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Abstract 

This paper considers the kinetic equation for interacting neutrino gas in the context of an 
expanding early universe. It is suggested that if neutrino oscillations are present and CP 
violations occur prior to the decoupling of the neutrino gas from the rest of the universe, 
then lepton number may not be conserved and, in principle, significant permanent neutrino 
chemical potentials may develop and survive until the present day. This would lead to the 
wen known effect that if the electron neutrino chemical potential is significantly non-zero, 
then the primordial abundances of the light elements are affected and differ from those of 
the standard model. Numerical computation is required to examine the parameter ranges 
leading to a significant non-zero electron neutrino chemical potential. 

1. Introduction 

Over the last 15 years there has been a major upsurge of both theoretical 
and experimental research into neutrino oscillations. One of the major aims of 
this research has been an attempt to explain the discrepancy [Davis et al. 1968; 
Davis 1980; also more recent results from Hirata et al. 1988-KAMIOKANDE-II; 
Aglietta et al. 1988-LSD at Mont Blanc and several new experiments proposed 
Pakvasa 1988-Borex; Abazov 1988-SAGE, and others; see also Bahcall (1989) 
for review of the solar neutrino experiments and the supernova explosion 
SN1987A] between the observed and the predicted neutrino fluxes from the 
sun,* but other work (McKellar and Granek 1980, 1982; Khlopov and Petcov 
1981; Dolgov 1981; Zel'dovich and Khlopov 1981; Manohar 1987; Barbieri 
and Dolgov 1990 and a general review by Denegri et al. 1990) attempted to 
determine the effects of such oscillations on the evolution of the universe and 
the relaxation of the constraints placed on the number of neutrino families 
(e.g. see the review by Boesgaard and Steigman 1985) imposed by the standard 
model of the universe. In addition to the neutrino oscillations in vacuum 
proposal for the solution of the solar neutrino puzzle, a solution involving 
neutrino oscillations in matter (MSW oscillations) has been suggested (Mikheyev 
and Smirnov 1985, 1988; Wolfenstein 1979; Zaglauer and Schwarzer 1987; 
Bahcall and Haxton 1989; Rosen and Gelb 1989). 

• In fact, recent data from these experiments confirm the neutrino problem and imply new 
neutrino physics [Acker et af. 1990; see also the references therein to the talks presented 
at the NEUTRINO'90 (CERN) and 25th International Conference on High Energy Physics 
(Singapore) by the experimental groups]. 
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In addition, since the neutrino mass is not well known and, further, it is 
still not clear if it is non-zero, a number of laboratory experiments have been 
done to place some upper limits on the value of an electron neutrino (Boris et 
al. 1985, 1987; see however Simpson 1986b; Bergkvist 1985a,b; Wilkerson et 
al. 1987-LANL group; Fritschi et al. (1986)-Zurich group; INS group 1987; and 
further claims by the Russian group-Lubimov 1988). Further improvements 
in various direct measurements have been obtained (INS group 1988; Kundig 
et al. 1988; Lubimov 1988; Daniel et al. 1988; Nakamura 1991). A possibility 
of existence of a 17 keY neutrino has also been investigated (Simpson 1984, 
1986a, see however Borge et al. 1986; Hetherington et al. 1987; Zlimen et al. 
1988). The experimental situation has been reviewed recently by Barish (1992). 
One method of determining if the neutrino has a non-zero mass is via other 
possible properties such as decay products, if it is unstable (Matsumoto et al. 
1988) and the constraints on such decays (Krauss 1984; Sarkar and Cooper 1984; 
Lindley 1985; Granek 1988; Granek and McKellar 1990), arrival delay following 
supernova explosion or its magnetic moment etc. The supernova explosion 
in the Large Magellanic Cloud, SN1987A, resulted in some data, which, after 
analysis, led to some additional constraints on neutrino properties such as mass, 
lifetimes and magnetic moment (Dar et al. 1987; DeLeener-Rossier et al. 1987; 
von Feilitzsch and Oberauer 1988; Mohapatra 1988; Barbieri and Mohapatra 
1988; Lattimer and Cooperstein 1988; Mohapatra and Nussinov 1989; Cowsik 
1988; Krivoruchenko 1988; Zhaol et al. 1988; Adams 1988; Burrows 1988). 

