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Abstract 

The problem of primordial cosmological perturbations which gave birth to the large scale 
structure of the universe is analysed from the time of their origin up to the nonlinear 
formation of the structure. We show how classical gravity accounts for the generation of 
perturbations near the beginning of the cosmological expansion. Dark matter which governs 
the further development of perturbations in the early universe includes both heavy and light 
weakly interacting particles. Transfer functions of the adiabatic and isothermal modes of 
perturbations are investigated and some astrophysical applications are given. 

1. Introduction 

Current cosmology suggests that all the observable structure of our universe 
on large scales (galaxies, clusters and superclusters) has stemmed from the 
small primordial perturbations of matter density and gravitational field which 
had to be present very early in the Friedmann universe. For galaxies to form 
nowadays we need the primordial perturbation amplitude near the Big Bang to 
be of the order of _10-4 • On the one hand, it is small for the linear perturbation 
theory to be used from the very beginning but, on the other hand, it is 
many orders of magnitude greater than the 'natural' inhomogeneities (quantum, 
statistical, thermal etc.) to be expected in the homogeneous universe. 

So, at least two problems must be considered before one could simulate 
galaxy formation at the nonlinear late stages (for redshifts Z $ 10): production 
of the cosmological primordial perturbations in the very early universe, their 
original spectrum, distribution and other properties; the evolution of the 
created perturbations in the early universe (until they became large), which 
has modified and changed their original characteristics. 

Further on, I try to outline the principal ideas which modern cosmology 
proposes to solve the first problem and review some results for the transfer 
functions which bear all the information about the changes of primordial 
spectra before perturbations enter the nonlinear evolution. Some astrophysical 
applications and isocurvature models are also discussed. 

• Paper presented at the joint Australia-USSR Workshop on the Early Universe and the 
Formation of Galaxies held at Mt Stromlo Observatory, 28-29 June 1989. 
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2. Difficulties of the Classical Hot Universe and the Idea of 
'Parametric' Amplification 

V. N. Lukash 

According to the Lifshitz (1946) theory of small perturbations there are 
three types of perturbation to the homogeneous isotropic universe: 

* the density (potential) perturbations, 
* the vortex perturbations, 
* gravitational waves. 

We are interested now in the first type-the potential or scalar perturbations
because we believe that they are responsible for galaxy formation. We also 
assume that the universe is spatially flat on scales encompassing large structures 
(I < 103 Mpc): 

ds2 = a2(d'1 2 - dx2 - dy2 - dz2), 

where a = a('1) is a scale factor, and the universal time is t = f a d'1 
(c= 8rrG= h = 1). 

First, let us show that in the hot universe, when the total matter is 
dominated by relativistic particles and a - '1, the production of perturbations 
is impossible. Indeed, it is well known that in this case the Fourier amplitude 
of an arbitrary perturbation is easily separated into two modes-the so-called 
'growing' and 'decaying' modes. It is convenient to present the exact solution 
in terms of the gauge invariant scalar q which fully governs the behaviour of 
the potential perturbations (Lukash 1980): 

C sinK C COSK 
q = 1~+ 2-K-, 

(1) 

where the functions of wavenumber C 1,2 = C 1,2(k) are the 'growing' and 'decaying' 
mode amplitudes respectively; K =; k'11 J3 - tlA, and A = 2rralk is the physical 
wavelength. 

All the other physical quantities are easily related to the scalar q. In the 
synchronous gauge the density and the gravitational potential perturbations 
can be written (let us recall that the equation of matter state is p = €/3): 

8€ C { 2(sinK COSK-I)} = 1 -COSK+ -- + 2 
€ K K 

+C2{sinK+2(CO:K _ S~~K)}, 

h = C (1 -COSK) C sinK 1 2 + 2 2' 
K K 

(2) 

The most important feature of these perturbations is the following. Neither 
'growing' mode nor 'decaying' mode increases catastrophically: both of them 
are described by sin and cos terms, so if C1 and C2 are less than unity 
both these modes become sound waves with constant (independent of time) 
amplitudes C1 and C2. This result means that the hot universe is absolutely 
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stable against gravitational instability. If the initial perturbations were small 
they will be small forever (Bisnovatyi-Kogan et al. 1980; Lukash and Novikov 
1986). 

