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Abstract 

A study has been made of the rate of heat transport through a short pillar connecting 
two separated plates. Three separate approaches to the problem are discussed-analytic, 
numerical and experimental. The results of the different methods are in good agreement, 
and confirm the classical result for heat flow through a short, circular contact between 
semi-infinite bodies. These results are of particular relevance to the design of flat evacuated 
glazings incorporating short support pillars. 

1. Introduction 

It is possible to construct devices with extremely high levels of thermal 
insulation by combining the insulating properties of vacuum with the very 
low radiation heat transport characteristics of low emittance surfaces Such 
principles were first applied in the venerable dewar flask, and more recently, 
in evacuated tubular solar collectors (Window and Harding 1984). It has long 
been realised (Ortmanns 1988) that similarly high levels of thermal insulation 
would be very desirable in flat windows in order to minimise heat losses and 
gains from buildings. However, it has been generally believed that flat plate 
evacuated windows with useful properties were difficult, if not impossible, to 
produce technologically. The principal difficulties perceived were the formation 
of a hermetic edge seal around the periphery of the window, and the design 
of a method to keep the glass plates apart under the action of the very high 
atmospheric pressure forces, whilst retaining a high level of thermal insulation 
between the plates. 

Recent papers (Robinson and Collins 1989; Collins and Robinson 1990) 
described an approach to the production of evacuated windows which offers 
significant promise of technological success. In this design, a low melting 
point glass (solder glass) is used to produce a fusion edge seal between the 
two glass plates. During the formation of this edge seal a small tube is also 
sealed into the window to permit subsequent evacuation. An array of small 
support pillars is disposed over the surface of the glass in order to separate 
the glass sheets. 

0004-9506/91/010073$05.00 



74 R. E. Collins et 01. 

A principal constraint in the design of an evacuated window relates to the 
support pillars. These pillars must be sufficiently small in order that heat 
transport by thermal conduction through the pillars is below tolerable levels. 
Small pillars. however. result in very high levels of mechanical stress. both 
within the pillars themselves and within the glass in the vicinity of the pillars. 
The relationships between these physical effects have been derived (Robinson 
and Collins 1990; Collins and Robinson 1990). It has been shown that a 
window of satisfactory performance can be produced with an array of short 
pillars having a diameter of approximately 0·6 mm and a separation of about 
30mm. 

The nature of the contact between two separate pieces of material has 
been the subject of study for over a century. In his classic paper. Hertz 
(1882) discussed the contact between two solids in terms of many small 
contacting areas. Holm (1955. 1979) used the model developed by Hertz to 
derive the thermal impedance of a general contact in terms of the heat flow 
through individual. circular contacting areas or 'spots' of negligible thickness. 
The thermal impedance of such spots is dependent on the material of the 
contacting substances and is determined by the geometry of the system. Holm 
(1955) derived the classical relationship for the thermal conductance of a 
short circular contact of radius Q between two infinite materials of thermal 
conductivity K: 

c= 2KQ. (1) 

This paper deals with the thermal conductance of window support pillars 
of geometry not unlike the classical contact spots discussed by Holm. In 
windows of interest however, it is important to consider contacts of somewhat 
more general geometry than those of Holm. For example. the diameter of 
the pillars may not be negligible compared with the thickness of the plates. 
In addition the height of the pillars may be significant compared with the 
diameter. Finally. the existence of a support pillar between two plates perturbs 
the temperature distribution on the inner surfaces of the plates and will 
therefore affect radiative heat transport b~tween the two plates in the vicinity 
of the pillars. 

This problem has been examined using three approaches. Firstly, an analytic 
method has been developed to calculate the total heat transfer by thermal 
conduction through a pillar, and the reduction in radiative heat transfer in the 
vicinity of a pillar. Secondly, finite difference calculations have been used to 
solve for the isotherms within the volume of the plates and the pillars. Finally. 
evacuated windows have been constructed and the thermal conductance of 
support pillars has been measured in these devices. 