Another way to establish whether the neutrino has a non-vanishing mass is 
through a related effect of neutrino oscillations, where a neutrino of one type 
is transformed into another type without interacting with a second particle. 
Such an effect, if present in the physical world, may have a dramatic effect 
on nucleosynthesis in the standard model of the universe (see e.g. Weinberg 
1972) through its effect on the balance between neutron and protons just prior 
and during nucleosynthesis, and consequently will affect the synthesis of the 
elements like deuterium, 3He, 4He and other light elements. The standard 
model places fairly rigid constraints on a number of physical parameters of 
the model, some of which are the neutrino chemical potential, mass and 
number of neutrino species. These constraints may be circumvented in the 
presence of neutrino oscillations, provided the oscillations are able to generate 
an effective chemical potential. In order to test the effect of this assumption 
on the early universe scenario, a nucleosynthesis model based on the model 
originally developed by Wagoner (1969) was built independently (McKellar and 
Granek 1980; Granek and McKellar 1981; Granek 1988). Since the primordial 
abundances of the elements heavier than 4He are very uncertain (the possible 
evolution of lithium abundance has been discussed by Hobbs 1987; Deliyannis 
et al. 1989; Molara 1987; Schramm 1987; while that of 3He by Rood et al. 
1987), the model is limited to nuclei with atomic number A < 5. It is tested 
on a range of parameters and the results are compared with those of the 
standard model, with and without degenerate neutrinos but excluding neutrino 
oscillations, as given by David and Reeves (1980), Olive et al. (1981) and 
Boesgaard and Steigman* (1985 and references therein). The results indicate 

* Boesgaard and Steigman (1985) presented a general review of the accumulated work in this 
area by a number of researchers done over a period close to a decade. 
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that, when oscillations are included, the predictive power of the standard 
model is significantly reduced and consequently additional constraints must 
be imposed if more rigorous model predictions are expected. A recent review 
by Denegri et al. (1990) addresses most of the experimental results as well 
as those concerning the cosmological calculations mentioned above. 

In this paper we would like to derive and discuss a kinetic equation for 
a system of interacting neutrinos, or neutral particles in the context of an 
expanding universe. * The derived equation may, in principle, be used to 
obtain the phase space density functions as a function of time, as they evolve 
in and out of equilibrium, provided the neutral particles undergo interactions 
similar to those of neutrinos and only the mass eigenstates and the strength 
of the interactions may vary. From now on we shall refer to these neutral 
particles as neutrinos. 

In McKellar and Granek (1980) and Granek and McKellar (1981) we assumed 
that the electron neutrino chemical potential was generated during the expansion 
of the universe and prior to the commencement of nucleosynthesis. Here we 
formalise the mechanism, given in McKellar and Granek (1982), and propose a 
method of calculation of a neutrino chemical potential excess from the mass 
mixing matrix U and the kinetic equations governing the interactions of the 
weak neutrino eigenstates and the expansion of the universe. 

In Section 2, starting with a general relativistic kinetic equation, we apply 
the relevant conservation laws and symmetries of the model in order to reduce 
the number of independent variables. The equations are then simplified to 
a rriore conventional form of the Boltzmann equation (25). By introducing 
a set of new variables, the part of the kinetic equation responsible for the 
expansion of the universe is decoupled, leaving an explicit expression for the 
total and non-adiabatic terms of the kinetic equation (31). 

In Sections 4 and 5 we propose a scenario where various interactions go 
in and out of equilibrium conditions. Therefore, it is proposed that evolution 
out of equilibrium from the point of view of the mass eigenstates will lead 
to generation of chemical potential excesses with the aid of the CP violating 
processes. It is also expected that, with appropriate tuning, these processes 
may be sufficiently strong to generate significant v-v asymmetry or effective 
chemical potentials of sufficient magnitude. 

Finally, before the work is summarised, the kinetic equation is reformulated 
in Sections 6 and 7 so that time relaxation techniques may be applied and the 
problem may be better adapted for possible computer solutions that would 
confirm or disprove the original assumptions. 

2. Relativistic Kinetic Equation in the Early Universe 

Let us consider a particle in the Friedmann universe, described by the 
Robertson-Walker metric (Weinberg 1972) 

9tt = I, (1) 

• This equation has been derived before in Granek (1988) and also in Granek and McKellar 
(1990), but in the latter paper the oscillation term was omitted. 
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(2) 

(3) 

(4) 

where R(t) is the time dependent radius of curvature of the universe, k is the 
trichotomic constant, while rand f} are polar coordinates. 

