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Most quark-meson models for formation of a baryon as a bag or soliton solution begin 
with elementary local meson fields including a classical scalar configuration that provides 
repulsion of valence quarks from the vacuum. We explore aspects of the very different 
formation mechanism that operates in a model where chira\ effective meson fields are 
composite objects generated from bilocal qq fluctuation fields and the dynamical quark 
mass can be self-confining. Speculations are made on whether this viewpoint can motivate 
meson-nucleon relativistic field models containing intrinsic cutoffs for use in nuclear physics. 

1. Introduction 

Nontopological soliton models provide a phenomenological picture of baryon 
substructure in terms of quarks coupled to self-interacting boson fields. A 
recent review (Birse 1990) summarises the large variety of such models and 
their applications in a nuclear physics context. In one of the earliest models 
(Friedberg and Lee 1977), a scalar field cf> has a Yukawa coupling gqcf>q to 
quarks and a quartic self-interaction U(cf». The latter is chosen to have an 
absolute minimum U(cf>v) = 0 at a constant vacuum value cf>v, while having a 
local minimum at cf> = O. With a semi-classical treatment, this provides a self­
consistent mechanism for an energetically stable configuration in the presence 
of a localised quark density. Here the cf> field is to represent non-perturbative 
gluon effects and provides an attraction mechanism to localise quarks to a 
region where cf> < cf>v. Quark-antiquark fluctuations in the form of effective 
meson fields are expected to be important collective degrees of freedom in any 
low energy modeling of QeD. Because of the dominant role of the pion, chiral 
extensions of soliton models have been given a great deal of attention (Birse et 
al. 1984, 1985; Kahana et al. 1984). There is no unique way to make a chiral 
extension of the Friedberg-Lee soliton (Williams and Dodd 1988). The original 
confining field cf> may be kept as a chiral invariant or may be chosen as the 
chiral partner of the pion. The latter approach is not available to bag models 
where the scalar confining field is implemented in the form of a boundary 
condition to join the cavity interior cf> = 0 [having bag constant U(O) = B] with 
the vacuum region cf> = cf>v. With (CT, JT) as the chiral four-vector, chiral solitons 
have been studied in the format of the Gell-Mann and Levy (1960) linear CT 
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model where the self-interaction is U(CT2 + 7T2 ), the quark-meson coupling is 
9q(CT + ;;YsT . 7r)q/f rr and there are the usual kinetic terms for CT and 7T. 

The soliton model we wish to explore here is of the linear sigma type 
except that the fields CT and 7T are not elementary fields but are generated 
from bilocal qq collective modes. Such a model has been developed previously 
(Cahill and Roberts 1985) from an action containing a quark kinetic term 
and a quartic term describing finite range gluon exchange coupling of quark 
currents. After Fierz-reordering the quartic term there are many structures, 
two of which have the form q(X)CT(X,y)q(y) and q(X);;YsT· n(x,y)q(y) where CT 
and 7T transform as q(y)q(x) and q(y);;YsTq(X) respectively. All structures that 
contribute to the vacuum quark self-energy are kept so that there is the 
translationally invariant form J:(p) =;;y . p(A(p) -1) +B(p). Fluctuations above 
the vacuum configurations are kept only for the CT and 7T channels to produce 
the simplest chiral model. The only bose fields that enter in this approach are 
those that can be made from qq. No scalar field to simulate glueball effects 
is introduced. The composite fields CT(X,y) and n(x,Y) contain an internal form 
factor. The underlying chiral symmetry dictates that in the limit of zero 
meson momentum, the pseudoscalar form factor is B(x - y) the scalar part 
of the self-energy (Delbourgo and Scadron 1979). The quark meson coupling 
term in this model is then of the form q(x)B(r)[CT(R) + ;;YsT . n(R)]q(y) where 
r = x - y and R = (x + y)/2. Here CT(R) and n(R) are localised fields for motion 
of the centre of mass of the composites. Because of the space and time 
translation invariance of the dynamical self-energy, and also the nonlocality 
of the couplings, this generalised soliton model has a different dynamical 
content than more standard models whose solutions are well studied. Here 
we describe some results from an initial study that ignores the pion field 
and adopts a gaussian form for the scalar field CT(R). A fully self-consistent 
treatment in which the scalar field is obtained from the quark source will be 
reported elsewhere. 

We also explore a property of this type of model that can impose absolute 
confinement. Soliton models are often endowed with absolute confinement 
through the device of a colour dielectric in a manner motivated by the work of 
Nielsen and Patkos (1982). A typical example is the chromo-dielectric model 
(CDM) (Fai et al. 1988; Krein et al. 1988a) in which the inverse gluon propagator 
is suppressed at large distances by a dielectric function K(cP) whiCh tends to 
zero where cP, the auxiliary chiral singlet scalar field, approaches the vacuum 
value at the absolute minimum of U(cP). The resulting quark self-energy 
amplitude B scales as K-l/2 and absolute confinement is implemented through 
the divergence of B toward the edge of the soliton. Absolute confinement implies 
dynamical breaking of chiral symmetry and the corresponding Goldstone pion 
must couple to quarks through the dielectric-dependent amplitude B. It is 
difficult to have the intrinsic properties of this pion field independent of the 
dielectric medium. 

