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Abstract 

We reconsider a thought experiment recently described by Comay (1987) consisting of a rotating 
dipole emitting electromagnetic radiation. We show that there is no confti6t with energy 
conservation, at least to tenth order in angular velocity. 

Comay (1987) has considered the question of energy conservation of a rotating 
dipole (consisting of charges + Q rigidly maintained a distance d = 2 apart and 
rotating with angular velocity Ct.I), by expanding in powers of Ct.I the tangential 
component of the three forces acting on one of the charges. He obtained the following 
results [equations (9), (17) and (18)]: 

(1) The electromagnetic force due to the other charge: 

(1) 

(2) The Lorentz-Dirac radiation reaction force: 

(2) 

(3) The force corresponding to the loss of energy to radiation: 

~ = I/Ct.I, (3) 

where I is the total intensity of radiation from the rotating dipole. 

For I, Comay used the Landau and Lifshitz (1983) result (p. 176, with do = 2 
and c = 1): 

1 - 8 fll,.,4 
-J\tUl , (4) 

and therefore claimed to have shown a violation of energy conservation, since the 
sum of the coefficients of the Ct.I 5 terms in (1) and (2) above is + 185 and not zero as 
expected from (4). 

However, the discussion in Landau and Lifshitz (1983, Section 67) makes it clear 
that (4) is valid in the slow motion approximation only. We therefore wish to calculate 
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the next term in the expansion of I in powers of w. For this we use a modification of 
the Landau-Lifshitz method (Section 74) used for synchrotron radiation by a single 
particle. 

For generality let us consider N charges Qj rotating in the same circle of radius 
r, with the same angular velocity wand with initial angular positions 4>j. Then an 
obvious generalisation of the Landau-Lifshitz formulae (74.6) and (74.7) gives the 
following expressions for the nth Fourier coefficients of the x and y components of 
the vector potential of the radiation field: 

. N 
Axn = - ~eikRo ~ ~ei""'J J~(nf3 cosO), 

eRe j=1 
(5) 

Ayn = 1 eikRo i Q. ei""'J J (nf3 cosO), 
cosO Ro j=1:J n 

(6) 

where Ro is the distance to the origin, 0 the latitude of the radiation vector k, v = f3 e 
the tangential velocity of the charges and J n a Bessel function. The calculation of 
the angular distribution of radiation requires the quantity I A n X k 12, so that defining 

we have 

C\ ,. 

N 

C(N, n) = I ~ C?J ei ""'JI 2 , 
j=1 

(7) 

(8) 

Therefore the intensity of radiation in the nth harmonic into the solid angle dfl is 

dIn = eR~IAn X kl 2 dfl/21T 

= C(N, n)n2w2{ tan20 J~(nf3 cosO) +f32 J~(nf3 cosO)} dfl/21Te. (9) 

Integrating over the sphere we obtain the total intensity 

(to) 

Since the integral in (to) cannot be evaluated in finite terms, we make use of the 
power series expansion of the Bessel function to find the dependence of I n on f3 for 
small f3. We have 

Jf (2nf3) = 1 (2nf3i n- 1 _ 2n+2 (2nf3i n+1 +0(f32n+3) (11) 
2n 4n(2n-l)! 4n+1(2n+l)! .' 

J. (2nx) dx = n Q2n+1 _ . n Q2n+3 + fVQ2n+S) (12) ff3 2n 2n+2 

o 2n (2n+ 1)(2n)! fJ (2n+3)(2n+ I)! fJ ...,"'" • 

We now specialise to the case of the dipole, so that 4>1 =0, 4>2 =1T, Q1 = + Q and 
Q2=-Q; then 

C(2, n) = 4~ (n odd) 

=0 (n even). (13) 
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Inserting these expressions into (10) and choosing r = c = I, so that (3 = (1), we 
obtain 

.n2(8 4 16 .6 22 8 11 10 12 ) II = ~ -(1) - -(1) + -(1) - -(1) +0«(1) ) , 
3 15 105 567 

(14) 

~n =0, 

T _ .n2(486 8 729 10 O( 12») .(3 - ~ -(1) - -(1) + (1) 
35 35 ' 

(15) 

~n+l = 0«(1)4n+4). 

We see that the radiation is all at the fundamental up to order 8 in (1). To the 
lowest order it agrees with the result (4), while the total intensity to order 10 is 

/, J.. .n2(8 4 16 6 296 8 59104 10 O( 12») 
1 + 3 = ~ 3'(1) - 15(1) + 21(1) - 2835 (1) + (1) . 

A routine calculation of the next few terms in the expansions (1) and (2) gives 

f = - (f(~(1)3 _ 28 (1)s + 106(1)7 _ 37112 (1)9 +0«(1)11») 
3 15 21 2835 ' 

We thus have 

2(1 F) .n2(8 4 16 6 296 8 59104 10 O( 12») + (1) = - ~ -(1) - -(1) + -(1) - --(1) + (1) 
3 15 21 2835 ' 

(16) 

(17) 

(18) 

(19) 

which agrees with (16). Therefore to order (1)10 in intensity there is no disagreement 
with energy conservation. 

We see that Comay's (1987) result is due to the use of (4) beyond its domain 
of applicability. Since the Lorentz-Dirac equation is derived by requiring the 
conservation of energy in the particl~field system, there is every reason to expect 
agreement to all powers of (1) if the above expansions are continued. 

Note added in proof: 

It has come to my attention that Comay has retracted his original paper, pointing 
out the same error as the present paper [Phys. Lett. A 129, 424 (1988)]. In addition, 
V. Hnizdo has calculated the sixth order term in the expansion of the total power 
radiated [Phys. Lett. A 129, 426 (1988)]. The present paper uses essentially the same 
method as Hnizdo, but Calculates a few more terms. 
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