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Abstract 

Rotating magnetic fields (RMF) have been used successfuly to drive steady currents in plasmas 
in many experiments. Some recent experimental and theoretical results did not seem to agree 
with the standard model based on assuming that the electrons are 'tied' to the lines of the RMF. 
A more general model based on the concept of flux preserving motion is developed in this paper. 
It appears that this model provides a unified approach for predicting the qualitative features of 
RMF current drive under a variety of conditions. 

1. Introduction 

Current drive by means of a rotating magnetic field (RMF) was suggested and 
demonstrated experimentally by Blevin and Thonemann (1962). It was later developed 
and applied to the rotamak device by Jones and other workers [see Jones (1984) 
and references therein, and also Hugrass (1984), Durance and Jones (1986),Bertram 
(1987, 19880, 1988b), Brotherton-Ratcliffe and Storer (1988), Collins et 01. (1988), 
Donnelly et 01. (1987), Dutch et 01. (1986), Dutch and McCarthy (1986, 1987), 
Durance et 01. (1987), Jones et aL (1987), Kirolous et 01. (1988)]. The technique 
is based on the concept that the electrons follow the motion of an RMF of suitable 
magnitude and frequency while the ions do not. The differential motion of the 
electrons and ions produces a steady current which can be utilised to confine the 
plasma. 

The motion of plasmas (or conducting fluids in general) is often described in terms 
of the simple statement that the lines of the magnetic field are 'frozen' to the plasma 
(Alfven 1950). In making such a statement it is implied that the field lines may move 
and that they have a definite velocity. The velocity of the field lines may be defined 
by comparing the magnetic field at a certain instant ~ to that at ~ + d t where d t 
is infinitesimally small. Consider a point ro on a certain field line at ~. If we can 
determine the location of this point ro+dr at to+dt, the velocity of the field lines 
at ro, ~ would be 

I. . dr 
Vo = Imlt -

dt ..... O dt 

However, the information content of Maxwell's equations, plus the conventional 
definition of the field lines, is not sufficient to label each individual field line. In other 
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words, there is no unique prescription for determining which field line at to + d t 
corresponds to a certain field line at 10, and hence d rand Vo are not uniquely defined 
(Newcomb 1958). 

The majority of known physical phenomena occurring in plasmas can be described 
satisfactorily in terms of the fluid model where the plasma is considered as two (or 
more) interpenetrating fluids, and some effects can be explained using a single fluid 
model. Often the individual fluids (the electron fluid and the ion fluids) and the 
equivalent single fluid move at different velocities yet all of them are assumed to 
be glued to the field lines. This apparent contradiction is due to the fact that the 
velocity of the. field lines is not a well defined physical quantity as mentioned above. 
The plasma motion can be described more accurately in terms of the flux preserving 
motion (defined in Section 2). Provided that certain conditions are satisfied, 'the 
motion of the electron fluid, the ion fluid and/or the single fluid is approximately flux 
preserving. For a given electromagnetic field, the flux preserving motion is not unique 
(Newcomb 1958). A number of fluids may move at different velocities and all these 
different motions are flux preserving. However, it is possible to have flux preserving 
motion only for fields with constant magnetic helicity. In this paper we will only 
consider situations where the magnetic helicity is at least approximately conserved. 

It follows from the above discussion that the simple explanation of the RMF 
current drive technique (namely that the electrons are tied to the lines of the RMF 
while the ions are not) is not satisfactory. In this paper we develop an alternative 
physical model based on the concept of flux preserving motion. The motion of the 
electron fluid has to be flux preserving, while the motion of the ion fluid does not 
have to be provided that the magnitude and frequency of the field satisfy certain 
conditions. Note that the flux preserving velocity is not unique. For the special case 
of RMF current drive a rigid rotation at the same rotational frequency as the RMF 
is obviously flux preserving. However, other modes of flux preserving motion are also 
possible. Any of these modes is 'kinematically' possible, but the actual motion of the 
electron fluid would be approximately given by one or a certain combination of the 
flux preserving modes such that energy and momentum conservation, as well as the 
initial and boundary conditions, are satisfied. The need for this refined understanding 
of the RMF current drive arose only recently when the theory for RMF current 
drive in the presence of a strong azimuthal magnetic field (Bertram 1987), as well as 
the experimental results (Collins et al. 1988), seemed inconsistent with the standard 
theory developed for zero azimuthal steady field insofar as the application of a steady 
azimuthal field reduced the driven current, despite imprOVed penetration of the RMF 
into the plasma. 