In contrast here, we explore the implications of having an absolute confining 
property embodied in the translation invariant quark self-energy amplitudes 
A(x - y) and B(x - y). Thus free propagation is prohibited and confinement is 
implemented in a way which is independent of absolute position and does 
not require an additional scalar field. The quarks interact with dynamical 
fluctuations in the field variables whose vacuum configurations generate the 
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self-energy amplitudes A and B. These interactions are what make quark 
propagation possible so that eigenenergies and a nontopological soliton solution 
may be defined. The amplitudes A and B are in general given by a Schwinger­
Dyson equation which requires knowledge of the two-point gluon propagator. 
We rely upon recent studies which indicate that the resulting A and B can 
be confining if there is sufficient infra-red strength in the effective gluon 
propagator (Krein et al. 1988b; Roberts and McKellar 1990; Bannur et al. 1990). 
At this stage we employ a simple model for A and B that is confining in order 
to explore the properties of quark eigenstates bound by a scalar meson field 
in such a circumstance. If the quark energies and spatial distributions are 
suitably well behaved as functionals of the meson fields, then a very efficient 
self-confining chiral soliton model will have been obtained. 

In Section 2 we briefly review the features of the soliton model and 
the connection between the dynamical quark self-energy and vacuum qq 
configurations on the one hand and between meson fields and qq fluctuations 
on the other. The transition to an energy functional for a mean field soliton 
with evident quark and meson contributions is outlined in Section 3. The 
results of recent numerical studies are presented in Section 4. A characteristic 
feature of the distributed nucleon-meson form factor that arises from the 
composite nature of the meson is considered in Section 5. A summary is 
presented in Section 6. 

2. Generalised Soliton Model 

In order to indicate the sense in which the chiral meson fields employed 
in this soliton model are composites, we review the transformation from 
quark field variables to qq field variables. A more comprehensive review is 
available (Cahill 1991; present issue p. 105) that treats a transformation to 
meson, diquark and eventually baryon fields. The Euclidean space generating 
functional for fermion Green's functions is taken to be 

Z[ij,lJ] = Nf DqDqexp{S[q,q] + f d4x(ijq + qlJ)}, (1) 

where the action is that of the global colour symmetry model (GCM) (Praschifka 
et al. 1987) given by 

S[qq] = - f d4xd4y[q(x)(y· () + m)8(x - y)q(y) + ~g2j~(x)Dj./v(x - y)j~(y)], (2) 

where the quark current is j~(x) = q(x)~AaYj./q(x). In the limit as the small 
current quark mass m -> 0, the GCM has, for the case of two quark flavours 
employed here, SU(2)L ® SU(2)R chiral symmetry. Also, a global SU(3) colour 
symmetry is employed. Some consequences of ignoring the local manifestation 
of colour symmetry are discussed elsewhere (Cahill 1991). The colour algebra, 
chiral symmetry, and the association of the function Dj./v with an effective 
two-point gluon function make this model capable of describing some aspects 
of QCD (Cahill and Roberts 1985; Praschifka et al. 1989). For convenience we 
take Dj./v(x - y) = 8j./v D(x - y). The point of view of the GCM is that D(x - y) 
is a parameter function for the model which is to contain at least a running 
coupling constant ocs(q2) - 1/ln(q2/1\2) to incorporate the asymptotic freedom 
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of QCD at large Euclidean momenta. A variety of forms have been employed 
for numerical work within the GCM (Cahill and Roberts 1985; Praschifka et 
al. 1989) and in other studies (Krein et al. 1988b; Roberts and McKellar 
1990; Bannur et al. 1990) and such an approach has proved successful in the 
description of the low mass meson spectrum and dynamics. 

Fierz reordering applied to the quark Grassmann fields transforms the 
current-current term through 

f'2Q YIlLf\; YIl}lm = (A8)im(A8)ij. (3) 

The discrete index () ranges over the terms of distinct transformation character 
in Lorentz, flavour and colour space. The A are direct products of Lorentz, 
flavour and colour matrices. With Dllv ex:; 0IlV the four Lorentz invariants 
scalar, vector, pseudoscalar and axial vector are produced. With two flavours 
of quarks each A is either isoscalar or isovector. The Fierz reordering of 
the colour A matrices yields colour singlet and colour octet terms. We 
follow the bosonisation procedure (Shrauner 1977; Munczek 1982; Cahill and 
Roberts 1985) in which the quartic term in quark fields produced by (3) 
is reformulated as a functional integration over auxiliary bose fields 'B8(x,y) 
having the transformation properties of q(y)A8 q(x). Fluctuations in these fields 
will be interpreted as effective meson fields. For the fluctuations we will 
ignore the colour octet sector and deal only with colour singlet effective meson 
fields. This is not completely satisfactory since part of the colour structure 
of the model action is thereby discarded. However, it has been shown (Cahill 
1989) that the complete colour structure may be kept by the use of a further 
Fierz reordering so that bilocal combinations of quark fields that are not 
colour singlets appear only in the form of diquark fields q(x)q(y) and q(x)q(y). 
In this work we treat a static mean field quark-meson model of a baryon. 
The retention of just colour singlet effective meson fields can be viewed as 
ignoring correlations that are expressible as diquark degrees of freedom. At 
this level, the Fierz reordered form of (2) is essentially a nonlocal version 
of the Nambu-Jona-Lasinio (NJL) (1961) model. The limit D(x-y) ex: o(x-y) 
recovers the local NJL model. 