2. Modal Expansion Method 

The geometric parameters of our model are shown in Fig. 1. We shall 
assume initially that the two outer surfaces of the plates are isothermal, 
and that the inner surfaces are adiabatic. Later. we shall include the effects 
of radiative transport between the two inner surfaces. A cylindrical polar 
coordinate system is chosen with its origin at the centre of one of the pillars. 
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By symmetry the plane z = 0 is also an isotherm. Let the temperature on this 
plane be To and the total temperature difference across the structure be LlT. 
For an infinite periodic array of pillars, the dashed lines in Fig. 1 represent 
planes of symmetry and therefore there is no transverse heat flux across them. 
Equivalently, these planes can be replace9. by adiabatic boundaries. Thus the 
problem is reduced to a finite structure. If d» a then the separation of the 
pillars will have negligible effect on the temperature profiles and heat fluxes 
near the pillar. Thus, for simplicity (and to retain azimuthal symmetry) we 
choose a circular system of radius d with a single pillar of radius a in the 
centre. 
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Fig. 1. Geometry of pillars and plates. The pillars are arranged in 
a two-dimensional periodic array and are separated by a distance 
2d. The analytic and numerical approaches consider only one pillar 
positioned centrally within two cylindrical plates of radius d. 

We choose to work with the following normalised, non-dimensional quantities: 
the radial coordinate R = ria, the axial coordinate Z = zlh, the pillar height 
2H = 2hla, the total thickness of the plates W = wla and the pillar separation 
2D = 2dla. The normalised temperature is given by t = 2(T - To)/LlT, where T 
is the temperature at any point within the system. 

The appropriate boundary conditions are 

ot =0 
oR 

at R =D for all Z, (2) 

ot =0 
oR 

at R = 1 for -H <Z <H, (3) 

at =0 
az at Z=±H for 1 <R <D, (4) 

t = ±l at Z = ±(W + H) for all R I (5) 

and t(R,Z) is an antisymmetric function of Z. 
The solutions to Laplace's equation in cylindrical coordinates with azimuthal 

symmetry are given by the products of Bessel functions of the radial coordinate 
and exponential (or trigonometric) functions of the axial coordinate. 
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The following expansion of the temperature is suitable inside the pillar 

T(R,Z) = f An JOV~,lR) s~nhVn,lZ) 
n=O JOVn,l) smhVn,lH) , 

(6) 

for 0 < R < 1 and -H < Z < H. 
The jn,l are the zeros of the derivative of the Bessel function Jo(z). This 

expansion automatically satisifies the boundary condition (3) and the required 
antisymmetry. It also simplifies at Z = Hand R = 1 to facilitate applying the 
boundary conditions. 

The following expansion of the temperature is suitable inside the upper 
plate 

T(R,Z) = 1- f BnJoVn lR/D) sinhUn,l(W +H -Z)/D] 
n=O ' sinhUn,l W /D] , 

(7) 

for 0 < R < D and H < Z < H + W. This expansion automatically satisifies the 
boundary conditions (2) and (5). The lower plate is treated by symmetry. 

If D » 1, as is the case here, the expansion in discrete modes can be 
replaced by an expansion in continuous modes as is appropriate for an infinite 
plate: 

T(R,Z) = 1 - fa B(x)Jo(Rx) sinh[\WL~'~.~ Z)x] dx, (8) 

for 0 < R < 00 and H < Z < H + W. 
The remaining boundary condition (4) and continuity of T and its derivative 

at the boundary between the pillar and the plate are satisfied by matching 
the expansions and using the orthogonality properties of the Bessel functions. 
The following system of linear equations is obtained: 

00 

Am + L In,m(H, W,D)A n = c5m,o. (9) 
n=O 

The matrix elements In,m(H, W,D) are given by 

In,m(H, W,D) = f 4j~,1 cOth~n,lH) VI,l/D)2JlV/,dD)2 tanhvl,l WID) 
/=0 J/,lDJoV/,d U~,l - V/,dD)2]U~,1 - V/,dD)2] (10) 

If D » 1 the sum can be replaced by an integral 

In,m(H, W,D) = 2jn,1 cothVn,lH) r X2Jl (X)2 tanh(Wx) J 0 U2 _X2]U2 2] dx, n,l m,l -x 
(11) 

with the sum and integral above being evaluated numerically. 
The solution of the system of equations (9) gives the expansion coefficients 

An from which all other quantities of interest can be calculated. For example, 
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the heat flux across the plane Z = Zo in the pillar is given by 

r oT(r, zo) 2rrrdr 
JQ = KJ 0 ozo 

= rraKLlTt ot~R,Zo) RdR. 
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(12) 