These sound waves with small amplitudes existed in the hot universe until 
a few hundred years after the beginning of the expansion. At this epoch the 
universe became cold so that the equation of state p = E/3 is no longer valid. 
Now the clumps of the medium in the sound waves begin to grow because 
of the real gravitational instability (at least some components of the medium 
undergo this instability) and this process develops causing the fragmentation 
of the medium into separate bodies. 

We shall not discuss these late processes of galaxy formation at this stage. 
The point is that for the formation of galaxies we need a definite amplitude of 
sound waves of _10-4 in the linear scale which encompasses a large-enough 
number of baryons for galaxy formation. So, CI or/and C2 must be on this 
scale of the order of 10-4 . This is a very stringent demand on the initial 
perturbations. Indeed, when t is small, K« I, we have 

hI "" Cd2 « 1. h2 "" C2IK « 1 . (3) 

From these expressions we can see that C2 must be extremely small and could 
not be of the order of 10-4 . So, we need two conditions to be met: 

(i) C2«CI; 
(ij) CI "" 10-4 . 

Both of them look very strange, and indeed: 

(4) 

(I) In any reasonable assumption about the initial seed perturbations (Le. 
for random phase fluctuations) CI must be equal to C2 and (j) could 
not be correct. 

(II) For any 'natural' fluctuations, CI and C2 are dozens of orders of 
magnitude less than 10-4 • 

The second conclusion can be clarified by the following example. Let us 
suppose that the time of origin of the fluctuations is the Planck time to = tpI, 
and let us denote k = 1 for ApI. On the scale of galaxies we have kgal "" 1 0-26 . 
Now let us suppose (as an example) that the spectrum of the DE/E fluctuation 
at that moment had a thermal shape with maximum at A = ApI; then the 
amplitude of the perturbation would be proportional to k3/ 2 , and on the scale 
of galaxies the amplitude is kgal"" 10-40. Thus CI has to be _10-40 and so is 
35 orders of magnitude less than we need. 

Our conclusions are the following: classical cosmology of the hot universe 
has great difficulty in explaining the primordial seed perturbations of matter. 
Fluctuations in the classical hot universe require: 

(j) CI» C2-nOt 'natural', 
(ij) C I "" 1O-4-much greater than the 'natural' value Cgal "" 1 0-40. 

So, we come to the conclusion that the way to overcome these difficulties is 
to reject the 'hot' equation of state p = E/3, i.e. to break the linear law of 
expansion a - 11 at some very early stage. This is how we come to the idea 
of the parametric effect. 
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Parametric amplification means production of inhomogeneities of the 'growing' 
mode which, in fact, means the creation of new perturbations (Lukash 1980). 
The idea is very simple. If only the 'growing' mode of perturbation were 
excited at the beginning, then it would be conserved until K « 1 independently 
of the expansion rate (i.e. for any equation of state): 

q1 = C1, K« 1. (5) 

Therefore, only the presence of the 'decaying' mode at the initial stage can 
increase the 'growing' mode amplitude at a late stage. Indeed, let us suppose 
that the condition a - 1] no longer holds for a short time: i.e. a - 1] at 1] < 1]1, 
a = a(1]) at 1]1 < 1] < 1]1, and again a - 1] at 1] > 1]1. Also let us assume the 'natural' 
random phase initial conditions (1] < 1]d: 

C1 - C2 « K « 1. (6) 

The point is that the thorough separation of perturbation on the modes (by 
the initial phase) is possible only at the first and the third stages, when a - 1] 
(see equation 1). During the intermediate stage they mix and a part (one half 
roughly speaking) of the 'decaying' mode transforms into the 'growing' mode. 
Hence, at 1] > 1]1 the mode amplitudes are 

,.. C2 C1 
L1 ~ C1+-2 »C1; 

K1 K1 
L2 ~ ~C2 - C1, (7) 

i.e. we have very large amplification in the 'growing' mode and in the 
perturbation energy, while the total level of perturbation (the sum of the two 
modes) is practically unchanged. 