To deal with a ground state configuration with valence quarks, we add 
a constraint on the baryon number through a chemical potential Ji via the 
canonical transformation of quark fields 

q(x) --+ q'(x) = eIlX4 q(x). (4) 

With the quartic quark terms replaced by bose field integrations, the remaining 
bilinear quark field term may be handled by Grassmann integration in the 
standard way. The result is a generating functional given by 

Z[Ji, ij, 1]] = N f D'B exp {5[Ji, 'B] + (ijC[Ji, 'B]1])} , (5) 

where the bosonised action is 

5[Ji, 'B] = Tr[ LnC-1 [Ji, 'B]- LnC-1 [Ji = 0, 'B]] + 5['B] (6) 
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with the vacuum action given by 

S[~l = TrLnC-1 [Ji = 0, ~l- ~Jd4Xd4y ~e(X,y)~e(y,X) 
g2D(x - y) . 
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(7) 

We choose the separation in (6) in order to define effective meson fields 
from an expansion of the vacuum action, and to isolate the contribution from 
valence quarks. The meson kinetic terms are produced at leading order in the 
derivative expansion of the fermion loop term of S[~l. The inverse propagator 
is 

C-1(Ji;x,y) = eJJX4C-l(x,y)e-JJY4. 

= (y. a + m - Y4Ji)8(x - y) + eJJX4J1 e~e(x,y)e-JJY4 . (8) 

The quarks are Yukawa coupled to the auxiliary bose field variables of integration 
with bare vertices J1 e. Besides the familiar shift of the time derivative, the 
additional Ji dependence in (8) is due to the nonlocality of the bose fields. 
In later developments, a propagator C associated with (8) will be required. 
With appropriate boundary conditions, the Ji dependence of C will serve to 
shift the pole structure in the momentum component conjugate to X4 - Y4 
so that valence and vacuum configurations are treated together in the usual 
way. Previous work on the connection of these methods to soliton models, 
and static bag models in particular, introduced valence quarks without relying 
upon a chemical potential (Cahill and Roberts 1985). There the baryon number 
constraint is imposed through construction of an approximate three-quark 
Green's function to identify the minimising energy for a nucleon state through 
a stationary phase argument. We use a chemical potential which constrains 
the baryon number after a functional Legendre transformation to the standard 
effective action T. This quantity is proportional to the energy functional for 
a static system (Cornwall et al. 1974). 

The treatment (Cahill and Roberts 1985) followed here is to expand the 
vacuum action about the saddle point ~o(x,y), defined by 8S18~o = O. To 
lowest order in Ii, ~o is the vacuum expectation value. Translationally invariant 
solutions for each ~g produce the quark self-energy X(x-y) =J1e~g(x_y) which 
in momentum space satisfies 

X(p) = iy·p[A(p2)-11+B(p2) 

J d4q Aa 1 Aa 
= g2 (2rr)4 D(p-q)2YJJiy.a+m+X{a) 2 YJJ' (9) 

an equation of Schwinger-Dyson form. Numerical solutions for the amplitudes 
A and B have been obtained in recent studies (Praschifka et al. 1989; 
Krein et al. 1988b; Roberts and McKellar 1990). For the remaining formal 
developments we shall assume that convenient forms for the amplitudes A 
and B are available. The propagating meson fields are identified through 
functional expansion of the vacuum action S[~l in powers of the fluctuations 
13 defined by 13e(x,y) = ~e(x,y)_~g(x-y). With retention of just scalar-isoscalar 
and pseudoscalar-isovector terms, we may write 

J1 e 13e (x, y) = o-(r; R) + iYsT' mr; R) . (10) 
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It is convenient to use a relative coordinate r = x - y and a centre of mass 
coordinate R = (x+y)/2 for the bilocal meson fields. The second order terms in 
the expansion of S[~] identify propagators from which on-mass-shell eigenstates 
can be identified. The zero mass pole in the pion channel identifies B(r) as 
the mass shell form factor. This is also consistent with the Ward identity that 
produces B(r) as the residue at the zero mass pole in the axial vector vertex 
(Delbourgo and Scadron 1979). Since the fluctuation part of the chiral partner 
must have the same form factor, fluctuation fields with the form 

J\ e 13IJ (x, y) = B(r){ iT(R) + iYsT· n(R)} , (11) 

used in an earlier consideration (Cahill and Roberts 1985) of soliton models of 
the present type, are seen to be appropriate for the zero momentum Goldstone 
modes. The factorised form in x - y and (x + y)/2 is an approximation when 
the meson modes are off-mass-shell. 

Contact with local models of the linear sigma (Gell-Mann and Levy 1960) 
type may be made through expansion of the vacuum action in terms of the 
fluctuation fields iT and IT with neglect of all but the lowest-order derivative 
terms. The fermion loop term of the action (7) has the nonlocal structure 
TrLn[y· oA + m + B(u + iYsT·JT)] where u(R) = 1 + iT(R) is the chiral partner of 
the pion. With a zero current quark mass, a chirally symmetric expansion 
(Roberts et al. 1988) of this quantity can be carried out in terms of 
U(R) = u+ iYsT·JT = X ei;Y5T.~ where X2 = u 2 + IT2 is a chiral singlet. Only the 
real part of the TrLn term is retained and the summation of all non-derivative 
terms may be evaluated as a functional of X2. The second term of (7) is also 
a functional of X2. The lowest order derivative terms of the fermion loop are 
quadratic. The result is (Cahill and Roberts 1985) 

stu, IT] - 5[1, 0] = -f d4 R{ f; [(0 f./U)2 + (0 f./1T)2] + V(X2(R»}, (12) 

where V(X2) is the meson self-interaction given by 

f d4q {[q2A2(q2)+B2(q2)X2 ] B2(q2)[X2-1]} 
V(X2) = -12 -(2-IT-)4 In q2A2(q2) + B2(q2) - .....,q2,,-A-,;2:..!.(q--;.2~) +'!""-B"'""2("":q-;;-2) . 