Using the expansion (6) and the orthogonality properties of the Bessel functions 
the result is 

rra2 
JQ = AOK2i1LlT, (13) 

which is independent of Zo as required by conservation of flux. Apart from the 
geometric factor Ao (which depends on h, a, wand d via the matrix equation) 
this is the expression for the heat flux through a cylinder of length 2h and 
cross sectional area rra2 • 

A similar calculation in the plates using (7) gives the result 

rrd2 
JQ =BOK 2w LlT. (14) 

Conservation of flux implies 

Bo = wa 2 
hd2 Ao· (15) 

There are a number of limiting cases where Ao and hence the flux can 
be obtained analytically. The first case is for a pillar whose radius is much 
smaller than its height and also much smaller than the width of the plates and 
the pillar separation. Thus, H, W,D » 1 and the quantity cothVn.lH) tanh(Wx) 
appearing in the matrix elements (11) becomes independent of both Hand W. 
Since no geometric parameters appear in the equations Ao must be a constant. 
Thus for a « h, w, d the flux is proportional to the square of the radius and 
inversely proportional to the height of the pillar. For such a structure, the 
entire temperature drop occurs across the pillar and there is very little effect 
from the presence of the plates. The result obtained is in fact that for plane 
laminar flow through a cylinder of length 2h and radius a and thus Ao = 1 and 

rra2 
~Q=K-LlT 2h . (16) 

The next case is for a pillar whose radius is much larger than its height 
and also much larger than the thickness of the plates. Thus, H, W « 1 but 
D » 1 and the quantity jn.l cothVn.lH) tanh(Wx) becomes (w/h)x. Thus Ao is 
independent of a and is a function only of w/h. In particular if w» h the 
diagonal terms in the matrix are negligible and Ao is linearly proportional to 
h/w. Thus for d» a » w» h the flux is proportional to the square of the 
radius and inversely proportional to the width of the structure. The result 
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obtained is in fact that for plane laminar flow through a cylinder of length 
2w and radius a, and thus Ao = h/w and 

rra2 

JQ = K 2w L\T. (17) 

The final (and most relevant) case is for a pillar whose radius is much 
larger than its height but whose radius is much smaller than the width of the 
plates and the pillar separation. Thus, H« 1 and W,D» 1 and the quantity 
in,l cothUn,lH) tanh(Wx) becomes (a/h)x. Thus Ao is independent of wand is 
a function only of a/h. In particular if a »h the diagonal terms in the 
matrix are negligible and Ao is linearly proportional to h/a. Numerically the 
coefficient of proportionality is indicated to be 4/rr. Thus for w,d» a » h 
the flux is directly proportional to the radius and independent of the height 
of the pillar: 

JQ = 2KaL\T. 

This is the classical result derived by Holm (1955). 
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Fig. 2. Thermal conductance of a single pillar between two 
sheets of 4 mm thick glass, as a function of pillar radius. 
Results are shown for two different heights of the pillar, and 
the classical result for negligible height is also drawn for 
comparison. 

(18) 

Typical results for the effective thermal conductance (JQ/ L\ n of individual 
pillars of height 0·01 and 0·1 mm are shown in Fig. 2, for glass of thickness 
4 mm. Also shown for comparison is the 2Ka result for a pillar of zero 
thickness. 
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Heat Transferred by Radiation 

The heat transferred per unit area by radiation between two infinite plane 
parallel surfaces at temperatures Tl and T2 with emissivity € is given by 

€(J en _ 11) ... 4€(JT~v Ll T 
2-€ 1 2 2-€ ' 

(19) 

where (J is the Stefan-Boltzmann constant. The second form is suitable if 
LlT« Tav where Tav is the average of Tl and T2. 

We calculate radiative heat transfer through the vacuum gap on the assumption 
that this effect is sufficiently small that it does not significantly alter the 
temperature distribution within the plates. This will be seen to be a good 
approximation. We also assume that the rate of radiative heat transfer at 
any point is proportional to the local temperature difference across the gap 
at that point. For windows with a very small gap, this is certainly a good 
approximation. The heat transferred by radiation between the inner surfaces 
of the system is thus given by 

4€(J Tgr ~ = -2-- [T(r,h)-T(r,-h)]2rrrdr 
-€ a 

= 4;~:g 2rra2LlT[f/(R,H)RdR - J/(R,H)RdR l (20) 

The first integral is evaluated using the expansion (7) and the second integral 
is evaluated using the expansion (6). Using the orthogonality properties of 
the Bessel functions the result is 

~ = 4€(JTg 2rra2LlT[(1-Bo)D2 -Ao] 
2-€ 

_ 8€(JTg (d2 w+h 2A )AT - -- rr ---rra 0 Ll , 
2-€ h 

where the second expression is obtained using (15). 