The paper is organised as follows. Line and flux preserving motions are defined in 
Section 2. The concept of flux preserving motion is applied to the multi-fluid model 
for plasmas in Section 3, to RMF current drive in Section 4 and to double helix 
current drive in Section 5. 

2. Line Preserving and Flux Preserving Velocity 

The concepts of line preserving velocity and flux preserving velocity were introduced 
by Newcomb (1958) who defined them as follows. Consider the Eulerian description 
of fluid motion, where the fluid velocity v(r, t) is a function of the independent 
variables rand t and is defined in a certain domain D in r. The electromagnetic fields 
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E( T, t) and B( T, t) are also defined in the domain D. Let the curve C1 coincide with a 
line of B at a certain instant to and let each point T on C1 move with velocity v( T, t) 
for t ;> ~. The velocity field v(T,t) is line preserving if any such curve C1 continues 
to be a line of B. Now consider a closed curve C f moving with v. The velocity 
field is flux preserving if the magnetic flux in C f is constant for any such curve. It 
can be shown (Newcomb 1958) that any flux preserving velocity is line preserving 
as well. The converse of this statement is not true as this can be demonstrated by 
considering a constant straight magnetic field, B = ~(x, y).£. Any velocity field 
satisfying av/az = 0 is line preserving. However, such velocity is flux preserving 
only if the condition (v. \7)B+<V. v)B = 0 is satisfied as well. It was shown by 
Newcomb (1958) that one can ascribe a flux preserving velocity to the magnetic 
field lines without creating any contradictions with the known physical laws. Line 
preserving motion is not relevant to the present discussion and will not be considered 
any more. 

The rate of change of the magnetic flux through any surface S bounded by C f is 

dlfJ f aB f -d = -.ds+ B.(vxdl) 
t s at Cr 

= -! (E+vxB).dl. 
jCr 

It follows that v is flux preserving provided that 

E+vXB = -'14>, 

(1) 

(2) 

where 4> is any single valued scalar function. It is not always possible to find a flux 
preserving velocity. Consider, for simplicity, the special case where the magnetic field 
lines close on themselves. Equation (2) can be satisfied, if and only if 

! E.dl = 0, JCI 

(3) 

where C1 is any line of B. It follows that one cannot define a flux preserving velocity 
for situations where the flux linking any line of B is not constant, i.e. when the 
magnetic helicity (Moffatt 1978) is not conserved. This conclusion is not surprising 
because in this case, any attempt to describe the evolution of the magnetic field in 
terms of motion of the lines of force would necessarily involve the absurd notion of 
lines crossing each other. In what follows we will only consider situations where the 
magnetic helicity is at least approximately conserved and it is possible to define a flux 
preserving velocity. 

3. Plasma Motion 

Most of the physical phenomena occurring in plasmas can be satisfactorily 
described in terms of a multi-fluid model where the plasma is treated as a number of 
interpenetrating fluids, an electron fluid and one or more ion fluids. The equation of 
motion for each fluid component is . 
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where ma and ea are the mass and charge of particle species a, na is the number 
density of this species, va its macroscopic velocity, Pa its kinetic stress tensor and 
va/3 the momentum transfer collision frequency between particle species a and j3. 
Equation (4) can be rearranged in the form 

(5) 

(6) 

where Ra consists of an inertial part 

(7) 

a collisional part 

(8) 

and a kinetic part 

(9) 

Comparing equations (2) and (5) it is seen that the motion of the fluid is flux preserving 
provided that 

(10) 

