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Powder diffraction data are normally analysed by Rietveld refinement. In this technique the 
observed diffraction. pattern is fitted to a calculated pattern by least-squares methods. The 
accuracy with which structure factors can be determined is dependent on the parameters in the 
model being an accurate representation of the physical situation. The Rietveld model is derived 
in the kinematic approximation. Deviations from kinematic behaviour because of extinction, 
absorption, thermal diffuse scattering, and multiple scattering are then included in the model. 
As a test of the method the Debye-Waller factor (which is the only unknown component of 
the structure factor) is determined for magnesium oxide from time-of-Bight neutron data on four 
specimens of very different grain size. 

1. Introduction 

The Rietveld (1969) method has become widely used as a procedure for extracting 
crystallographic information from powder data. In this method the quantity 

M = ~ W{y~bs _ yc:alc)2 
i I I 

(1) 

is minimised, where y;bs is the number of neutrons scattered into the ith time or angle 
channel and y'jalc is the number that would have been scattered into that channel if 
the model of the sample and the instrument were correct. The weight Wi of the ith 
observation is taken as the reciprocal of the variance of y;bs. The assumption that the 
minimisation of (l) leads to the best least-squares estimate of the parameters of the 
model is critically dependent on the physical reality of the model from which y~alc is 
obtained. 

In this paper ffc is formulated for data obtained by neutron time-of-flight 
methods from a randomly oriented powder specimen. It is assumed that the material 
is non-magnetic and defect free. The statistical basis of the Rietveld method is 
discussed and an analysis is made of time-of-flight data from magnesium oxide. 

2. Kinematic Approximation 

In this approximation the intensity of radiation scattered by a crystal is proportional 
to the intensity scattered by one unit cell multiplied by the number of unit cells in the 
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crystal. The diffraction pattern which would be observed is calculated in this section. 
It is assumed that each lattice site is occupied by an atom, and also that the detection 
system records all scattered neutrons without regard to an energy change produced 
by the interaction. This is the frozen crystal case in which dynamic fluctuations, such 
as thermal vibrations, appear as static displacements (Gurevich and Tarasov 1968). 

The starting point is the differential cross section for coherent elastic scattering 
into a single Bragg reflection. Neglecting the effect of finite crystal size, we have 

dO'" = N~ V F2 8( k - k B) , 
dIJ 

(2) 

where Nc is the number of unit cells per unit volume, V is the volume of the crystal, 
and F is the structure factor magnitude per unit cell and is assumed to include the 
Debye-Waller factor. The incident beam has the wave vector k i and the scattered 
neutron k f • The magnitude of both these vectors is A -1 where A is the neutron 
wavelength. The scattering vector is given by k = k f - ki' and has the magnitude 
2 sin 8/A where 28 is the scattering angle. The value of the scattering vector at the 
exact Bragg position is kB' which has a magnitude d- 1 where d is the interplanar 
spacing. 

To determine the total cross section per unit volume 0'" for Bragg scattering into 
a single reflection, as required in Section 3, we must carry out an integration of 
8(k- k B) over dIJ, which is an elementary area at the tip of k f • The result is 

0'" = N~F2A28(k-kB)lsin8. (3) 

Integration over the remaining delta function leads, in a straightforward way, to the 
usual expressions for the integrated intensity from single crystals. 

When the specimen is a randomly oriented powder kB can take up all orientations 
relative to k with equal probability. Then, after averaging, we get 

1 
(8(k- k B» = --2 8(k- kB), 

41TkB 

dO'" = N~VF2 8(k-k). 
dIJ 41Tk~ B 

(4) 

The total cross section for scattering into a Debye-Scherrer ring, required in Section 3, 
is given by the integration of (4) over dIJ: 

O'"tot = N~ VF2A2/2kB • (5) 