The entropy of the interacting species is given by 

(5) 

to within an additive constant, where T is the temperature of the interacting gas 
and the subscript refers to the interacting part of the system. If the universe 
evolves in thermal equilibrium or adiabatically, then the time derivative of (5) 
vanishes, i.e. dS/dt == O. However, this is not guaranteed if there are entropy 
generating processes present. Since radiation effectively remains as part of 
the interacting energy throughout the period of interest,* then any change in 
radiation temperature, unaccounted for by the expansion of the universe, is 
a measure of the entropy generated. 

Let us now introduce a heating parameter 1>, defined initially as the 
ratio of the temperature of the electromagnetic radiation T to TN of some 
non-interacting species expanding adiabatically, e.g. superweakly interacting 
neutrinos that have already decoupled, i.e. 1>(t) = T(t)/TN{t). We also define an 
increasing expansion scale parameter i\ as the ratio of the temperature of the 
non-interacting gas to some fixed reference temperature Tr , i.e. i\(t) = Tr/TN{t). 
These parameters allow the splitting of the problem into the non-adiabatic 
and adiabatic parts respectively. The temperature of radiation T at any time 
t relative to the time to will then satisfy 

T 1>/i\ 
To = 1>0/i\0 . 

(6) 

The average particle momentum p scales with the expansion parameter so that 

p/Po = i\o/i\, (7) 

and since entropy is distributed evenly among the degrees of freedom, then 
the fractional increase in the entropy of the radiation is a measure of fractional 
increase in the overall entropy of all the interacting species in the universe. 

* This is true even if the universe becomes matter dominated provided radiation is still 
coupled to it. It is expected that at decoupling any large scale entropy generation will cease 
so that the adiabatic form of the kinetic equation may be used. 
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This may be stated as 

S (AT)3 - = - = (4)I4>oP . 
So AoTo 

(8) 

This allows us to treat the case where entropy of the universe is not conserved 
in interactions. It may be observed here that when 4> is a constant then 
the equations (6-8) have the usual properties associated with an adiabatic 
expansion of the universe, i.e. that AT is a constant. In other words, the rate 
of change of 4> is a measure of the strength of entropy generating processes. 
From equations (6-8) it is possible to obtain the relationships for p, 4>, A, T 
and S, so that 

and 

giving 

1 dT 1 d4> 1 dA 
T dt = 4> dt - X dt ' 

1 dA 1 dS 1 dT 
X dt = 3S dt - Tdt· 

(9) 

(10) 

(11) 

(12) 

Let us now consider a reference frame fixed to the local fluid, so that 
the hydrodynamic four-velocity reduces to U = (1.0), and where there is no 
external force. Then substituting in the continuity equation, as shown by e.g. 
deGroot et al. (1980), gives 

(13) 

where the last term is the contribution due to neutrino oscillations, 

C[xa.Pal = L €aalfD(Pal,mal)D(Pb.mb)D(Pb',mb') 
a' 

X [f(xa" Pa' )f(xb'. Pb' )W(Pal• Pb,l Pal Pb) 

- f(xa,Pa)f(xb,Pb)W(Pa.PbIPa',Pb')l. (14) 

(15) 

and 

(16) 
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where Eaaf = ~8aaf guarantees that the transition rate W represents the rate 
for both cases of identical particles a' = b' and different particles a' #- b' . The 
vector Ffi is the four-vector equivalent of the external force F, where Fi = pOFi. 
We may average equation (14) over energy, by integrating it with respect to 
pO using 

1 J dpo (2rr) 8(p2 - m2) O(po) = 2£' 
2rr 

(17) 

where £ is the energy of a particle with mass m, i.e. £ = .jp2 + m2 • Equation 
(13) then reduces to a more conventional form 

J d3Paf d3pb' d3Pb 
(Ot+ u · V'+F· V'p)f= (2rr)3 (2rr)3 (2rr)3 K(Pa,PbIPaf,pb') 