The meson masses can be obtained by differentiating the potential V(X 2 ) twice 
with respect to iT or IT. The pion mass is zero corresponding to the exact 
chiral limit while the iT mass is finite. The pion decay constant frr obtained 
from this expansion can be expressed as a convergent integral involving A 
and B (Roberts et al. 1988). The potential V(X2) has turning points at X2 = 0 
and at the vacuum configuration X2 = 1 corresponding to a local maximum 
and an absolute minimum respectively. A simplified form that respects these 
properties is the sigma model form V(X2) = c(X2 - 1)2 where c = f~m~/8. 
With a small current quark mass m included in the quark propagators that 
make up V, a pion mass term with mrr oc m is generated. ExpliCit expressions 
for f rr and the meson masses (Praschifka et al. 1987; Roberts et al. 1988) in 
terms of the amplitudes A and B yield the typical values frr - 70 - 85 MeV, 
and mu - 0·5 -1 GeV. 
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When the fields are rescaled to absorb the decay constant f rr and the 
constant vacuum value of the action is discarded, the complete action for the 
soliton model can be written as 

S[P, 0", rr] = Tr[LnC-1 (Il, 0", rr) - LnC-1 (0, 0", rr)] + f d4 RLm(R) I (13) 

where the localised meson Lagrangian is 

Lm = -~(OIl0")2 - ~(OIl'lf)2 - ~m;r - U(0"2 +r) (14) 

and U(X2) = V(x2Ifir). The chemical potential dependence of the fermion TrLn 
term ensures that a meson source from valence quarks will be generated. The 
inverse quark propagator occurring in (13) is, for Il = 0, 

C-1(x,Y) = y·oxA(x-y)+mo(x-y)+r;;:lB(x-y) 

{ ( x+y). (x+y)} x 0" -2- + ,ysT· 'If -2- . (15) 

The meson part of the action (13) is of the standard format of a linear sigma 
model, and the meson component of a soliton energy functional is easily 
obtained. The non-standard features of this soliton model are contained in 
the structure of the valence quark contribution. 

3. Soliton Energy Functional 

If the chemical potential in the action S[Il, 0", 'If] is set to zero, the saddle 
point configuration will be 0" = frr and'lf = O. With a finite chemical potential 
there will be classical field expectation values 0" and 'If that reflect the spatial 
source distribution of valence quarks. To define the mean field values one 
may introduce external sources Ju(x) and Jrr(x) and a new action 

S[pIO"I'lf,JuIJrr] = S[p, 0", 'If] + d xUu(X)O"(X) + Jrr(x) ·'If(x)} I A f 4 

so that a generating functional W for connected Green's functions is defined 
by 

W[Il,JuIJrr] = In f DO"Drr exp {S[PIO"I'lf,JU,Jrr]} (17) 

apart from an additive constant. Then the energy functional for a static soliton 
is given by -I"[n,O"o,'lfollfdx4 (Cornwall et al. 1974), where the effective action 
r is defined by the Legendre transformation 

I"[nIO"o,'lfo] = W[Il,JuIJrr] - f d4xUuO"o + Jrr ·'lfo) -Iln, (18) 

and the classical field expectation values are 0"0 = oWl oJu and 'lfo = oWl oJrr. 
The quantity n is oW lOll from which the baryon number is obtained as nl fdx4. 
For a mean field approximation, the lowest level in the loop expansion is used, 
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W reduces to the action 5 evaluated at its saddle point configuration, and 
(To,11'0 become those configurations. Thus, at the Hartree level of no meson 
loops and a single fermion loop, the energy functional is 

E[n, (T,11'] = Eq [n, (T,11'] + Em [n, (T,11'] , (19) 

where the quark contribution is 

Eq[n, (T, 11']( - f dX4) = Tr[ LnC-1 [Jl, (T,11'] - LnC-1 [0, (T, 11']] - Jln (20) 

and the meson contribution is 

Em[n, (T,11'] = f d3xg(\7(T)2 + ~(\711')2 + ~m;if + U«(T2 + if)} . (21) 

We denote the classical static fields now by (T(x) and IT(x). The chemical 
potential Jl is to be treated as a functional Jl[n, (T,11'] obtained from inversion 
of n = 8W /8Jl which at the present level of treatment is 

n = :Jl TrLnC-1 [Jl, (T,11'] • (22) 

The equation of motion for the classical (T field is 8Tj8(T = -J(T which follows 
from the definition of the effective action. A similar equation holds for the 
11' fields. In the physical limit of no external sources, the field equations of 
motion are therefore 

8E = 0 = 8E 
8(T 811" 

(23) 

The contribution to the field equations from the meson energy component is 
easily evaluated from (21). 