3. Deviations from the Kinematic Approximation 

The kinematic approximation assumes that the intensity of the diffracted beam 
increases linearly with the volume of the crystal. This would require that each unit 
cell is exposed to the full intensity of the incident beam, and that the diffracted beam 
is not attenuated by scattering in its passage through the crystal. Neither of these 
assumptions is realistic. The interplay between the diffracted and incident beam is 
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expressed by the Darwin (1922) intensity equations 

of; = -uf;+ulf , 

04 
iJIf = -u If+u f;, 
ate 
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(6,7) 

where f; is the intensity in the incident beam along ti , while If is the intensity in 
the diffracted beam along te. The quantity u is the interaction cross section per unit 
volume. The total scattered intensity is If integrated over the exit surface of the 
crystal. These equations have exact solutions only in the Laue (29 = 0°) case and 
the Bragg (29 = 180j case (Zachariasen 1945; Hamilton 1957). The use of these 
limiting solutions will be indicated by the subscripts Land B respectively. 

(a) Extinction 

The solution of (6) and (7) as given above is appropriate to the phenomenon of 
extinction. Extinction is customarily classified as primary or secondary. Primary 
extinction is the reduction of intensity of the Bragg reflected beam by re-scattering 
into the direction of the incident beam as it passes through successive planes in a 
perfect crystal. Secondary extinction results from the presence in the crystal of mosaic 
blocks of identical orientation. The Bragg reflected beam from one mosaic block will 
be depleted by scattering into the primary beam direction by a block of the same 
orientation. 

Primary extinction is proportional to the size of the perfect crystal block, while 
secondary extinction is proportional to the closeness in orientation of successive 
blocks. In random powders the only extinction mechanism is primary extinction 
within individual grains. 

When extinction is present, the intensity of the diffracted beam is less than that 
calculated from the kinematic approximation. This intensity loss is balanced by the 
increase in the intensity of the transmitted beam. There is no additional diffuse 
scattering. 

The extinction coefficient is defined by 

rbs Elkin, (8) 

where lObs is the observed intensity while Ikin is the intensity in the kinematic 
approximation. Using equation (3) and the solutions of (6) and (7) as a starting point, 
Sabine (1988) has given formulae for E: 

E = ~ cos2 9+ED sin2 9; (9) 

x xl 5x3 7X4 

~ = 1-"2 +"4 - 48 + 192' x.;;;; 1 

( 2 )t( 1 3 3) 
= '1I'X 1 - 8x - 128x2 - 1024x3 ' x> 1, 

1 
ED = l/(I+x)!. 

In these expressions x = (K Ne XF D)2, and D is the refinable parameter, of the order 
of the average mosaic block size in the specimen. The structure factor F includes the 
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Sabine and Clarke (1977) and Sabine (1980) have generalised the incoherent component 
to include all sources of diffuse Scattering. In the present case of a defect free non­
magnetic crystal the components are thermal diffuse scattering, incoherent scattering 
and multiple scattering. These sum to give, using the incoherent approximation of 
Marshall and Stuart (1959), 

yD = Nc V I(X)wh dX (~ + ~(I_M)e-2W(A) + ~(1_e-2W(A»). (16) 
417 R2 incoh coh coh 

The Debye-Waller factor is e-2W(A). 

Use of the incoherent approximation for thermal diffuse scattering over the complete 
range of time-of-flight data is the least satisfactory aspect of equation (16). At long 
times, corresponding to large d spacings, one-phonon scattering which peaks at the 
Bragg positions will predominate. At short times, the major part of the inelastic 
scattering will result from multi-phonon processes. Multi-phonon scattering is spread 
approximately uniformly in the pattern. 