The physical reason for this amplification is a non-stationary background. 
It reminds us of the creation of y-quanta in the electromagnetic resonator; 
that is why we call this effect parametric (or non-adiabatic) creation. It is 
also very similar to the production of gravitons (see Grishchuk 1974) or a 
minimally coupled scalar field in the expanding universe, only in our case we 
deal with phonons, the sound quanta. 

Resuming, we can say that the parametric effect provides exactly what we 
need: starting from the 'natural' initial conditions C 1 - C2 « K1, we obtain the 
required ones C2« C1 < 1. A desirable amplitude C1 - 10-4 depends on the 
seed initial perturbation amplitude and on the K1 parameter (the earlier 1]1 
the greater C 1). 

We now discuss the realisation of this idea and the properties of the 
perturbations created. The scalar q satisfies the equation 

2ex' q" + - q + (f3k)2q = 0 
ex ' 

(8) 

where the prime denotes d/d1], ex2 = a2(€+p)/(dp/dln€), 132 = dp/d€ and p = p(€). 
For K « 1, the term - k2 in equation (8) is negligible and the general solution is 

q = C1 + C f d1] 2 -ex 2 ' 
(9) 
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Fig. 1. Spectra of the primordial perturbations produced paramet
rically from the seed (a) thermal, or (b) quantum fluctuations of the 
gravitational potential (HI'" tpi/tl and 1 = a/a' where the scales 11,2 
coincide with the Hubble time at T/I.2 respectively) or (c) quantum 
fluctuations of a scalar (inflanton) field at the de Sitter intermediate 
stage (HI = HdS). 
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where the constant C2 = C2(k) - C2 in accordance with the initial conditions (1). 
The parametric amplification coefficient is then derived in a straight forward 
way (see Kompaneets et al. 1982). If the seed perturbations are gaussian (e.g. 
quantum vacuum point-zero fluctuations of gravitational potential), then the 
perturbations created will be gaussian as well with the spectra presented as 
in Fig. 1. 

We will not go into further details (for a review see Lukash and Novikov 1985), 
but let us dwell upon two points. First, on the nature of the 'intermediate' 
state, modern cosmology proposes that this can be inflation. The cosmological 
model including the period of inflation, when the scale factor of the expansion 
is a(t) - eHt , at the beginning of the universe is currently the most popular. The 
inflationary scenario was born as a natural consequence of the application of 
grand unified gauge theories (GUTs) to the very early stages of the universe. On 
the other hand, some models of the inflationary universe have been proposed 
in which the cause of inflation is not GUT; for example, Starobinsky's theory 
(1980) of primordial inflation at the Planckian time or Linde's (1983) chaotic 
inflation scenario. 

The inflationary universe scenario itself has solved many fundamental 
problems of cosmology and it is too fascinating to be abandoned. Thus, it 
seems natural to separate the inflation from the GUTs and from any specific 
scheme and analyse the different possibilities. 

In concluding this Section, a few words about the place of the parametric 
effect among the different schemes of perturbation production. Practically, all 
creation effects have a parametric nature: all of them must produce the 'growing' 
mode on a scale much larger than the horizon scale. But various effects differ 
according to the different assumptions on the nature of the seed physical fields 
responsible for perturbations. Examples are quantum-gravitational one loop 
effects (Starobinsky 1980; Hartle and Horowitz 1981; Mukhanov and Chibisov 
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1981), gravitating scalar Higgs fields and vacuum phase transitions (Kirzhnits 
1972; Guth 1981; Linde 1983; Bardeen et al. 1983), and quantum vacuum 
point-zero fluctuations of gravitational potential considered above, and so on. 