Non-flux-preserving motion can occur because of inertial, collisional or kinetic effects. 
The kinetic effects are best understood in the special case where the velocity distribution 
is isotropic when observed from the frame of reference moving with va. The kinetic 
stress tensor can be expressed, in this case, in terms of a scalar pressure, Pa = na ~, 
where T a is the temperature (in energy units). It follows that 

(11) 

and the fluid motion would not be flux preserving if the temperature and density 
gradients are not parallel. Flux variation is brought about by the thermal electromotive 
force 'If t. This effect may be important in laser produced plasmas where large magnetic 
fields can be self-generated as a result of the grossly non-equilibrium distributions 
established by the intense laser heating. Transport processes normally maintain gas 
discharge plasmas very near to a state of local thermodynamic equilibrium, and 
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the thermal electromotive force is therefore relatively unimportant and will not be 
considered in the rest of this paper. 

The collisional and inertial effects are more difficult to analyse because both Rae 

and Rai depend on the fluid velocity va' Roughly speaking, the motion would be 
approximately flux preserving provided that both Rae and Rai are much smaller than 
the magnitude of either of the two terms on the left-hand side of equation (5), i.e. 
provided that 

and (12,13) 

where va is the effective momentum transfer collision frequency for species a, Ct) is the 
characteristic frequency of the motion under consideration and Ct) ea is the cyclotron 
frequency. It is important to emphasise the approximate and qualitative nature of 
the conditions (12) and (13). These two conditions were obtained by comparing 
the magnitudes of various terms in a vector equation. In particular, the collisional 
term and the vx B term can be very nearly at perpendicular directions and it is not 
strictly correct to compare their magnitudes. Also, one should compare the curl 
of these terms rather than their magnitudes. Flux preserving motion can occur in 
situations where the collisional and/or the inertial terms are not small but their curl 
is very small. Therefore, conditions (12) and (13) are sufficient but not necessary for 
approximate flux preservation. 

As mentioned earlier, the flux preserving velocity is in general not unique. All flux 
preserving velocities are for the purpose of this discussion 'kinematically' possible, i.e. 
are consistent with the approximate 'constraint' 

VX(E+vXB) = O. 

A unique velocity can be determined only if we consider all the forces and the initial 
conditions in a particular problem. This will become clear when we consider the 
rotating magnetic field current drive in the following section. 

4. Rotating Magnetic Field Current Drive 

(a) General Remarks 

We consider the motion of the electron and ion fluids in a magnetic field consisting 
of a constant azimuthally symmetric magnetic field Bo and a rotating magnetic field 
B R' The constant magnetic field can be written in the form 

1 A A 

Bo = - V1./Ix8 +Br8, 
r 

(14) 

where the poloidal flux 1./1 and the toroidal field Bt are functions of rand z only, 
and r, 8 and z are the standard cylindrical coordinates. Note that for azimuthally 
symmetric fields the toroidal component is purely in the azimuthal (8) direction and 
hence the terms toroidal and azimuthal will be used interchangeably. The poloidal 
direction, in this case, lies in the r-z plane. 
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The rotating magnetic field has the general form 

B - B ei«r)t-m6) R - (r) , 
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(15) 

where B(r) is in general complex, (I) is the angular frequency of the field, m is the 
azimuthal mode number and we use the standard complex phasor notation. Note 
that the angular rotational frequency of this field is (1)/ m. One can also associate a 
phase velocity with this field, 

Vph = «(I)/m)rO. (16) 

The electric field associated with the RMF is given by 

(17) 

where 4>1 is an arbitrary scalar function. It is noted that 

(18) 

for the given steady field. Hence, we have 

(19) 

where 4> is an arbitrary scalar function. It follows that a rigid rotational motion at 
angular frequency (1)/ m is flux preserving for any field B = Bo + BR, where Bo and 
BR are given by (14) and (15). This result is self-evident and could have been stated 
without formal proof. There may be other flux preserving motions which are not as 
obvious. In the limit B(r) < ~, any motion corresponding to one of the low frequency 
cold plasma waves is approximately flux preserving (because it satisfies the condition 
E + vx Bo = 0, where v is either the velocity of the electron fluid or the velocity of 
the equivalent single fluid). Such motion is oscillatory and does not produce a steady 
current. 