The contribution from the quark component (20) of the energy functional 
is most conveniently expressed in terms of quark energy eigenvalues that 
can be identified from spectral decompositions of the fermion propagators 
(Williams and Cahill 1983). With static meson fields, C-l(x,y) depends on time 
only through the variable T = X4 - Y4, and it is convenient to use the Fourier 
representation 

C-I(W;x,y)= f dTe-iWTC-I(T;x,y). (24) 

The time-translation invariance of C-l(x,y) allows stationary eigenstates of the 
form uj(x)e iWX4 which satisfy 

f d3y C-l(w; x, y)Uj(Y) = iY4Aiw)Uj(x). (25) 

The eigenvalues have the form Aiw) = w - i€j(w) where €j is the quark energy 
eigenvalue. The w dependence of €j(w) arises from the dynamical nature of 
the self-energy 2:"(w, X - V). The index j labels the set of distinct states of the 
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spectrum for a given value of w. The standard Feynman boundary conditions 
are incorporated in the Euclidean form of C(x,Y) with the integration contour 
C taken along the real 00 axis with closure in the lower half plane. In the 
presence of a chemical potential Ji, the appropriate boundary conditions for 
C(Ji; x,Y) are implemented through use of the same contour with the replacement 
A.j(w) -> A.j(w + iJi). The TrLn term of the valence quark energy functional 
becomes 

Tr[LnC-1(Ji) -LnC-1(0)] = ~ f ~~ e-;ooI)In{ ~j~:;}J dX4, (26) 

where 00' = 00 + iJi, and the limit 11 -> 0+ is implied. 
The term Jin, which must be subtracted from (26) to obtain the valence 

quark energies, can be cast as a contour integral with use of (22) and (26). 
The resulting valence quark energy functional is 

[ ] -"f dw -;001) wA'iw ) Eq n,O-,TT - L.. 2 e A..()' 
j c'-c 1T J 00 

(27) 

where Niw) = dA.j(w)/dw. The contour C' is along the line Imag(w) = Ji with 
closure in the lower half plane. The net contour C' - C encloses poles in the 
upper half plane given by A.j(wp) = 0 which is equivalent to wp = i€iw p). This 
condition identifies the physical positive eigenvalues €j = -iwp to be obtained 
from the self-consistent Dirac equation, which is 

0= f d3Y{(-Y4€j +y. V)A(-€j; X -V) 

1 2 [(x+Y). (x+y)]} + frrB(-€j;X- y ) 0- -2- +IYsT'TT -2- Uj(Y)· 

Since A'j(w)/A.j(w) has unit residue at the poles, (27) yields 

Eq[n, 0-, TT] = L €)+> 0(11- €)+». 
j 

(28) 

(29) 

The required chemical potential Ji is identified as the highest occupied single 
particle level consistent with the baryon number, spin and isospin of the 
system. The Dirac sea contributions present in the individual terms of the 
formal expression (20) have cancelled out to produce the finite result in (29). 

The valence quark contribution to the meson field equations of motion, 
for example oEq/oo-, can now be evaluated from (27) after accounting for the 
dependence of Ji upon 0- and using (28) for the dependence of €j upon 0- (see 
Frank et aI. 1991). The resulting equations of motion are 

oU 
- V20-(z) + oo-(z) + Qo.(z) = 0, (30) 

and 

2 2 oU _ -V JT(z) + mrrJT(z) + oJr(z) + Qrr(z) - 0 , (31) 
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where the meson sources provided by valence quarks are 

Qu(Z) = t ,:zJ d3xd3y Uj(X)B(-ej;X-Y)O(X;Y -Z)Uj(Y) (32) 

and 

Qrr(Z) = t ,:zJ d3xd3y Uj(X)B(-ej;X-Y)iYSTO(X;Y -Z)Ui<Y). (33) 

In the limit of point coupling where the amplitude B becomes 80(x - V), the 
sources reduce to the local form of conventional soliton models. The set of 
constants Zj = A'j(wp ) = 1 - iej(wp ) produce wavefunction renormalisation 
so that the residue of the propagator G(x,y) involves states Zll/2Uj(X). The 
frequency dependence of the dynamical quark self-energy is responsible for 
Zj. Departures of Zj from unity are produced when the self-energy amplitude 
A(x - y) departs from o(x - y) and when B(x - y) is not static. 

4. Numerical Studies 

To investigate the soliton mechanism in the presence of distributed coupling 
and a confining dynamical self-energy, we consider here the valence quark 
Dirac equation (28) in momentum space with zero current quark mass and 
only a scalar meson field. This is 

[iy. pA(p2) + B(p2)]u(p) + rrri f d3 p'~ B( P ~ p' )o-(p - P')u(p') = 0, (34) 
(27T) 2 

where P4 = pi 4 = ie, e is the energy eigenvalue and 0- = (T - 'rr. When absolute 
confinement is embodied in the self-energy amplitudes A(p2) and B(p2), there 
is no solution (discrete or continuum) to iy· pA(p2) + B(p2) = 0 for time-like 
p2 < O. Hence p2 +M2(p2)';' 0, where M(p2) =B(p2)/A(p2) is the dynamical mass 
which prevents quark propagation in the vacuum. A simple model with this 
feature has been employed in a number of previous studies (Munczek and 
Nemirovsky 1983; Cahill and Roberts 1985; Shakin 1989). In the extreme limit 
of an effective gluon propagator that has only the zero momentum mode 
g2D(q) = (27T)4/sJl204(q), the Schwinger-Dyson equation yields 

A(p2) = { 2, I p2 5, Jl2/4 
~[I+(1+2Jl2/p2)2], p2~Jl2/4 

B(p2) = {(Jl2 - 4p2) ~ , 
0, 

p2 5, Jl2/4 
p2~Jl2/4 . (35) 

We adopt this model here and take the strength parameter Jl to be 1 GeV 
to simulate the strength and range of numerical solutions (Praschifka et aJ. 
1989) for B(p2). For later reference, the dynamical mass associated with (35) 
is plotted in Fig. 1 as the dot-dashed line. 
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Fig. 1. The square of the dynamical quark mass M2(bp2) is plotted versus Euclidean p2. 
The dot-dashed line (b = 1) illustrates the simple model employed to investigate the effects of 
absolute confinement upon the solution of the Dirac equation in the presence of a classical 
scalar meson field. The parameter b is used to define a series of models with reduced 
dynamical behaviour and the constant mass case is produced by setting b = O. 

