactory result. 

A more common peak shape is shown in Fig. 3. This is the peak fit used to 
determine the learned or standard peak shape function for the refinement of hydrated 
zeolite Rho (McCusker and Baerlocher 1984). Here the peak count is somewhat lower 
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(4320 counts) and the R value obtained after only three cycles was 0·053. Despite 
the larger scatter, no wiggles are introduced. To demonstrate how successfully the 
learned peak shape function also models the changing peak shapes with 28, sections 
of the refined pattern of hydrated zeolite Rho are shown in Fig. 4. Since this zeolite 
is cubic, the peaks are all single or exactly overlapping. They have been fitted in a 
Rietveld refinement using the learned peak shape function cP (equation 1) and CPs 
and CPa determined from Fig. 3. 

" " " 

--""'AI.", '" 11"-- .,I ['-v--

""'. 'W '~'f 
I I I I 1/ I I .-

15 16 17 18 if 33 34 280 

JJlA~~ 
AAA~~ 

"b' r'\ _'" ' •• '\;,j"\A rP n;;v 

I~ / f I I If I I 
57 58 I 71 72 280 

Fig. 4. Sections of the Rietveld refinement of hydrated zeolite Rho using the peak shape 
function determined from Fig. 3. The function can easily cope with the changing peak width and 
asymmetry. 

The FORTRAN program PEAK, based on the algorithm described, is a stand-alone 
program which is simple to use and is available on request from the authors. It does 
not require any input other than the observed peak profile. The generated function 
can, in principle, be used with any Rietveld or pattern decomposition program. It 
has been incorporated in the X-ray Rietveld system (Baerlocher 1982) and has now 
been successfully applied to data from various sources. Examples of its application 
can be found in the review article by Baerlocher (1986, and references therein). The 
procedure described requires a suitable single peak in the pattern. In most cases, such 
a peak can be found. However, should it prove to be a problem, a peak from a related 
phase measured under similar conditions can be used. This is probably still more 
accurate than an assumed analytical function. In cases where not only the half-width 
at half-maximum and the peak asymmetry changes with 28 but also the shape, the 
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following procedure could be used. Two peak shape functions, one at a lower and one 
at a higher angle, could be determined and then mixed in a way similar to the mixing 
of a Gaussian and a Lorentzian in the pseudo-Voigt. The mixing parameter would 
then be dependent on 26. So far, such an approach has not been used and indeed has 
not been found to be necessary. However, two different peak shape functions, one for 
the low angle and one for the high angle peaks, have been used. 

There is of course no theoretical or physical basis for such a learned function. 
We have used a purely practical approach to find the best function for a structure 
refinement. Nonetheless, it is still possible to gain information about the physical 
state of the sample. The procedure described finds the width at half-maximum, the 
height and area of each peak, and these parameters can be used for any of the normal 
applications of powder diffraction, including estimates of size and strain. 

We believe that this function has been one of the crucial factors in the successful 
Rietveld refinements of complicated zeolite structures. The most recent example is 
the refinement of monoclinic ZSM-5 (Baerlocher and Schicker 1987). Up to 80"26 
(A = 1·54 A) this sample has 2950 reflections with a correspondingly high number 
of overlapping reflections (up to 96 at a single point). Only with a very good model 
for the peak shape, such as the learned peak" shape function, will the intensity be 
correctly distributed among the overlapping reflections and thus allow a satisfactory 
refinement. 
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