All the flux preserving motions, namely rigid rotation at (1)/ m and the oscillatory 
wave motion, are kinematically possible. A combination of rigid rotation at angular 
speed other than (1)/ m and certain wave motions is also possible. The actual motion 
in any particular case is uniquely determined by the initial and boundary condition 
as well as other effects such as collisional effects and particle recycling. 

(b) Rotational Motion in the Absence of the RMF 

We consider the rotational motion of the electron and ion fluids in a steady 
azimuthally symmetric magnetic field (equation 14). The rotational velocity of a 
certain fluid can be written as 

V= rnO, (20) 

where n(r, z) is the angular velocity. The condition for flux preservation is obtained 
using (2), (14) and (20): 

'VnX'Vl/I = o. (21) 
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The rotational motion is flux preserving provided that '\Ill is parallel to '\It/I, i.e. 
the angular velocity is constant on the poloidal flux surfaces. This is the isorotation 
condition derived by Ferraro (1937). Note that the isorotation condition should 
be approximately satisfied by both the electron and ion fluids. Hence the toroidal 
current density should be approximately given by J.r - em[IJ j (t/I)-lle(t/I)]. The 
actual motion deviates slightly from the ideal motion described above. A discussion 
of the general case is beyond the scope of this paper. We consider briefly the special 
case where the magnetic field is purely poloidal to the first approximation. This 
equilibrium is known as the field reversed configuration (FRC) (Tuszewski 1988). 
Both the electron and ion fluids in an FRC rotate toroidally. The actual motion 
deviates from ideal isorotation in. a number of ways. Ambipolar diffusion, whereby 
both the electron and ion fluids move outwards (at the same velocity) across the flux 
surfaces, arises from momentum transfer collisions between the electron and ion fluids. 
The diffusion velocity in large systems is much smaller than the rotational velocity 
of the electron fluid. The motion associated with the ambipolar diffusion is obviously 
not flux preserving. In the absence of a toroidal magnetic field (and the associated 
poloidal current), the toroidal rotational velocity is determined by the balance of four 
forces: the force associated with the toroidal electric field arising from the decay of 
the poloidal flux, the vx B force caused by the ambipolar diffusion across the poloidal 
flux, the collisional friction force between the electron and ion fluids and the viscous 
force arising from velocity shear. The toroidal velocity does not necessarily satisfy 
the isorotation condition. If the condition is not satisfied, an antisymmetric (with 
respect to the equatorial plane) toroidal field is generated spontaneously. This field 
exerts toroidal torque and transfers angular momentum between different parts of 
the plasma. This can be seen by considering a horizontal plane z = c dividing the 
configuration into two parts. The magnetic torque exerted by one part on the other 
is given by 

Tz = 27T,.2 _z_. dr, fR B Be 
o IJ.o 

where R is the radius of the configuration at z = c. It is clear this magnetic torque 
vanishes for a configuration with purely poloidal magnetic field (Br = Be = 0). 
For small values of the self-generated toroidal magnetic field, the z component 
of the magnetic field is unperturbed (to first approximation) and hence the torque 
is approximately proportional to a properly weighted average of the self-generated 
toroidal field. The magnitude of the self-generated toroidal field continues to 
increase until the transfer of angular momentum is sufficient to establish approximate 
isorotation. Note that exact isorotation (and hence flux preservation) cannot be 
established because the self-generated toroidal field is maintained by the equivalent 
emf arising from the slight deviation from isorotation. 