2000 r--r--r--r-.--.--.--.--r--rr-,--r--r-'--'-~ 

3S1l2 

....... 

1500 

;;-
Q) e. 1000 

Continuum . / ..... / .... 25," " 

.................. 

w 

500 
1S1I2 

--------------------------------

o 0'5 1'0 1·5 

b 

Fig. 2. The 51/2 valence quark eigenenergies plotted versus the parameter b which controls 
the dynamical content of the quark mass function. A gaussian form for the scalar meson field 
is employed as described in the text. The meson field strength parameter Vo = 1407 MeV. 
The continuum is taken up by discrete states and disappears at the absolutely confining 
point b= 1. 
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A condensed scalar meson field can modify the mass. Consider the simplified 
case where the meson field is spatially constant, so that in momentum space 

3 

o-(p-p') -> (2rr)"2frro- 8(p-p') where 0- is a dimensionless constant to characterise 
the strength. Then the eigenvalue equation (34) becomes simply 

p2 + M2(p2)(l + 0-)2 = O. (36) 

A physical eigenvalue € is obtained if there is a solution to (36) for time-like 
p2 = _€2 +p2 < O. In this schematic model then, the effective dynamical mass is 
M(p2) = M(p2)(l + 0-) and a scalar meson field with strength below the vacuum 
value, i.e. 0- < 0, leads to a reduced slope for M2(p2). The effect would be to 
rotate the dot-dashed line in Fig. 1 anticlockwise about its intercept on the p2 
axis. This will produce an intercept with the solid line in the time-like p2 < 0 
region, and thus an energy eigenvalue is produced. Physical solutions to (36) 
occur for -2 < 0- < 0 at p2 = -M~, where 

M~ = J.l2 (1 +0-)2 
4 1 - (1 + 0-)2 

(37) 

and Me may be considered a constituent mass. The quark energies in the 
medium characterised by 0- are given by €2(p) = p2 +M~. 

We consider now solutions of (34) for valence quark states due to a 
finite range 0- field with the form o-(x) = -VofrrWl exp (-x2/y6). The strength 
parameter J.l for the amplitude B(p2), and the u field range Yo, are fixed at 
1 GeV and 1 fm throughout. The confining dynamical mass should induce 
a large distance decay for the quark wavefunction that is faster than the 
characteristic exponential form of constant mass solutions and a bag-like 
behaviour might be expected. In order to explore separately the effect of the 
dynamical mass and the distributed quark-meson coupling, we use amplitudes 
A(bp2) and B(bp2) for the self-energy and amplitude B(fK2) for the coupling 
term where K = (p+P')/2 in (34). Here band f are real parameters in the range 
[0,11. The point-coupling limit is achieved by setting f = 0 which produces 
B(O) = J.l. As the parameter b is reduced from unity, the dynamical variation 
of the self-energy amplitudes A and B is reduced and the confining property 
is removed. This is illustrated in Fig. 1. When b = 0, the dynamical mass 
becomes constant with the value M(p2 = 0) = J.l/2 which is 500 MeV with the 
present parameters. In Fig. 2 the lowest several 51/2 eigenvalues € are plotted 
versus b for point coupling (f = 0) and for Vo = 1407 MeV. As b increases 
from zero, the continuum is progressively elevated and replaced by discrete 
states until at b = 1 there is only a discrete spectrum. This is because with a 
confining dynamical mass, there are no solutions to the free wave equation 
that can be used to describe the large distance behaviour of the states outside 
the range of the condensed u field. No solutions with scattering boundary 
conditions exist. From Fig. 2 the energy of the lowest 51/2 state is remarkably 
insensitive to the parameter b, that is, to the detailed dynamical nature of 
the mass. This is because we have used a strongly attractive strength for the 
condensed u field. The self-consistent solution for the u field driven by the 
scalar source term qq and the nonlinear self-interacting U(u) is in progress. 
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Fig. 3. The 51/2 valence quark eigenenergies plotted versus the strength Vo of the scalar 
meson field taken to be a gaussian. The divergence at small Vo is a reflection of the 
absolutely confining form of the quark mass function when b = 1. For a constant mass 
(b = 0) there is only one state. 
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Fig. 4. The quark scalar density is compared for confining (b = 1) and non-confining (b = 0) 
models of the quark mass function and also for distributed coupling (f = 1) and point 
coupling (f = 0). 
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To gain some insight into how the relation between the quark energies and 
the (J" field is modified .by the dynamical content of the quark mass, we show 
in Fig. 3 the eigenenergies E plotted versus the field strength Vo for b = 0 and 
b = 1, both with point coupling (f = 0). As Vo -- 0 the energy of the single 
bound state that exists in the constant mass (b = 0) case goes to the continuum 
value, but the energies of the confining (b = 1) solutions go to infinity, while 
still providing quark states of finite extent. For the moment, consider Vo as 
a variational parameter employed to minimise the soliton energy. The meson 
component of the energy begins at zero from the vacuum point Vo = 0 and 
increases quadratically with Vo. For a constant quark mass (b = 0), the quark 
energies begin at that mass value and decrease as Vo increases away from 
Vo = O. If the quark energies do not decrease fast enough, the minimising 
configuration can occur at or near Vo = 0 giving essentially plane wave quarks 
and not a soliton solution. This is avoided in standard models by making 
the coupling constant sufficiently large so that the decrease of the quark 
eigenvalues with Vo will dominate to push the total minimum away from the 
vacuum point Vo = 0 producing well localised quark states. Since the coupling 
constant and the quark mass are proportional to each other, it is necessary to 
have a sufficiently large mass parameter to have a soliton that is energetically 
stable with respect to free quarks. 