(21) 

The two terms appearing above have the following physical interpretation. 
The first term is the total heat that would be radiated through an area rrd2 

in the absence of the pillar. The other term represents a decrease in the 
amount of radiated heat because of the presence of the pillar. A simplistic 
argument would suggest that this amount is given by the area of the pillar 
rra2 or more possibly by the quantity rra2Ao (see equation 13). In fact, it 
is greater than this amount because the presence of the pillar reduces the 
temperature difference between the inner surfaces near the pillar and hence 
the heat radiated between these surfaces. The decrease in the radiated heat 
is related to the flux through the pillar by 

'DQ = 8€(JTg rra2 w + h AoLl T = 8€(JTg w + h JQ. 
2-€ h 2-€ K 

(22) 
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Thus the total increase in heat flux due to the presence of a single pillar (as 
compared with a system with no pillars) is 

JQ - 'DQ = (1 _ 8€ uT6 w + h )JQ. 
2-€ K 

(23) 

For a typical evacuated window structure, W = 4 mm, h« wand K = 

0·78 W m-1 K-l for soda lime glass. For uncoated glass (€ = 0·84), the 
measured heat flux through a pillar will thus be about 4·7% less than that 
expected from purely geometric considerations. For windows incorporating 
low emittance coatings (€ - O· 1), the correction for the radiation decrease is 
negligible. 

Our procedure of first calculating the temperature profile in the absence 
of radiation with adiabatic boundaries, and then calculating the radiated heat 
from the profiles obtained is valid provided 'DQ «JQ. This is the case for 
all geometries of interest in the window application. 
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Fig. 3. Definition of the resistive network for the numerical analysis. 

3. Temperature ProfJle-Finite Difference Calculation 

A straightforward method of calculating the temperature profile in the 
system studied (Fig. 1) is provided by a resistive network model (Fig. 3). 
Focussing on a single pillar and assuming cylindrical symmetry, the resistive 
elements in the plates are thin concentric rings of volume 2rrrdrdz (Fig. 3). 
In this part of the analysis, we take z = 0 at the outer surface of one of the 
plates. At fixed radius r the vertical resistance of the element is 

R _ dr 
z - 2rrKrdz I 

(24) 
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where K is the thermal conductivity of the plate. The corresponding radial 
resistance of the element is 

dz 
Rr = 2TTKrdr (25) 

It is clear that modelling the plate as a square lattice of thermal resistors 
means that the resistance values increase at larger radii but are independent 
of height at any given radius. Temperatures are sampled on a lattice of 
points [r = (;-1)8, z = (j-1)8; cf. Fig. 3] and heat flows along thermal resistive 
elements connecting lattice points when temperature differences exist. The 
reduced temperature T(r,z), where T = 1 on the outer glass surface and T = 0 
in the vacuum, is represented by the array 

T ij = TW - 1)8, (j - 1)8). (26) 

Since thermal energy does not accumulate at any point within the system, an 
equation balancing heat flows can be written for each lattice point. In the 
plates, away from edges and corners, the recurrence relation is formed by 
balancing four heat flows: 

[(Ti+lj - Tij) + (Tij+l - Tij) + (Tij-l - Tij)](i) + (Ti-lj - Tij)(i -1) = O. (27) 

Near corners, edges and interfaces only two or three heat flows are balanced, 
and the relevant recursion relations are easily derived. For example, at i = M, no 
radial heat flow occurs. The bottom edge of the glass sheet (j = L), adjacent to 
the vacuum space, will have small radiative heat losses. For small temperature 
differences the radiative heat losses can be linearised as discussed above 
(equation 19), and represented by conduction through an equivalent resistor: 

Q::::: 4a-€T 3 ..1T == ..1T 
2-£ Rvac 

and Rvac = CRplate . The recurrence relation at the bottom edge of the plate for 
K <i <M is 