(c) RMF Current Drive in Cylindrical Plasmas with Zero Toroidal Field 

We first consider the special case where the constant field is purely axial. Referring 
to equation (14) we have Br = 0 and cf> is a function of r only, and hence 
(lIr)'\It/lx8 = ~(r)i. Assuming that both the plasma cylinder and the RMF coils 
are infinitely long, it follows that all quantities are independent of z. Two classes of 
low frequency waves can propagate in such plasmas: (1) waves with k 4= 0 (k is the z 
component of the wavevector) such as the whistler waves and (2) waves with Bz 4= 0 
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(compressional Alfven waves). Neither of these two classes of low frequency waves is 
excited by the RMF in this particular geometry since B R • Z = 0 and (oloz)BR = O. 
Hence rigid rotation at an angular velocity wi m is the only flux preserving motion 
(rigid translation in the z direction is also flux preserving, but this motion is not 
relevant for our purpose). For RMF current drive, the magnitude and frequency of 
the rotating field are chosen such that conditions (12) and (13) are satisfied for the 
electrons and are not satisfied for the ions, namely 

(22,23,24) 

where wee = eB,jme and wei = eB",lmi' Note that we use the magnitude of the 
rotating field (and not the steady field nor the total field) to calculate the cyclotron 
frequencies wee and wei' because the analysis of the equations describing RMF current 
drive for this particular geometry (Jones and Hugrass 1981) showed that the cyclotron 
frequencies in (22) and (23) should be calculated using the magnitude of the rotating 
field. However, this is not true in general as will be seen from our discussion of the 
RMF current drive in different geometries. 

Fig. 1. A conceptual induction motor. 

For this simple geometry, RMF current drive can be explained using the analogy 
with the induction motor (Hugrass 1984). Fig. 1 shows a conceptual induction motor. 
The RMF, B", is generated by a poly-phase current in the stator winding (not shown 
in the figure). The magnetic flux in the coil varies as the RMF changes direction and 
this induces an oscillatory emf which causes an oscillatory current I to flow in the 
coil. The magnetic forces acting on the sides of the coil produce, on the average, a 
unidirectional torque Td in the same direction as w. The coil rotates at an angular 
frequency wrl m, where wr < w, such that the driving torque equals the retarding 
torque 1'r applied by the mechanical load. The analogy between the induction motor . 
and the RMF current drive is described as follows (see Hugrass 1984 for details). The 
coils generating the RMF represent the stator windings of the induction motor and 
the electron fluid represents the rotor which has a rotational angular velocity wrl m. 
The slip s is defined by the equation 

(25) 
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In a frame of reference rotating with the electron fluid, the Doppler shifted frequency 
of the RMF is Ct)d = Ct)-Ct)r = sCt). 

The induced emf is therefore proportional to the slip and oscillates at angular 
frequency Ct)d' Oscillatory current (at angular frequency Ct)d) flows in the axial direction 
in response to the emf. The current depends on the emf and the equivalent inductance 
and resistance of the rotor (electron fluid). This current known as 'screening current' 
tends to attenuate the RMF in the plasma according to the classical skin effect (with 
effective frequency Ct)d)' Note, however, that the frequency of the screening current 
as observed in the laboratory frame is Ct). The presence of the screening current leads 
to a steady flow of energy from the source of the RMF to the electron fluid, 

(26) 

where (P) is the time averaged power, the asterisk denotes complex conjugate and 
the integration is carried out over the volume of the plasma. This power flow is 
accompanied by a steady flow of angular momentum (Klima 1974), 

(T) = (m/Ct)(P). (27) 

where (T) is the time averaged torque. It is this torque that maintains the rotation 
of the electron fluid against the frictional retarding torque caused by momentum 
transfer collisions with the ion fluid (the ion fluid resembles the mechanical load of 
a motor). The retarding torque is approximately proportional to Ct)r (i.e. to 1- s), 
while the driving torque is proportional to B; and depends on s in a manner similar 
to the schematic shown in Fig. 2. The driving torque and the retarding torque are 
equal when the electron fluid rotates at Ct)r/ m. For zero slip, the induced emf in the 
electron fluid vanishes and hence no screening current flows and the RMF completely 

