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Abstract 

Quadratic maps of a vector, depending on a vector parameter and any number of scalars, 
can be reduced to the transformation x ~ ax(l - x) + dy2 and y ~ h(c - x)y, where d = 0, 1 
or -1. Such a (3-parameter) set of transformations possesses an extremely rich structure. 
We have determined the Julia and Mandelbrot sets of this system and have delineated the 
characteristic types of x-y motion as well as the transition from one regime to the next. 

1. Introduction 

One-dimensional unimodal maps as well as circle maps have been exhaustively 
studied and an enormous body of knowledge about their properties has 
accumulated (Collet and Eckmann 1980; Iooss et al. 1983; Hao 1984; Cvitanovic 
1984; Holden 1986). Two-dimensional maps have also received considerable 
attention and none more so that the Henon (1976) map, which produced one 
of the first examples of a strange attractor. Heileman (1980) has studied many 
such two-component maps and has managed to reduce almost all cases to his 
'standard' quadratic form: 

X, = 2x(C+x)+y, y' =-Bx, (1) 

which certainly encompasses the one-dimensional logistic map and the Henon 
map, in another quise. He has studied (1) in considerable detail and described 
the period-doubling and strange regimes of the system. 

In this paper we shall start ab initio with a bonafide vector variable rand 
discuss the nonlinear maps which it can undergo, which specifically depend on 
an external vector parameter and any number of scalars. Then we concentrate 
on the quadratic maps and show that they can be reduced to the canonical 
form 

x --+ ax(1 - x) + dy2 , y --+ b(c - x)y , (2) 

where d either vanishes or can (by scaling y) take the values ±1. Such maps can 
produce many different types of r behaviour and this can be discerned from 
their Julia and Mandelbrot sets, which we examine next. In fact the situation 
leads to such complexity that, in this paper, we shall content ourselves by 
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describing the various motions of the vector field, depending on the ranges of 
the (three) parameters in question, and limiting the quantitative study to only 
the most rudimentary aspects-those that can be exactly calculated without 
any approximations. We should point out that in general the vector map (2) is 
not reducible to the Heileman form (1) and the only case where it can be made 
to coincide is for d = 0, when the map becomes effectively one-dimensional 
anyway, and thus uninteresting from our point of view. In a future paper we 
shall treat the quantitative features much more fully, and try to derive the 
universal properties of these vector maps by analogy with what has already 
been achieved for Hamiltonian systems of two variables. 

2. Vector Variables and Parameters 

Let r denote the vector variable. If one assumes that it depends purely 
on scalar parameters, collectively denoted by A, then the only conceivable, 
rotationally covariant map can be written as 

where A is a scalar function of its arguments. Because the direction of r 
is unchanged, the map is essentially one-dimensional and solely affects the 
length r. In particular, if we have just one scalar parameter A or the map is 
quadratic, it can be reduced to the canonical logistic form, 

r' = M(l - r), (3) 

whether or not r is an axial or polar vector. t Everything worth knowing 
about (3) has been discovered by now, so we pass to problems where the 
external parameters are intrinsically vectorial. 

Suppose that there is a single vector influence, labelled H. Because the 
length of H is just another scalar which can be absorbed in the set A, we 
shall regard H as a unit vector in what follows. The most general map can 
thereby be expressed as 

r ---+ r' = rA+nB+HxrC, (4) 

where A, Band C are scalar functions of r2 and r. H, plus of course all the 
scalars A. For simplicity, let us assume that the map is parity preserving;:/: 
then we can distinguish between two cases: 

(i) rand H are both polar or axial vectors. Hence C must disappear 
altogether from (4). 

(ij) rand H have opposite parity, one being axial and the other polar. 
Here A and C must be even functions while B must be an odd function 
of H.r. 

t Recall that under space reflection, or a 'parity transformation', a polar vector-like momentum 
changes sign but an axial vector such as torque does not. This distinction is made when 
we consider cases (i), (ii) and (iii) below. 
=!: That is to say, r and its mapped r', transform in the same way under space inversion. 
The dynamics are 'parity-preserving'. 
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Further progress is impossible, until we spell out the nature of the map or 
tie it to some physical example. 

Let us therefore focus on functions that are at most quadratic in r. Case 
(ii) then reduces to 

r ...... r'=ar+bn(r.n)+cnxr 

and, since it is linear, is undemanding. Case (i) offers much brighter prospects, 
however, insofar as it is a proper quadratic map and allows us to introduce 
at most six scalar constants (labelled by a, b, c, e, f, g): 

r -- rb(c - n. r) + n{ar2 + g + e(n. r)2 + f(n. r)}. 