[(Ti,L-l - Ti,L) + (Ti+l,L - Ti,d]i + (Ti-l,L - Ti,L)(i + 1) + (Ti+l,L+l - Ti,L) ~ = O. (28) 

In systems of interest, such as for glass evacuated windows, this radiative 
heat transfer is considerably smaller than conduction heat transfers within 
the plates and will be neglected here (C -+ 00). Thus heat flows only along the 
bottom edge of the plate. An analogous relation holds at the outer edge of 
the glass pillar (i = K for M <j < N). The axis of symmetry (r = 0, i = 1) has no 
radial heat flow so that the appropriate recurrence relation is 

Tlj-l + T2j + Tlj+l - 3Tlj = O. (29) 
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Finally, the boundary conditions are 

Ti,l = 1 (30) 

and 
Ti,N= 0, ;<K (31) 

at outer and inner surfaces, respectively. 
Equations (27)-(29) can be solved by iteration for a chosen geometry, subject 

to the boundary conditions (30) and (31). The initial conditions for interior 
lattice points can be taken as either T = 0 or as a linear temperature profile. 
Lattice spacings of 0·1 mm for the plates and hll0 for the vertical direction 
in the pillar are found to be adequate. Of order 1000-2000 iterations are 
required. 

Outer surface, f = 1·0 

'.Vi 0.991
i-! -------

0.97:------- --------
0.9SL ~ ~ Thickness = 4 mm 

0.9r------

1 Pillar radius = 0·5 mm 

Fig. 4. Isotherms for heat flow through a single cylindrical pillar between 
two flat glass plates. Radiative heat flow through the vacuum gap is 
assumed to be zero. 

A typical temperature profile for glass of thickness 4 mm and pillars of 
height 0·01 mm and radius of 0·5 mm is shown in Fig. 4. 

These data may be used to calculate the temperature gradient at a plane in 
the solid which upon integration gives values for the total heat flow through 
the pillar. It is found that the values of heat transport obtained in this way 
agree with those determined by the analysis of the previous section to within 
±10%. This is about the expected accuracy of the numerical method given 
the size of the radial grid in the vicinity of the pillars (l0 elements). Higher 
accuracy could be obtained with finer grids and is indeed observed with larger 
pillars, but little further useful information is obtained with this refinement. 

4. Experimental Methods 

Evacuated windows have been constructed using the method shown in 
Fig. 5 and described in more detail elsewhere (Collins and Robinson 1990). A 
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Fig. s. Schematic diagram (not to scale) illustrating the construction of an all-glass evacuated 
window. 
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Fig. 6. Diagram of the apparatus for measuring heat flow through an evacuated window. 
Also shown is the thermal equivalent circuit for the system. 
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hermetic seal is made between the edges of two sheets of glass using low 
melting point glass (solder glass). This material is also used to fuse a small 
diameter pump-out tube into a cavity which has been previously machined in 
the mating surfaces of the glass sheets. The solder glass is used to make 
small diameter, short cylindrical pillars which form a square array over the 
surface of the glass sheets. 

Of principal interest in this paper is the heat transport through the support 
pillars. Such heat transport is measured using an apparatus illustrated 
schematically in Fig. 6. A small cylinder, called the probe, is located within 
a thermal guard which is held at constant temperature by circulating water. 
The probe and guard are joined to a glass sheet, 1 mm thick, which is pressed 
against one side of the window to be measured. The other side of the window 
is held at a constant lower temperature, again by circulating water. The 
temperatures of the probe, the guard, and the cold water are measured by 
thermocouples. Power can be supplied to the probe by a thermal resistor 
embedded within it. The thermocouple, and power leads from the probe, are 
thermally terminated on the guard before emerging from the apparatus. 

The equivalent thermal circuit of the measuring instrument is also shown 
in Fig. 6. In this electrical analogy, temperatures become voltages, thermal 
impedances become electrical impedances, and heat flow is replaced by current. 
The temperature of the probe is determined by the relative thermal impedances 
between the probe and the guard Zp-H, and the probe and the cold water Zp-c. 
If the latter impedance is extremely high, the temperature of the probe will 
be very close to that of the guard. A measurement of probe temperature as a 
function of power into the probe gives a straight line, confirming the simple 
thermal impedance model described above. 