+[(Ot+U . V'+F· V'p)f]osc, (18) 

where 

K(Pa,Pbl Paf,pb') = fat{bfW(Paf,Pb' I Pa, Pb),-fafbW(Pa, Pb I Paf, Pb') , 

W(Pa,Pb I Pa',Pb') 
W(Pa,PbI Paf,pb') = (2£a)(2£b)(2£af)(2£b')· 

(19) 

(20) 

The last term of equation (18) is the oscillation term. Therefore the evaluation 
of the form of the full kinetic equation reduces now to the evaluation of the 
W(Pa, Pbl Paf,pb'), the transition probability per unit volume per unit time for 
the processes 

a+b--+a'+b', (21) 

and the evaluation of the oscillation term. Since the universe is assumed 
uniform and isotropic, the spatial derivatives vanish, and with no external 
force on the system the second and third terms on the left side of (18) vanish, 
simplifying to 

Otf(x,p) = C[f(x,p)] + [Otf(x,p)]osc, (22) 

with the number of variables f which depends on reduced to p and t, where p 
is the magnitude of the three-momentum vector and t is the proper time. Also 
because of the time dependence of momentum, we write p = p(Po, t), where Po 
is the momentum at time t = to, so that 

f(x, p) = f(t, p(Po, t» . (23) 

This means that 

~~ = (~~t +(~~)t c:;: = (~~t -~p(~~)t (24) 



"""'_, __ ,.,._ _~""""""""""""""'_=<_"iI'\""""""-"'--~"'_,",~ __ ._=-=, __ ._~.~_.~_ ,-' .. __ ,~~_, __ .. __ -. ___ _ 

Kinetic Equation with Neutrino Oscillations 597 

[note that the second equality of (24) was used before by Dolgov (1981) in 
a closely related work], hence using (9-12) we obtain the expanding universe 
form of Boltzmann's kinetic equation 

of =(of) +(!dT _~d5)p(of) =C[fl+(Of). (25) at at p T dt 35 dt op t at osc 

If the momentum of a particle p is now replaced by a dimensionless momentum 
parameter q, where the time dependent part of p is absorbed into the temperature 
so that 

p(t) = qT(t). (26) 

then the derivatives at fixed p may be written as 

(~~t =(~~)q,t(~~t +(~~)T,t(~it +(~~tT' (27) 

and 

(~~)q =(~~)q,r(~~t +(~~)q'T' (28) 

and from (26) 

(dq) d qdT dt p = dt(p/D = -ydt' (29) 

Then substituting in equation (25) from equations (28) and (29) we find 

(of) (1 dT 1 d5) (Of) (Of) q (d5) (of) at p + Y dt - 35 dt P OPt = at q - 35 dt a q T,r 

(Of) q (dcfJ) (Of) 
= at q - Ci> dt oq T,r 

= Df. (30) 

which is the differential operator we are looking for. 
This term is the one that replaces now the usual time derivative in 

Boltzmann's equation, but the neutrino oscillation term is still to be included 
explicitly to form the complete equation. This then becomes 

(Of) q (dcfJ) (Of) -C[fl+(af) at. q - Ci> dt oq T,t - at osc 
(31) 

Note that in the case of adiabatic expansion, cfJ is a constant so that the 
second term of (31) vanishes identically and the conventional Boltzmann's 
equation results when the oscillation term is ignored. * Also the collision 

• When the right side of (31) is set to zero, the left side becomes the collision-free Boltzmann 
equation or a form of the Vlasov equation (see e.g. Tremaine and Lee 1987). 
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term vanishes if there are no collisions or if the system remains in thermal 
equilibrium during expansion. This means that if the function f under these 
circumstances is purely a function of q then its shape is time independent. 
Thus equation (31) allows us to determine the number densities of some 
particles during the kinetic evolution of the universe. without having to solve 
the kinetic equation for each of the species present. 

Let us now look at the two terms on the right-hand side of (25) in detail. 

(2a) The Collision Term 

We now come back to equation (14). The expression for the transition 
probability W is given by 

W(Pa,PbIPa"Ph') = (2rr)4c54(Pa l + Ph' - Pa - Pb)m~m~(1- fa' )(l- fb') 

x:L IM(Pa,PbIPa',Ph')1 2 , (32) 
S' 

where the factors (1 - n are the fermion statistical factors of the state into 
which the particles a and b may scatter (in the case of bosons the sign of 
f in the corresponding factor must change to +) and s' is a group spin label 
for all the unobserved final spin states. The interaction matrix element is 

M = ~[Ua<YJ.l(I =+= YS)Ua][UbIYmu(l =+= YS)Ub], (33) 

where G is the relevant coupling constant (G = GL the Fermi constant for 
left-handed V-A interactions and G = GR for the right-handed V+A interactions). 
while the minus is for left-handed current and plus for the right-handed 
current. This reduces to 

I MI2 = 128G2 (Pa . Ph' )(Pal • Pb) . 
mam~ . 