(i) 

o 0·2 0·4 

l-s 

Fig. 2. A schematic of the driving torque Td (Td(i)· for large Boo and Td(ii) for small Boo) and 
the retarding torque r. as functions of the slip s. 
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penetrates the plasma. The motion of the electron fluid is exactly flux preserving in 
this case. However, this motion is not possible because of the finite retarding torque 
applied by the ion fluid via momentum transfer collisions. Thus the slip between 
the electron fluid and the RMF cannot be exactly zero. The actual value of the slip 
depends on the magnitude of the rotating field as well as the collision fr~quency and 
the plasma radius. Fig. 2 shows a schematic of the retarding torque 7; as a function 
of the slip (7; - 1- s), and the driving torque Td for (i) small RMF and (ii) large 
RMF. It is seen that the slip can be very small and hence the motion of the electron 
fluid is approximately flux preserving provided that the magnitude of the RMF is 
larger than a certain threshold. The screening current is small in this case and the 
RMF penetrates the plasma. For small values of the RMF, the slip is large and hence 
the screening currents are large and the RMF is 'screened' from the interior of the 
plasma. For very small values of the RMF the electron fluid is almost stationary 
(s - 1) and the RMF is confined to a skin layer on the surface of the plasma (the 
skin effect). 

We now use the results of this simple model to make a better estimate of the 
condition for approximate flux preservation for the electron fluid motion (and hence 
efficient RMF current drive). Neglecting the motion of the ion fluid, the z component 
of the equation of motion is 

(00/ m)r BlJ) -(1- s)(w/ m)r BlJ) = me (v-i w)vz' 
e 

(28) 

where we have used Ez = (w/m)rBlJ)' Br = BlJ) and vEl = (1-s)«(I)/m)r. It follows 
that 

00 
Vz = s(w/m)r~, 

V-too 

Using the 8 component of the equation of motion we obtain 

wm 
(vz Br) = -(1-s)(w/m). 

e 

Solving (30) and (31) for s we obtain 

(29) 

(30) 

(31) 

(32) 

It is seen from (32) that the slip s is much smaller than unity and hence the motion 
is flux preserving, provided that (w2 +v2) < w~, where wee is the electron cyclotron 
frequency calculated using the magnitude of the rotating field. 

We now summarise the properties of RMF current drive in an infinitely long 
plasma cylinder with zero toroidal (azimuthal) steady magnetic field: 

(1) The only flux preserving motion is rigid rotation about the axis at (1)/ m. 
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(2) The electron fluid is approximately flux preserving provided that w2 + v2 < w~e 
[ = (eB",/mei). 

(3) The RMF penetrates the plasma when the motion of the fluid is approximately 
flux preserving and is confined to a skin .layer if the motion is not flux 
preserving. 

(4) A steady azimuthal current is driven as a result of the differential motion 
between the electron and ion fluids. Larger values of the steady current 
correspond to smaller values of the slip and hence improved penetration of the 
RMF into the plasma. 

(d) RMF Current Drive in Cylindrical Plasma with Toroidal (Azimuthal) Field 

The azimuthal field can be generated by means of a thin current carrying conductor 
along the z-axis. We will only consider the special case where the toroidal field 
Br is much larger than the rotating magnetic field Bw. It is clear that a rigid 
rotational motion at wi m is exactly flux preserving. However, for this special case, 
approximate flux preservation can be achieved by oscillatory motion corresponding 
to plasma waves related to the whistler mode. This situation can be explained using 
the induction motor model. If a steady azimuthal field Br is superimposed on the 
conceptual induction motor shown in Fig. 1, the coil will be subject to an oscillatory 
radial force (2LI Br where L is the length of the coil). Provided that the mechanical 
structure allows for radial shifts and the mass of the coil is very small, the radial 
velocity will be such that 

(33) 

and the current in the coil will be negligibly small, 

(34) 

where ~ is the current that would flow if the coil was not allowed to execute the 
radial oscillatory motion. Note that, the coil motion described above is approximately 
flux preserving since the magnetic flux linking the coil is approximately constant. The 
other mode of flux preserving motion, namely rotation at wi m is inhibited because the 
driving torque Td - 2Lr 1 Bw is much smaller than the starting torque for Br = 0 
(or if the oscillatory radial motion is not allowed). 

Now we consider RMF current drive in a cylindrical plasma. The axial screening 
current is obtained using the z component of the electron fluid equation of motion: 

Far from the plasma surface, the radial velocity is approximately given by 

Using (35) and (36) we obtain 

Ez 
vr Br - - --(---"-. -)-2 - .... --=-2 ' 

1 + Vei+1W IUce 

(35) 

(36) 

(37) 
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produce beneficial effects such as reducing the current density and power dissipation 
at the plasma edge. 