Let us now turn to the further evolution of perturbations created near the 
singularity. 

3. Further Evolution and Dark Matter 

Work in recent years has showed that our universe is very likely to be 
multicomponent and to contain essentially weakly interacting particles. The 
physics of fundamental interactions points out that, alongside known particles, 
other collision-less particles (the hypothetical 'inos', monopoles, primordial 
black holes, etc.) should also be present in the cosmic medium. Observational 
cosmology also provides evidence for the non-baryonic nature of dark matter in 
the universe. Massive collision-less particles must exist in inflationary models 
of the universe. In such a situation the question arises of how the collision-less 
particles, both relativistic and nonrelativistic, affect the perturbation dynamics 
from the very early universe up to the nonlinear epoch of galaxy formation. 

Further on, we present an investigation of this problem for the multicomponent 
universe. The analysis shows that the most important influence on the 
perturbation evolution comes from the so-called 'equality' epoch, where the 
densities of all relativistic and all nonrelativistic particles are equal (Z - 104 

for the standard model). In this respect, the most interesting is a model with 
two components of weakly interacting particles-light and heavy-so that the 
relation between their particle numbers determines the 'equality' time (see 
Lukash 1987; Kahniashvili et al. 1987). 

Below we assume that the present density of matter is provided by heavy 
relic (r) particles (m» 1 0 eV) and all the other collision-less components (v) 

are light (m < 10 eV). In this case the light particles in the pre-recombination 
time are relativistic and the dependence of their distribution function on the 
momentum modulus is not important (only the local total density of v-particles 
enters the equations in the early universe). 

For the interacting particles of that time, the main contribution comes from 
photons (the y component) which are easily described as an ideal fluid with 
the equation of state p = €/3. Thus, the model has only two free parameters, 
the ratios of the numbers of light and heavy collision-less particles to the 
total number of all relativistic particles including photons: 

v = nv/(nv + ny), r = nr/(nv + ny). (10) 

For the standard hot dark matter (HOM) model v = 0·3 and r = 0·16; while 
for the standard cold dark matter (COM) model v = 0 ·4 and r = O. The 
normalisation of the scale factor is chosen in such a way that at late stages, 
when the r-particles become nonrelativistic, 

a = 1](1 +1]). (11) 

For 1]» 1, the r-component (dark matter) dominates the expansion and 
the large structure formations are ruled by the perturbations in this leading 
component. At this stage matter perturbations in other components no longer 
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gravitationally influence the development of the r-component inhomogeneities. 
Thus, our model is good enough for finding perturbations in the cold dark 
matter since the changes in photons (recombination and post-recombination 
periods), which break the applicability of the )I-component equation of state, 
happen at 11 > 1. For this reason, we also neglect here the contribution 
of baryons which slightly change the equation of state p = €/3 just before 
hydrogen recombination. 

:sc 
U 
01 

.Q 

Ori----~~==----~------r-----~_, 

-1 

-2 

-1 a 2 3 

logk 

Fig. 2. Transfer functions of the adiabatic perturbations in 
the COM model (r = 0) for v = 0 and v = 1. 
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Fig. 3. Transfer functions of the isocurvature perturbations 
in the COM model (r= 0) for v = 0 and v = 1. 

4. Transfer Functions 

The most convenient way to present the results of perturbation evolution 
is the transfer function C(k). It is the ratio of the two spectra-the spectrum 
at a late stage just before the perturbations enter nonlinear evolution, and 
the primordial spectrum of perturbations created at the beginning of the 
expansion. 