The situation when the probe and guard temperatures are equal is of 
particular interest. Under these conditions, all heat flow from the probe is 
through the window. This heat flow can therefore be used to calculate the 
thermal conductance of the window given a knowledge of the area of the 
probe. In the small area measuring device constructed, the probe is 10 mm 
diameter and the inside diameter of the guard is 20 mm. The effective surface 
area of the probe is therefore not known very accurately. A calibration is 
performed by measuring an evacuated window assembly which is pumped 
dynamically. In such a device it is known that the internal pressure is so 
low that gas conduction is negligible. The effective diameter of the probe, 
determined using published values for emittance of glass (0·84), turns out to 
be 14·0 mm, for the windows studied here which consist of two glass sheets, 
each 4 mm thick. 

Measurements were first made of the heat transport through the vacuum 
space of the window, and then of heat flow through a pillar and the vacuum 
space surrounding that pillar. The heat flow through the pillar can be 
obtained from the difference of these two quantities. A more accurate estimate 
includes the correction for the reduction in radiative heat transfer in the area 
surrounding the pillar due to the perturbation of the temperature of the inner 
surfaces of the glass plates by the pillar. For surfaces of emittance 0·84 
this correction amounts to some 4· 7% as calculated by the analytic approach 
discussed above. 
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Fig. 7 shows the experimental results for thermal conductance of pillar 
structures as determined by this method. Also shown for comparison is 
the classical Hertzian result for very short pillars. The pillars measured are 
approximately 0·01 mm high as determined by counting interference fringes 
within the evacuated gap. The diameters of the pillars are measured directly 
through the surface of the glass plates. 
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Fig. 7. Data for thermal conductance for individual contact 
pillars in an all-glass evacuated window. A correction of 4 . 7% 
has been added to the experimental measurements to account 
for the local reduction of radiative heat flow in the vicinity of 
the pillars. The classical result for pillars of negligible height 
is also shown. 

5. Discussion 

The initial motivation for undertaking this work was aimed at the practical 
understanding of an important heat transfer process in evacuated windows. 
Whilst the classical result of Holm (1955) for heat transport at short contacts 
was well established, the geometry of the support pillars in evacuated windows 
can be more complex. In addition the modification of radiative heat transport 
in the vicinity of the pillars required elucidation. The results for heat flow 
through the pillars obtained by the three different approaches are consistent. 
The analytic and numerical approaches yield similar values for total heat 
transport through a pillar, and these data are in good agreement with the 
experimental results over the relevant range of sizes. The classical result is 
also confirmed. 

The results from the two calculational methods for radiation depression in 
the vicinity of the pillars warrant some discussion. The analytic approach 
predicts a value for reduction in radiative heat transport based on a perturbation 
method. The temperature at the inner surface of the plate is determined on 
the assumption of zero radiation and the radiative heat transport is calculated 
from this temperature difference. This approach assumes that the presence of 
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radiative heat transport does not significantly alter the temperature distribution 
within the plate. This is certainly the case close to the pillar. At large 
distances from the pillar, however, this approximation breaks down. This can 
be seen from the plot of isotherms within the plates (Fig. 4). These data 
are also calculated for zero radiation. In a window made up of two sheets 
of uncoated (€ = 0·84) glass, 4 mm thick, it turns out that approximately 5% 
of the temperature difference between the outer surface and the midplane 
appears across the glass, and 95% across the vacuum, for regions remote from 
the pillar. Thus the 0·95 isotherm should become tangential to the inner 
surface at large distances from the pillar. This turns out to be significant in 
the estimation of radiation decrease as determined by numerical evaluation 
of the data of Fig. 4. Whilst the temperature depression at the inner surface 
decreases rapidly away from the pillar, the contribution to radiation depression 
at any radius is weighted by a 2rrr factor. The relevant integral in equation 
(20) converges slowly. The precise value of radiation depression depends on 
many factors including thickness, thermal conductivity, and emittance of the 
window material. The figure of 4·7% derived for uncoated, 4 mm thick glass 
is obviously an upper estimate. For low emittance glass, equation (23) would 
give a more accurate estimate. In all cases, however, the radiation depression 
is either small or negligible. 

In summary, the three methods discussed here give consist~nt results for 
the rate of heat transport through support pillars in an evacuated window. The 
results are also in agreement with the classical value for pillars of negligible 
height. The methods complement each other in that they provide different 
types of data on this system. The alternative perspectives resulting from 
the various approaches provide enhanced insights into the nature of the heat 
transfer process. 
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