We use the freedom in translating the origin by shifting it along n and thereby 
eliminating the constant g. Then, we rescale the component of r along n so 
that e + b + d + f = O. Lastly, we use the identity r2 = (r. n)2 + (rxn)2 to express 
the map in the canonical form 

r ...... rb(c- n. r) + n{an. r(l- n. r) +b(l-c)n. r+d(nx r)2} 

= n{an. r(l- n. r) +d(nx r)2}+b(n. r- c)nx(nx r), (5) 

which now contains just four constants. Since one can always direct n 
along the x-axis, the map reduces to the advertised form as far as the x 
and y components are concerned. Furthermore, since the second equation is 
homogeneous in y, we can always rescale the first one so that d = ± 1, unless 
it happens that d = 0 at the beginning. This then establishes that vector 
quadratic maps can always be expressed in the form (2) with d = 0 or ±l. 

Before leaving this section we ought to point out that higher order, nontrivial, 
polynomial maps do exist for case (ii) and deserve a study in their own right. 
However, these are exceedingly complicated; even at cubic level one has to 
contend with some six independent control constants, even after rescaling and 
shifting origin. Clearly the simplest case, namely (2), needs to be explored 
first, t if for no other reason than to find out what features must be followed 
up in more intricate vector problems. 

3. Fixed Points of the Vector Map 

If the map begins with r directed along n so that y is rigorously zero, the 
system stays one-dimensional and has all the features of the logistic map. 
The same thing happens if b is zero or sufficiently small that y tends to the 
fixed point y* == 0; this will occur if we have for the n-cycle product 

iOb(C-xni<l, (6) 

t Some physical problems where (5) has relevance are: 

(i) the velocity of a charged particle in a plasma under the influence of a periodic 
electric field; 

(ij) the vorticity of a point in a magnetohydrodynamic medium due to an oscillating 
magnetic field; 

(iii) the angular momentum of a system due to a periodically applied torque, etc. 

In each of these cases the vector influence (n) and the measured vector quantity (r) have 
the same parity. 
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Fig. 1. Mandelbrot set in band c for the vector map, with a held fixed at 3·57 and d = o. 

where the fixed x* values are purely governed by the value of a. A related 
case arises when d = 0; in that circumstance x decouples totally from y and 
x* runs between 0 and 1. The fixed points in y depend on the seed y value 
and on the a value (which fixes the x behaviour). In particular, one can easily 
appreciate that an m cycle in x can lead to (i) a divergence in y (because b 
is large enough), (ii) an m cycle in I yl if b is at the boundary of (6), or (iii) 
a single fixed point at y* = 0 if (6) is obeyed. If x behaves erratically, then 
so will y, providing one is at the edge of (6) as m -+ co, and the only way 
to ascertain this is to examine the Mandelbrot set; a typical one is shown in 
Fig. 1 where band c are varied and a is set equal to the chaotic two-cycle limit 
value, a = 3·57. Here, as in other cases, a parameter region of convergence 
for r is clearly discernible. The Julia set in Fig. 2a merely confirms that y 
will fluctuate with x but remain finite even in this chaotic x regime. 

The Julia sets shown in Figs 2b and 2c indicate the drastic effect of taking 
d different from zero; d = -1 especially enlarges the domain of convergence. 
Assuming now that d i- 0, it is rather trivial to work out the constraints on 
the parameters which guarantee that there is a unique attractor r*. In that 
event we have 

x* = c -lib and y*2 = x*(l - a + ax*)ld, (7) 

providing y* is not zero; as well we must ensure that the magnitudes of the 
two eigenvalues of the first mapping derivative matrix 

or' =(aO-2x*) 2dY*) 

or -by* b(c - x*) 
(8) 
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do not exceed 1. It is straightforward to show that this leads to 

-1 - bdy*2 :::; a(l- 2x*):::; 1- 2bdy*2, (9) 

with bdy*2 :::; 2. The lower bound in (9) amounts to the condition that at 
least one of the eigenvalues has reached -1, while at the upper bound both 
eigenvalues are complex with modulus unity, and thus det(3 r' /3 r) = 1; as an 
illustration of these conditions, see Fig. 3. The fixed parameters are taken 
to be b = 3·6, C = 1 and d = 1, and a is varied in small steps from about 2 
to 4. The unique attractor, given by (7), lies at x* = 0·7222, providing that 
a runs between the lower limit of 2·2235 and the upper limit of 3·0857, 
according to (9), whereupon y* runs from 0·5255 to 0·321. This is confirmed 
in Fig. 3, but much more striking and interesting is the motion of r outside 
this range; noticeable are (distorted) elliptic trajectories below a = 2·2235 
and period-doubling bifurcations above a = 3·0857. This behaviour is readily 
understood analytically; the lower a values correspond to complex eigenvalues 
of (8), while the upper a values are associated with one eigenvalue greater than 
one and the other less than one-hence the shrinkage to one effective degree 
of freedom and the one-dimensional bifurcation scenario. We now explain in 
more detail how this transpires and what happens in more extreme ranges of 
the parameters. 