(c) Total Ordinate 

The value of the total calculated ordinate for the scattering angle 28 is given by 

y~a1c = S I(X) A(X) dX 

x ( ~ Pk Nc X 4 Ek(X) Mk(X) Gik(I1X) Lk Fi + b(X») . (17) 

The index k runs over all overlapping reflections. In equation (17) S = Nc V wh/4'7T R2 
is a scale factor, Lk = 1/8 sin3 8 is the Lorentz factor, A(X) is the absorption factor 
from (11), E(X) is the extinction factor from (9), M(X) is the multiple scattering 
factor from (13), Pk is the multiplicity of the kth reflection of the structure factor Fk 
(the Debye-Waller factor is included in Fk), Gik(I1X) is the profile function for the 
kth reflection evaluated at the ith ordinate in the diffraction pattern and, finally, b(X) 
is the quantity enclosed by the large parentheses in equation (16). The instrumental 
background has been ignored. 

(d) An Absolute Scale 

An absolute scale can be found by evaluating S in equation (17) with the use of 
a standard sample. However, in time-of-flightdiffractometry advantage can be taken 
of the abundance of neutrons of short wavelength. As X -+ 0, e-2 W(A) -+ 0 and 

y = SI(X)A(X)dX(~ + ~). 
coh incoh 

(18) 

This method of determinjng an absolute scale eliminates errors related to the position 
of the specimen in the incident beam, differences in the time taken for each run, and 
intensity fluctuations in the beam. The total scattering cross sections are known and 
are independent of the physical state of the scatterer; hence S can be determined. 

For diamond, which according to the 'International Tables for Crystallography' 
(Vol. 3) has a temperature factor B of 0·20 A 2 (W = B sin2 8 IX 2), only 1 % ofthe 
intensity of a Bragg reflection remains at a wavelength of 0·3 A and a scattering 
angle of 150". 
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s. Statistical Aspects of the Rietveld Method 

The least-squares method used in the Rietveld procedure is standard; however, 
two topics require special mention. 

(a) Counting Statistics 

It is assumed that the weights assigned to each profile point are given by 

Wi = var-l(y~bs). 

This would be strictly true if the counts were normally distributed. However, as Price 
(1979) has pointed out, the observed count rate follows a Poisson distribution. In 
this case the weights should be assigned as 

Wi = var-l(y~alC). 

The effect of the assumption of a normal distribution is to bias the calculated profile 
so that it is always slightly below the observed profile and the integrated intensity of 
the peak is underestimated. This conclusion was verified by Hewat and Sabine (1981) 
using computer simulated profiles. 

The effect -is serious only at very low count rates, and is very serious if the count is 
zero. Under normal conditions there are at least tens of counts at each profile point, 
and the systematic error introduced by using wik = var-1(y<>bs) is small compared 
with the precision with which the peaks are measured. 

(b) Precision 0/ Parameter Measurements 

A controversy arose concerning the statistical justification of the Rietveld method. 
Sakata and Cooper (1979) concluded that the method was unsound because it gave 
lower standard deviations for the variable parameters when compared with an analysis 
of the same data using only integrated intensities. Hewat and Sabine (1981) showed 
that the two methods were identical when cognisance was taken of the fact that the 
integrated intensity was obtained from a profile. 

In the Rietveld method the quantity 

.1 ~ (obs calc)2 
l""l = ~ w·k Y·k - Y·k i I I I 

(19) 

is minimised. The Yik are defined by the relation Yik = G ik I k , where G ik is the profile 
function and Ik is the integrated intensity of the kth reflection. In the integrated 
intensity method M 2 is minimised, where 

M2 = 1: Wk(Ikbs - rfC). 
k 

The condition that Ml = M2 is 

Wk = ~ G~k Wik· (20) 
I 

When the only values of integrated intensity available are the total areas under the 
diffraction peak, it is not difficult to show that (20) will hold only if the background 
intensity is zero. It was the existence of this result that led Sakata and Cooper (1979) 
to question the Rietveld procedure. 
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Hewat and Sabine (1981) showed that when knowledge of the profile function Gik 

is incorporated into the determination of integrated intensities, each point on the 
profile gives a measure of the integrated intensity /~) through the relation 

with variance given by 

/(1) = G,-,/ Yik' k 

var(r~) = Gi,} var(Yik)' 

Evaluation of /k as the weighted mean of /~) with weights equal to var(r~) leads 
directly to the general relation 

Wk = ~ G~k wik' 
1 

This shows that, when the data are handled correctly, the results of a direct profile 
refinement and a refinement in which integrated intensities are evaluated as an 
intermediate step are identical. 