5. Double Helix Current Drive 

We consider an infinitely long cylindrical plasma. The applied magnetic field 
consists of a steady azimuthally symmetric part, 

(44) 

and a radio frequency travelling wave part, 

(45) 

where we use the standard phasor notation. The experimental arrangement 
corresponding to this idealised model was described by Dutch and McCarthy (1986). 
In the absence of the travelling wave field, any rigid rotation abOut the z-axis, 
rigid translation along the z-axis, or a combination thereof, is flux preserving.· In 
the presence of the travelling wave field, there is a single parameter family of flux 
preserving motions: 

v = a(wlm)r6+(I-a)(wlk)£, (46) 

where a is an arbitrary constant. (Note that for the standard RMF current drive 
k = 0 and a = 1, and the velocity in the z direction is in this case arbitrary.) 
The flow described by (46) is shearless; hence, any closed curve moving with v 
maintains its shape and orientation with respect to the unit vectors of the cylindrical 
coordinates: r, 8 and £. It is also observed that the phase of the RMF is constant 
at any point moving with this flow velocity. It follows that the flux in any closed 
curve moving with the flow is constant and (46) indeed describes flux preserving 
motions if the. magnetic field is given by (45). If the RMF excites low frequency 
waves in the equilibrium plasma, the oscillatory motion associated with these waves 
is approximately flux preserving. Thus equation (46) represents only a subset of the 
set of all flux preserving motions for this particular geometry. It is also obvious that 
the velocity given by (46)· is flux preserving in the presence of bOth the steady and 
travelling wave fields. Such motion is 'kinematically' possible for any value of a. 

It was shown by Klima (1973, 1974) that, for magnetic fields given by (44) and 
(45), the power dissipation (per unit length) P is related to the z component of the 
force acting on the plasma (per unit length) Fz' and the z component of the torque 
(per unit length) Tz by the equations 

P = (wi k)Fz' P = (wlm)Tz • (47,48) 

Provided that the frequency of the RMF is sufficiently high that the oscillatory ion 
motion can be neglected, Fz and Tz act predominantly on the electron fluid and 
make it move in the z direction and rotate abOut the z axis. Again the motion 
of the electron fluid has to be approximately flux preserving, hence the velocity of 
the electron fluid is given by (46). The value of a is determined by the momentum 
relaxation mechanism. If we assume that the number density n is uniform and that 
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the electron-ion momentum transfer collision frequency vei is constant, we obtain 

Fz = 1r~ nme vei(l-a)«(J)/k), 

T - 1 4 / z - 21rrOnmeveia(J) m, 

where ro is the plasma radius. Using equations (47)-{50) we obtain 

v = {m2/(m2+0.5k2~)J«(J)/m)r8 

+ {0.5k2 ~/(m2+0.5k2 r~)I«(J)/ k)£. 

(49) 

(50) 

(51) 

Equation (51) is similar to the results obtained by Dutch et aL (1986) for m = 1. 
However, this mode of electron motion, and the accompanying steady current, occur 
only in the special case where the screening current is exactly parallel to the steady 
magnetic field. Otherwise an oscillatory, flux preserving, wave motion will be excited 
(Bertram 1988a). As shown above, the presence of such oscillatory wave motions 
can lead to a substantial reduction in power dissipation, and hence to an equivalent 
reduction in the transfer of momentum to the electron fluid. 

6. Conclusions 

We have applied the concept of flux preserving motion to the theory of RMF 
current drive. It appears that this approach provides a unified physical picture 
for the RMF current drive. The experimental results obtained so far for different 
configurations as well as the various theoretical studies appear to agree with the 
predictions made using this simple model. It should be emphasised, however, that 
our physical model is purely qualitative. It is hoped that quantitative theoretical 
studies of various aspects of the RMF current drive, and continued experimental 
investigations will improve our understanding and support, refine or refute the model 
developed in this paper. 
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