4. Vector Bifurcations 

Because we are free to vary the three parameters of our problem when 
investigating the various regimes of vector behaviour, it is easy to get lost in 
the multiplicity of features that emerge. It makes good sense at first to set 
d = 1, fix two of the parameters, and consider the remaining parameter as the 
single control variable. Later on, after we have classified the regimes, we see 
that similar behaviour arises when some or all of the parameters are changed 
in a regular manner. Altering the sign of d does not substantially change the 
classification, since the operative variable is really the product bd. 

For the moment let us follow the changing nature of the map with a, 
holding b, c and d (=1) fixed. By examining the eigenvalue A equation for the 
matrix derivative (8), we find that I A I < 1 provided that (9) is obeyed and the 
one fixed point r* is determined by (7). Now let us overstep the ranges in 
(9). If a(l- 2x*) is marginally less than -1- bdy*2, one (real) eigenvalue drops 
below -1, while the other's magnitude remains less than 1. This means the 
disappearance of one mode, with the other mode going through the traditional 
period-doubling cascade-as precisely happens in Fig. 3 when a exceeds the 
critical value 3·0857, given the chosen band c. The onset of the four-cycle 
can even be pinpointed although the equations resist easy algebraic solution: 
this exercise requires us to consider the double map associated with the first 
bifurcation, 
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Fig. 2. Julia set in r with the parameters fixed at a = 3·57, b = 7 and e = 0·5; (a) d = 0; (b) 
d"" 1; and (e) d = -1. In (b) and (e) note the reduction and enlargement respectively of the 
convergence domain relative to (a). 
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Fig.2 (Continued) 
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Fig. 3. Fixed points of r as a is varied in steps of 0,01 from 2 ·18 to 3·78; b = 3·6, C = 1 
and d = 1. Note the flip bifurcations at the bottom and the Hopf bifurcations at the top. 
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and factor out the (unstable) fixed points at r = 0 and r* found before. After 
a little work, the remaining equation can be reduced to a quadratic, yielding 
the roots 

(0) 

where S is determined in terms of the parameters by 

1 1 

s=bw+(b2w2/4-l)2" and w=c-i+(~+I/b2-c/a)2". 

The four-cycle develops when one eigenvalue of the first derivative of the 
double map attains -1, namely when the lower eigenvalue of 

equals -1. This happens when 

1 + a 20 - 2x+)0 - 2x_) + 2bdy+ y_(2bdy+ y_ - 1) 

+ab2d{yi(c-x-)0- 2x_) +y~(c-x+)(1- 2x+)} = O. (1) 

The combination of (10) and (1) provides one condition on a, b, c, d. Thus, 
given b, c and d, the value of a at which the four-cycle starts can be worked 
out. We have not been able to solve the equations algebraically (except in the 
limit bd = 0 when the correct value a = 1 +.j6 does emerge) and have therefore 
resorted to numerical methods. With the numbers b = 3 . 6, C = 1 and d = 1 used 
in Fig. 3 we have derived the four-cycle point as a = 3 ·4546, and x- = 0·4448, 
x+=0·86IO, y_=0·0887, y+=0·I773; these values agree perfectly with the 
computer graphics and give us confidence in the analysis. To tackle eight 
cycles and more requires superhuman effort, so the computations are best 
left to the machine. 

At the other end of the fixed line, when a(I - 2x*) is marginally greater 
than 1 - 2bdy*2, the fixed point changes into a fixed path which starts off 
elliptical (it is basically the Hopf circle) and suffers progressive distortion as 
a moves down-indeed at certain values of a, such as 2· 1006, the attractive 
orbit looks strange. This Hopf bifurcation is readily comprehended. Because 
the elliptic scales as governed by the square root of 

(2) 

just like the first flip bifurcation in one-dimensional maps, let 

1 1 

X = x* + £(-,1 a) 2" + O(L1a) , Y = y* + lJ(-L1a) 2" + O(L1a) , . (13) 
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Fig. 4. (a) x-projection of a four-cycle and subsequent flip bifurcations as b is varied near 
3; a = -1 ·5, C = 0·5 and d = 1 here. (b) Full r trajectories showing how the four-cycle 
emerges from the orbits as b is varied. The ellipses develop into a 'rectangle' which buds 
off into the four-cycle when b exceeds the critical value. 
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( ~') = (aC<1-2Xd 2dYe ) (~). 
17' -bYe 1 17 

(14) 

Here re is the single fixed point at the very edge of instability a = ae. One 
readily finds that the unimodular map (14) has the invariant conic 

b~2 - 2bdYe ~17 + 2d172 , 

which accurately describes the eccentricity and inclination of the ellipses that 
1 

sprout for a < ae; the scale is of course set by (ae -a) 2". When a is substantially 
below ae, the invariant curves become badly distorted and displaced and r 
is no longer evenly distributed on them; indeed as a is reduced further, the 
features become quite striking. This forms the subject of the next section. 
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Fig. 5. Formation of cusps as a multicycle is born; a is in the vicinity of 2·1 and b = 3 . 6, 
c= 1 and d = 1. 