However, when the p2 dependence of the dynamical mass is absolutely 
confining, the b = 1 curves in Fig. 3 show that the quark energies will always 
have a negative slope at small Vo which overcomes the positive slope of the 
meson component of the energy. Here the confining dynamical quark mass 
prevents the minimising configuration from occurring at vanishing meson field 
strength even if the strength parameter of the dynamical mass (M(p2 = 0) = 11/2) 
is very small. There should always be a localised soliton solution which is 
energetically stable for any choice of parameters. 

In Fig. 4 the spatial distribution of the scalar quark density qq is displayed 
for several dynamical choices determined by band f. The meson field 
strength is chosen so that without confinement (b = 0) the binding is very weak 
and the quark density is quite diffuse. The effect of including a confining 
dynamical mass (b = 1) is that the quark density becomes significantly more 
localised towards a cavity-like configuration. A well defined localisation can be 
produced with relatively weak meson field strengths. Due to the confinement 
embodied in the dynamical mass, soliton solutions with features approaching 
a bag model appear possible. Also from Fig. 4, the distributed quark-meson 
coupling (f = 1) is found to have a strong effect on the quark qq density in 
the interior when compared to the point coupling case (f = 0). The character 
of this effect depends upon the meson field strength. In the case shown here, 
the distributed coupling increases the net size of the quark distribution, while 
for larger meson field strengths the opposite is true. A fully self-consistent 
solution is clearly needed. 

S. The Nucleon-Meson Form Factor 

As is well known, an elementary field that couples to valence quarks within 
the nucleon will result in a form factor with a range that reflects the size of 
the quark distribution. The associated momentum variable is the momentum 
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Fig. 5. An illustration of the mechanism employed for the nucleon­
meson form factor to estimate the suppression in the nucleon 
momentum k induced by form factor B of the composite meson. 
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transfer to the nucleon. We wish to illustrate here that for coupling of a 
composite meson field to the nucleon, the form factor will have a dependence 
on the momentum of the nucleon that reflects the size of the meson form 
factor. We take the case of a static scalar meson field with internal form 
factor B(x - y) as illustrated in Fig. 5. The mean-field or independent particle 
model of the nucleon must be projected to produce a state of definite 
momentum. The resulting momentum sharing among the valence quarks will 
induce in the form factor a dependence upon nucleon momentum governed 
by the range of B. We ignore relativistic boost effects and employ the 
Peierls-Yoccoz (PY) (1957) projection to produce definite nucleon momentum. 
If I/J(Xl,X2,X3) = u(Xr)U(X2)U(X3) is the mean field nucleon state for three quarks 
in the lowest S-state, then the state from PY projection is 

I/Jk(Xl,X2,X3) = ntk) f d3R e-ik.RI/J(Xl + R,X2 + R,X3 + R), (38) 

where the normalisation factor n(k) is chosen to ensure that (I/Jk' I I/Jk) = 8(k'-k). 
This projected state ensures that the dependence upon the centre of mass 
coordinate X = ~ 2..i Xi is exp (ik· X). A simple estimate of the nucleon-sigma 
form factor from 

8(k' - k + q)F(k',k,q) = f d3x'd3x (I/Jkl I q(x')B(x' - x)e-iq.[~(XI+x)]q(x) II/Jk) (39) 

leads to 

8(k' - k + q)F(k', k, q) =_'"~''' f d 3R'd3R e i(kl .R'-k.R)c2(R' - R)f(q; R',R), (40) 

where f is the elementary form factor before projection and is given by 

f(q; R'R) = f d3x' d3x u(x' + R')B(x' - x)e-iq . [~(x'+x)]u(x + R). (41) 
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Here c(R' - R) comes from integrations over a 'spectator' quark and is given by 

c(R' - R) = f d 3xu+(x + R')u(x + R). (42) 

After conversion of all quantities to momentum space, e.g. B(x) 
(2rr)-3 fd3PeiP.xB(P), we obtain 

F(k',k,q) =" ,:", f d 3p u(P - qJ2)B(P)u(P + qJ2)R(P - ~(k' + k», (43) 

where R(p) is the momentum representation of c2(x) and is given by 

R(p) = (2rr)-3 f d 3 k c(p - k)c(k), 

where c(k) = u+(-k)u(-k). The normalisation factor n(k) is given by 

n 2 (k) = f d3 P u+(P)u(P)R(P - k) . 

(44) 

(45) 

The removal of the PY projection corresponds to the limit R(p) --+ 1 and n(k) --+ 1, 
and then (43) reduces to the form factor for coupling to the quarks of the 
stationary mean field soliton as in (32). There is then a dependence on only 
the meson momentum. 