Table 1. Values of the temperature factor B and the average edge length 
of a mosaic block D for MgO found by simultaneous Rietveld refinement 

of time-of-flight data at scattering angles of 900 and 1500 

Parameter 

B()..2) 
D (p.m) 

uM 

0·309(2) 
o 

Specimen 
2M 20M 

O· 302(2) O· 319(2) 
o 8·7(5) 

6. Temperature Factors for Magnesium Oxide 

50M 

0·322(2) 
11·8(10) 

As an example of the use of this fOl'mulation of the Rietveld method, Sabine et 
al. (1988) collected and analysed time-of-flight neutron data from four specimens of 
magnesium oxide. The specimens were those described by Sabine (1985). Data were 
collected at nominal scattering angles of 60°,90° and 150° on the Special Environment 
Powder Diffractometer at Argonne National Laboratory. The nomenclature used in 
that work is followed here. The approximate average grain diameters were: 

uM, 0·2 J.Lm; 2M, 0·8 J.Lm; 4M, 2 J.Lm; 20M, 12 J.Lm; 50M, 17 J.Lm. 

Earlier analysis using a version of the Rietveld program which did not contain 
provision for extinction had led to very low or negative values of B in specimens 
20M and 50M. When equation (17) was used for Yialc the refinements converged 
satisfactorily giving the values of Band D shown in Table 1, where D is the edge 
length of a mosaic block which was assumed to be a cube. 

To confirm that there was no interaction between the extinction parameter D and 
the other parameters in the refinement, which were the scale factor, the temperature 
factor, the zero point and diffractometer parameters, and the profile parameters, a 
separate determination of the experimental extinction factor was made. This was done 
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by normalising all data sets using the method given in equation (18). The integrated 
intensities from 2M and 4M, which agreed to 1 % after normalisation, were assumed 
to represent lkin in equation (8). For each reflection the mean integrated intensity 
of 2M and 4M was divided into the measured intensities from 20M and SOM to give 
E(exp). Equations were then used to calculate E(theor) from the D values given by 
Rietveld refinement. 

The results are given in Fig. 1. The agreement between the theoretical and 
experimental values of the extinction factor is excellent down to the most severe 
extinction condition found in the experiment. 

I~ ~ 

0·8 

0·6 

0·4 

0·2 

'i:' 

~ 0 ~ 1·0 ~;------::---~~-==~~==y-__ :oJ 
0·2 0·4 0·6 0·8 1·0 

0·8 

0·6 

0·4 

0·2 

o 0·2 0·4 0·6 0·8 1·0 

E(exp) 

Fig. I. Experimental value of the extinction factor E(exp) from a direct measurement of 
integrated intensities compared with extinction factors E(theor) calculated from the results of 
Rietveld refinement: (0) SOM sample (D = 11·8 p,m) and (b) 20M sample (D = 8·7 p,m). Each 
point is a Bragg reftection. All data (60",90",150") are used. 
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The experimental values of the temperature factor for MgO have been reviewed by 
Barron (1977), who found the best estimate of B = 0.314+0.01"\2. The average 
of the values given in Table 1 is 0.313+0.01 ..\2. 

7. Conclusions 

It is possible to use the Rietveld method to obtain accurate values of crystallographic 
parameters from powder specimens even though dynamical effects reduce the intensity 
of strong reflections by a factor of three. While one would not choose specimens of 
high grain size, in many cases there is no choice. A study of Debye--Waller factors 
as a function of temperature has been a fruitful area of research. Any increase in 
extinction because of grain growth could completely nullify conclusions concerning 
the values of thermal vibration parameters. The extinction factor is temperature 
dependent through the F term in x, however the change is small compared with the 
effect of grain growth. 
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