For the CDM model (r = 0), we show the transfer functions of the adiabatic 
(Fig. 2) and isocurvature (Fig. 3) perturbations for the limiting values of v = 0 
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and 1. All other curves for 0 < v < 1 lie in between these two. Both demonstrate 
good scaling of the transfer functions: within an accuracy of -10% they are 
independent of the v-parameter. Such a weak dependence of C(k) on v is due 
to a successful choice of wavevector k normalisation (see equation 11). In the 
physical space all scales are strongly dependent on v, but the shape of the 
spectrum of inhomogeneity [the C(k) function] does not depend on v. 

3 

.>c .... 
Cl 2 o 
--l 

~ 
u 
Cl 
.Q 

O~i ---=~~--.-----~--~~ 

-1 

-2 

-1 o 2 3 

logk 

Fig. 4. Transfer functions of the adiabatic perturbations for 
different r values and v = 0·5. 

Fig. 5. Cutoff wavenumber kr 
of the adiabatic transfer function 
le(k)r = 10-3] versus the r parameter. 
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Similar behaviour demonstrates a general model (r of. 0). Here a new 
characteristic scale appears due to the free streaming of r-particles when they 
were relativistic: a cutoff where the transfer function sharply decays to smaller 
scales (see Fig. 4). The cutoff wavenumber kr versus r is shown in Fig. 5. 

The scaling effect takes place in the general case. For a fixed r, the 
transfer functions are v invariant (within 10% independent of v) in our special 
normalisation (k = 1 for the equality horizon). 
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s. Astrophysical Implications and Isocurvature Models 

The essential independence of the transfer functions C(k) on the v-parameter 
(see figures) allows for several observational tests which can be easily done 
without a perturbation technique, but simply by using the background model 
equations. The first example is a characteristic cutoff scale in the perturbation 
spectrum which marks the change in the spectrum slope from the side of 
large scales in the COM models. It coincides approximately with the transfer 
function shape change which takes place at keq -10 with C(keq ) - 0·5 for 
adiabatic perturbations. In physical units this corresponds to 

k = 10Aeq/A, Aeq = 37h-2(1- v)-~ Mpc, (12) 

where A is an up-to-date perturbation wavelength in Mpc. We see that the large 
structure scale Aeq (about the supercluster or void scale) tends to infinity with 
v --+ 1 (cf. the standard model Aeq '" 45 h-2 Mpc). In a similar way the spectrum 
cutoff scale and the amplitude values of the multipole L\ T /T(l) harmonics of the 
microwave background angular variations grow with increasing v. Estimates 
for the v-parameter upper limit without contradicting the relic data (Strukov 
et al. 1987) show that 

v< 0·8, (13) 

which is only twice as great as that in the standard model. Let us note 
that, contrary to other tests of relativistic particle species, our independent 
cosmological test evaluates the total number of all light (m < 10 eV) particles 
in the universe, including elusive particles (such as gravitons) whose discovery 
by other means now seems improbable. 

Let us now turn to another interesting problem of the multicomponent 
universe: the possibility of a large perturbation in the non-dominating dark 
matter components. For the remainder of the discussion I follow an earlier 
paper (Lukash 1989). 

Amongst different schemes for biased galaxy formation proposed recently 
there are a few that speculate on the idea of large baryonic perturbations: 
ranging from the hypothesis about the deficit of baryons in large cosmic voids 
embracing scales of 30-200 Mpc (cosmic hubbies) (Kofman et al. 1987), to the 
assumption than all the visible matter in the universe was born in a gigantic 
baryonic island extending to red shifts Z - 4 where baryons vanish beyond the 
cosmic islands (Kardashev et al. 1987; Dolgov et al. 1987). These and similar 
suggestions originate from a more general assertion that nondominating media 
do not manifest themselves dynamically now. It means that, even if they were 
highly perturbed now (but the dominating dark matter remains homogeneous), 
they would not contribute to the gravitational potential, i.e. to the 'growing' 
adiabatic mode of perturbations. 