To investigate the dominant behaviour in the limit k' "" k »q, we consider 
(43) in the form 

, f d3 P u(P - qJ2)B(P)u(P + q/2)R(P - k) 
F(k ,k,q) - 3 f 

d 3 P u+(P)u(P)R(P - k) 
(46) 

It is apparent that in the limit of point coupling, where B(P) is independent of 
P, the recoil correction function R(P - k) is convoluted with essentially similar 
quark density distributions in the numerator and denominator of (46). Thus 
no fall off with the nucleon momentum k is expected for point coupling. 
However a finite range for the sigma form factor B(P) will induce a suppression 
for large k. This can be seen explicitly in the case of S-wave orbitals if 
we describe both u+(P)u(P) and u(P)u(P) by different linear combinations of 
two gaussians exp(-p2/4oc2) and exp(-p2/4f32). This can account for a slight 
difference in range of upper and lower components. One parameter oc can 
characterise the inverse size of the quark distribution, and we take f3 ~ oc. 
Then R(p) is a linear combination of three gaussian terms exp(-p2/4Pf) with 
range parameters Pf = 2oc2, 2f32, and (oc 2 + f32). The denominator n2(k) in (46) 
becomes a sum of six gaussian terms exp(-k2/4kf) with the dominant term 
at large k being kf = 3f32. For estimation of the numerator in (46), we use 
B(P) = B(0)exp(-p2/4.V) to obtain again a sum of gaussian terms. Retention of 
just the dominant terms in both numerator and denominator produces the 
estimated large k behaviour 

F(k, k, q = 0) - exp { - 2k2 2}. 
4(9.\ + 6f3 ) 

(47) 
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The point coupling limit (A -> 00) for the quark-meson form factor produces 
no fall-off as expected. If the spatial size of the meson form factor B(P) 

is significantly less than the soliton size, then (f3/A)2 «1 and the large k 
behaviour of the nucleon form factor becomes B(k/3). In this limit deviations 
away from equal sharing of the nucleon momentum among three quarks 
become insignificant. If the range of B corresponds to a meson size of O· 5 fm 
then the large k behaviour of the nucleon form factor corresponds to a range 
which is reduced by one-third, i.e. about 1·2 GeV /c2 • 

The above arguments are a long way from providing a definitive description 
of the distributed features of the nucleon-meson form factor that arise from 
underlying QCD degrees of freedom. Even in the simple mechanism considered 
here, relativistic covariance has been ignored. However, given that one should 
protect nucleon-meson field theory models from the divergences that arise 
from point-coupling, phenomenological form factors that simulate substructure 
from a model with QCD degrees of freedom seem necessary. It seems from 
the above argument that some general features of the nucleon-meson form 
factor might be constrained once a consistent model for the substructure of 
the hadrons is specified. 

6. Summary 

We have considered aspects of a non-topological soliton model in which the 
chiral meson fields are generated as qq composites. The interesting features 
that we focus upon here are the dynamical self-energy for quarks and the 
related distributed vertex for quark meson coupling. Initial numerical work 
to explore the practical consequences of these features has been presented 
in the context of a static mean-field soliton. The particular method employed 
here to identify the energy functional at the mean field or Hartree level 
is to obtain the standard effective action from the Legendre transformation 
with the help of a chemical potential constraint for the baryon number. The 
purpose of this approach is two-fold. First, a possible future consideration 
of radiative corrections might be undertaken by systematically continuing 
with the loop expansion beyond the lowest level. A second, more practical 
reason, is that in the presence of a general space-time dependent dynamical 
self-energy for quarks there are wavefunction renormalisation effects and 
energy self-consistencies to be defined and maintained for the valence quark 
states and eigenvalues. This energy dependence of the self-energy has an 
important effect when absolute confinement is embodied in the self-energy 
amplitudes. 

The full nonlocal soliton model with self-consistent determination of (T,rr, 

and q fields has not been solved. Here we have presented and described initial 
results from solution of the valence quark states in the presence of a (T field 
taken to be a gaussian form. The quark self-energy amplitudes A(p2) and B(p2) 

have been assumed to be given by a simple absolutely confining form. The 
amplitude B plays a second role as the distributed form factor for quark-meson 
coupling in the exact chiral limit. For a strong (T field the confining nature of 
the quark mass function has little effect upon the lowest quark eigenvalue. 
However, as the (T field strength decreases, the quark eigenvalues grow rapidly 
but the corresponding quark distribution remains well localised. It seems 
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that there should always be a soliton solution which is localised and stable 
energetically (as well as absolutely) with respect to free quarks for any choice 
of model parameters. The distributed form of the quark-meson coupling is 
found to have a strong effect upon the quark distribution in the interior of 
the soliton region compared with the usual pOint coupling form. 

We have presented a simplified view of the nucleon-meson form factor 
to point out that the composite nature of the meson field will induce a 
suppression in terms of the nucleon momentum. The associated range is 
roughly one-third of the range of the meson form factor. Mechanisms that 
indicate a finite range for the three-point nucleon-meson vertex in each of the 
two independent momenta are of interest for field theory models of nuclear 
matter where relativistic quantum loop effects are much too strong with point 
coupling. 

It remains to be seen whether full solutions of such a nonlocal soliton 
model can be successfully applied towards the calculation of, for example, 
electric and magnetic form factors of the nucleon where an internal structure 
for the pion may have a significant role. 
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