5. Multicycles, Islands and Strange Attractors 

By restricting the parameters appropriately, what we have found so far is 
that the vector r tends to a fixed point r*, or to a fixed open line after 
flip bifurcation, or to a fixed closed line after Hopf bifurcation. Sometimes 
r can tend to fixed points along these lines .when the parameters equal 
special values; this phenomenon is well understood for one-dimensional maps 
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Fig. 6. (a) Fixed points of x as c is varied with the other parameters held at a = -1·93, b = 3 
and d = 1. Note the ll-cycle window near the middle and the way they bubble out-a sign 
that they are Hopf bifurcating. (b) The r trajectories near the ll-cycle region of Fig. 6a. 
Observe how the 11 fixed points clearly change into 11 islands as c increases. 
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Fig. 7. Emergence of the 11 islands, seen from the point of view of a variation in a, with 
the other parameters kept constant. (b) Development of the 11 islands into a strange(?) 
attractor as a reaches -1·955; with b = 3, C = 0·5 and d = 1. 
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associated with the open line and, with the closed orbit, it corresponds to 
the behaviour seen in circle maps because the effective degree of freedom 
is necessarily an angle. In the latter case the way the fixed cycle develops 
can be arresting. For instance in Fig. 4a we have plotted the spread in the 
coordinate x=y.n as b is varied near 3 for a=-I·5, c=O·5 and d=+I; 
the appearance is not particularly astonishing. However, if we view the same 
region from a two-dimensional perspective and plot the full x-y trajectories, 
as in Fig. 4b, the picture is more dramatic. One finds that just before the 
onset of the four-cycle the orbit develops corners and y spends most of its 
time in those corners, displaying 'intermittency', until the cycle buds off as 
parameter b is increased further (it then goes on to flip bifurcate etc. in this 
particular example). Lauwerier (1986) has discovered similar phenomena in 
his predator-prey and delayed logistic map models. 

This sort of behaviour is quite frequent: just before the onset of a cycle 
the orbit tends to develop cusps. Fig. 5 is a further illustration of the 
phenomenon; there we hold fixed b = 3·6, C = 1 and d = 1, and vary a near 
2·1 where a 22 cycle is lurking. The same kind of thing can happen when 
another parameter is varied. In Figs 6a and 6b we depict the emergence of 
an 11 cycle as c is varied near 0·5 when a = -1·93, b = 3 and d = 1. What is 
more, we notice the development of the 11 fixed points into 11 'islands' as c 
is gradually increased. 

The subsequent breakup of a multi cycle is sensitively dependent on the 
parameter values; for example in Fig. 4 we observed flip bifurcation, while 
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Fig. 8. Another strange looking attractor, this time for d = -1; the other parameters are 
a=3·701, b=3 and c",0·25. 
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Fig. 9. (a) Julia set in r for a = 2, b = 3·5, e = 1 and d = 1 shows some structure, particularly 
near the boundary. (b) Julia set in r showing signs of disintegration when a is reduced to 
1 ·96. (e) Enlargement of a portion of Fig. 9b to bring out the fine structure. 
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Fig.9 (Continued) 

in Fig. 6 we noticed Hopf bifurcation. (In practical terms, these features are 
more easily spotted by tracking the spread in a vector component rather than 
by looking at the full r trajectory.) What happens after the breakup of the 
island lines or loops is also sensitive to the parameter ranges. For instance, 
Fig. 7a depicts an 11 cycle near a=-1·94, b=3, c=0·5 and d=l, while 
Fig. 7b shows how it degenerates into a strange-looking attractor when a 
reaches the value -1· 955. We have observed similar developments in other 
instances; Fig. 8 is a case in point and it corresponds to a negative d value, 
for the first time in this discussion. Such convoluted features arise in the 
Henon map as well, of course. 

Needless to say, situations occur where the parameters lead, as far as we 
can tell, to a random spread of r and this will depend delicately on the values 
of a, b, c, d. To underline this point, we have drawn Julia sets in Fig. 9 showing 
how a convergence region is sensitively dependent on the seed values of r, a 
fact that has considerable practical import when one is searching for attracting 
regions generally. The intricacies in the resulting plots and the fine structure 
we have detected are very likely indicative of properties that are universal 
to other vector maps. We hope to track down the nature and characteristic 
constants of these universal(?) features in subsequent research. 
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