(34) 

note that to get the reaction a + ii -+ b + b we exchange a' ..... b' getting ii and 
b. which requires the exchange Pa' ..... Pb. This exchange leaves the expression 
(34) invariant (after application of the energY-111omentum conservation laws). 
so that the scattering matrix element is the same for both processes and the 
rate only depends on number densities of the particles in question. 

(2b) The Oscillation Term 

An anti-particle (or charge conjugate) wave function. corresponding to a 
left-handed neutrino wave function VL is given by (Bjorken and Drell 1964; 
Kayser 1984) 

(vade = CV~L' (35) 
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which satisfies' 

(Y~k = (YexR)C, (36) 

where 

(Y~)L = i(l- Y5)(Y~); (37) 

hence (~)L is really a left-handed particle. The weak currents, described in 
the previous section, couple only to the left-handed particles or right-handed 
anti-particles. We may, however, also introduce the mass term to the Lagrangian 
as well. The various Lagrangian components corresponding to the Dirac and 
Majorana masses are as follows: 

1 LD D - ' H • ex/3 = -mex/3YexRY/3L + .c. 
This is the Dirac mass coupling left-handed neutrino to the right-handed anti­
neutrino, and similarly coupling right-handed neutrino to the left-handed 
anti-neutrino. 

M M-
2. Lex/3 = -mex/3(Y'ix)RY/3L + H.c. 

This is the Majorana mass term coupling left-handed neutrino to the left­
handed anti-neutrino and coupling right-handed neutrino to the right-handed 
anti-neutrino. 

The couplings can be combined into a single general expression, where the 
matrix M contains both the Dirac and Majorana terms, and all left-handed 
neutrinos and anti-neutrinos are grouped into a single mUlti-generation vector, e.g. 

Ye 

Yp 

YT 

YL = I -yC 
e 

yC 
P 

yC 
T 

L 

YR = 

Ye 

Yp 

YT 

yC 
e 

yC 
P 

~ 

R 

Then the most general Lagrangian will have the form 

L=-vRMYL, 

where 

M- L (
MD MM) 

- Mr/ M,D ' 

(38) 

(39) 

(40) 

* The Dirac y matrix convention used here is that of Bjorken and DreJl (1964), where the 
charge conjugation operator C = -e-1 = _CT = -eH = ;y2 yO and Y5 = y5 = ;yOyly2 y3 
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and Mt;! = (M~)* (Rosen 1984). The n x n mass matrices MD and M,D are the 
Dirac mass term matrices and M~.R are the Majorana mass term matrices. If in 
the above case M~.R == 0, then we have n Dirac neutrinos (Le. neutral particles 
with weak interaction properties similar to that of electron). If MD = M,D == 0, 
we have n Majorana particles, which are their own anti-particles. In the most 
general case there are 2n Majorana neutrinos, made up from 4n basic spin or 
solutions of the Dirac equation for each lepton generation in e, 11, T, ... etc., Le. 
the solutions are chosen in such a way so as to satisfy the charge conjugation 
requirement (35). In the above three cases only the Dirac neutrino conserves 
the total lepton number, since it has the same charge conjugation properties as 
that of charged leptons, Le. is invariant under the global gauge transformation, 
while the Majorana neutrino violates this conservation requirement and is 
not invariant under such an operation (e.g. Kayser 1984). This means that if 
neutrinos are of Dirac type, then the total lepton number of the universe will 
remain fixed, while only the conventional interactions take place. In general, 
if we define the neutrino mass eigenstates Vi and the weak eigenstates Voc 
then we have 

2n 

Voc = 2: UociVi, 
i=1 

(41) 

where U is a unitary matrix, and in the case of pure Dirac neutrinos the Uoci 
vanish for i> n if ()( .s; n, or for i.s; n if ()( > n, while for pure Majorana neutrinos 
the Uoci vanish for i.s; n if ()( .s; n, or for i> n if ()( > n (Bilenky and Petcov 1987). 