However, this idea misses one point: since these large perturbations were 
created very early (e.g. baryons were produced at GUT times t - 10-35 s), they 
did influence the expansion dynamics during the equality epoch. As a result, 
they induced the 'growing' adiabatic mode with a high amplitude which, in turn, 
caused later large background L\ TIT fluctuations due to the Sachs-Wolfe effect 
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and, as a consequence, contradictions with the observations.' Let us briefly 
outline the proof. We consider an early multicomponent universe consisting 
of the relativistic components (which include y- and v-particles-see Section 
2) and of the nonrelativistic 'dust' r-particles. The latter include 'cold' dark 
matter and 'baryons' (b) whose portion is fixed by the parameter 

.Qb = .Qb(X) = Pb/Pr. (14) 

For simplicity, we neglect the baryonic pressure and therefore baryons and 
cold particles move together. t Thus,.Qb is the integral of motion, i.e. it 
depends only on space coordinates in the synchronous co moving frame. 

Now, we consider early evolution when the cosmological horizon was much 
less than a characteristic scale of variation of the .Qb function: 

t « I = I .Qb/V'.Qb I . (15) 

Let all the components be initially at rest (t -+ 0). Then under the condition 
(15) the metric is locally isotropic, 

ds2 = dt2 - (aR)2(dx2 + dy2 + dz2) , (16) 

where a = a(t, x), R = const. - teq,f and the only nontrivial equations are 

€ = 3CI;R2a4 , Pr = 12Cl C/R2a 3 , 

a2 = ci + 4aC 1 C, (.) = aR 0/0 t , (17) 

where C(l) = C(l> (x) are space functions fixed by initial conditions. The solution 
for the scale factor is 

a = Cl T(1 +CT), 

t = R f a dT= ~RCI T2(1 + JCT). (18) 

Let us now set the baryon excess to be extremely perturbed initially while 
the COM and the dominating relativistic component are spatially homogeneous 
(for the physical mechanisms see Dolgov 1987). This means the following 
choice of C(l> functions (see equation 14): 

Cl = 1, C= 1/(1-.Qb), (19) 

so that for the equality time 

a eq = O· 25(1-.Qb), Teq = O· 2(1-.Qb). (20) 

• In principle a special geometry (e.g. a high degree of spherical symmetry of the cosmic 
void or island or a certain position of the observer etc.) could conceal these temperature 
fluctuations from the observer, but here we consider an arbitrary density configuration. 
t This simplification allows one to generalise the problem: instead of 'baryons' one may 
consider any heavy particles, e.g. the CDM particles which invert the problem. (Note that {2 

takes any value from zero to unity.) * The a function and R parameter are gauge invariant since the reference system (16) is 
fixed unambiguously by the condition u~ = (1,0,0,0). 



Primordial Perturbations 133 

For further estimates we substitute Oab "" ab "" o· 1 for the baryon perturbation 
on scales of -f. 

At T« Teq when relativistic particles predominate, we have 

1 

a = (2t/R)"i , € = 3/4t2, 

Pr 
6 13 

--(2R)-' t-, « €, 
I-ab 

(21) 

in accordance with the initial conditions. At T» Teq equations (17) and (18) 
yield 

1 2 

a = (l-ab)-'(3t/R)' , Pr = 4/3t2 , 

Pb = 4ab/3t2, €« Pr, (22) 

which, in fact, is a sum of two perturbation modes. The first line of (22) 
presents the first expansion term over the parameter (t/f)2 « 1 of the 'growing' 
adiabatic mode [the quasi-isotropic solution of Lifshitz and Khalatnikov (1963)]. 
while the second line describes the isocurvature perturbations in the baryons 
and in the non-dominating relativistic component. 

Equations (21) and (22) display an important conclusion: gravitational field 
perturbations (scale factor perturbations here), vanished Initially, arise in the 
nonrelativistic matter dominating era: 

oa/a "" ~Oab "" 0·03. 

These large perturbations of the metric bring about cosmic microwave 
background fluctuations Ll T/T - 10-3-10-2 at angular scales -I °_90° which 
depend on the value of the variation scale of the baryon density perturbation f. 
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