It is now necessary to establish the time evolution of the weak eigenstates 
Voc for an arbitrary particle phase space distribution given by focp(t,p). To 
do this we first consider a general density operator p(to) defining an initial 
neutrino state at t = to. Then at a later time t the evolution of this state 
operator is given by 

p(t) = e-iilO(t-to) p(to)eii4J(t-to) , (42) 

where ifo is the part-Hamiltonian including only the mass interaction and not 
the collision term. Also, if p does not depend explicitly on time then this 
may be expressed alternatively as 

op = i[p,j{o]. at (43) 

Let this operator now be the phase space density operator 1 containing particle 
statistics information, Le. p = f. The matrix element focp is then given by 
(Voc 111 vp). Applying this definition to the expression (43) gives 

and since 

a focp d A A A A A at = dt (voclflvp} = i[(voc lf.1lO I vp} - (voclJ{oflvp}], (44) 

(vocllj{olvp} = 2: (voclllvy}(VyIVi} (v;lifoIVj} (vjlvp} 
y,ij 

= 2: fOCyU;i t5ijEjUPi, 
y,ij 

(45) 
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because I Vi} are the energy eigenstates of the Hamiltonian :i-f and are an 
orthogonal set, then using (45) equation (44) may be rewritten as 

a ~ex/l = i '2. Ei(fexyU;P/li - fY/lU~iUYi)' 
t y,i 

(46) 

Therefore, together with equation (30), the complete kinetic equation for 
neutrino interactions may be written as 

( 01) +(01) (!dT _ 1 d5) - . - -at p op t T dt 35 dt =C[n+l[f,J{o]. (47) 

The right-hand side of (47) looks identical to that of Dolgov (1981). However, 
he considers the case with CP conservation where no permanent chemical 
potential may develop, although, if the conditions are right, an excess of 
neutrinos over anti-neutrinos (or vice versa) may be present at nucleosynthesis, 
leading to abundances of light elements different to those in the standard 
model. 

The energy Ei in equation (46) is quite clearly defined because the I Vi} 

are the eigenstates of the mass matrix and have the same momentum, and 
consequently the usual energy momentum relationship Er = p2 + mr applies, 
where P is the same for all particles i. From here on, the convention fexex == fex 
will be used in both mass and weak interaction eigenstate projection. 

(2c) Reduction of the Collision Term 

We shall now return to the collision term in (18) which, even with explicit 
insertion of the scattering matrix given by equations (34) and (32), still remains 
a cumbersome integral: 

I = f d 3Pal d 3Pb d 3pb' 4 4 
col (27T)3 (27T)3 (27T)3 (27T) 8 (Pal + Pb' - Pa - Pb)m~m&(1 - fal)(1 - fbI )fafb 

X '2.IM(Pa,PbIPal,Pb')I2. (48) 
S' 

This becomes after substitution for M and integration over d3Pal 

I = 16G2fd3Pb'd3Pb8(E I+E I-E -E )(Pa· Pb')(Pa' . Pb) 
col (27T)5 a b a b EaIEb'EaEb 

xfafb(l-fal)(l-fb'). (49) 

This integral remains very awkward to evaluate numerically, even when the 
kinematic angles are defined, because of the interdependence of the integration 
limits, in addition to its multidimensionality. It is therefore necessary to 
convert the integrand into a form where the integration limits and the integrand 
may be expressed more simply. This may be done in the centre of mass 
reference frame. Since the integral (14) is a four-scalar, then equation (48) must 
transform like the inverse of the zeroth component of a four-vector, hence the 
integral (49) multiplied by Ea must be a four-scalar and is therefore invariant 
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under Lorentz transformations. This means that the required transformation 
may be achieved using the Lorentz momentum transformation equations, where 
the variables in the centre of mass reference frame are denoted by an asterisk, 
and 

P~ + Pb = P~, + Pbl = 0 . (50) 

The Lorenz transformation parameters {3 and yare defined by 

{3 = Ptot/Etot = (Pa + Pb)/(Ea + Eb), (51) 

y = (l - {3 . (3)-1/2, (52) 

{3i = PilEi etc. (53) 

From the definition of the Mandelstam variables s, t and u, the value of (p*)2 
may be calculated using 

(p*)2 = [s - (ma + mb)2][s - (mal - mb')2]/4s, (54) 

(p'*)2 = [s - (mal + mb' )2][S - (mal - mb' )2]j4s, (55) 

and the product 

1 (2 2 2 2) Pa' . Pb = "Z ma + mb' - mal - mb + Pa . Pb'· (56) 

In the integration over the Pb the phase direction of the z-axis may be chosen 
along the direction of Pa without loss of generality, so that the phase integral 
contributes just 2rr to the total integral. Let us choose the direction of Pb 
from the z-axis (the azimuth angle) to be Os, so that the vector Pb is given by 

Pb = Pb(sin Os, 0, cos Os), (57) 

and the direction of the vector Pbt in the centre of mass frame is given by 
the azimuth angle 0* and phase cpo relative to the z-axis, so that 

Pbt = p'*(sin 0* cos cp*, sin 0* sin cp*, cos 0*). (58) 

Consequently the scalar product p~ . Pbt becomes 

p~ . Pbl = E~Ebt(l - {3~ . (3bt) 

= EaEbt y[l - {3 . (3a - y({3a - (3) . {3bt] (59) 

now 

{3 = (Ea{3a + Eb{3b)/(Ea + Eb) , (60) 
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and 

so that 

1 - {3 . {3a = Eb(1 - {3a . (3b)/(Ea + Eb), 

{3 - {3a = Eb({3b - (3a)/(Ea + Eb) I 

, , EaEbEb' { {3 {3 , 
Pa . Pb' = Ea +Eb y 1- a' b-y({3a -(3b) . {3b'} 

= ~aEbEb' y{l - {3a{3b cos Os - y{3i" [{3a cos 8* 
a+Eb 

- (3b(COS Os cos 0* + sin Os sin 0' cos <p*)]} 
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(61) 

(62) 

(63) 

It is now possible to reduce the integral (48) to a form with explicitly specified 
variables of integration 

I 1= 16G2 fdA..d( 0 2 p"(' *)( * * co (2rr)5 '¥ cos s)Pbdpbd(COS O*)d<p* Pa . Pb' Pa' . Pb) 
EaEa,Eb 

xfafb(1-fa,)(l-fb')' (64) 

where in equation (49) the last 8 function removes the factor (p" /Ei,,)dp' * from 
the integral. The four-vector scalar products may be expressed in the form 

P; . pi" =A+Bcos<p* I (65) 

and 

P;' . Pb = c + B cos <p* I (66) 

where from (63) 

A = ~aEb~i" y[l - {3a{3b cos Os - {3i" cos O*({3a - (3b cos Os)], (67) 
a + b 

B = ~Eb~i" y{3b{3i" sin Os sin 0* cos <p* I (68) 
a+ b 

and from (56) 

C 1 (2 2 2 2) A ="2 ma+mb'-ma,-mb + . (69) 

Also, since the energies of the outgoing particles a' and b' are given by 

Ea' = yE;,(1- (3{3~, cos 0*) , (70) 

Eb' = yEi,,(1 - (3{3i" cos 8*) I (71) 
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which are independent of the phase angle ¢*, then that ¢* integration may 
be done immediately, returning the expression 

f d¢*(p~ . Pbl)(p~, . Pb) = 2rr(AC + ~B2). (72) 

The collision integral may now be written as 

16C2 fOO 2 fU fl *P'*(AC+~B2) 
leol = -(2 )3 Pbdpb d(cos Os) d(cos 0) E E E 

rr (Pb)min -1 -1 a a' b 

xfafb(l-fa,)(l-flJl)' (73) 

where the integration limits (Pb)min and u are the limits on the magnitude 
of momentum of the second incoming particle and the collision angle Os. 
Physically, these limits define the critical incoming angles for any given set 
of momenta Pa and Pb', where u corresponds to the cosine of the smallest 
angle that the particle b'S line of flight may make with the z-axis. Similarly, 
(Pb)min gives the critical value of momentum Pb below which the collision 
cannot proceed. The value of u is one and that of (Pb)min is zero if the sum 
of the masses of the incoming particles is the same as that for the outgoing 
ones, otherwise the values of these parameters are given by 

. {I, u = mIn 2 
[m~ + mb - (mal + mb')2 + 2EaEb1l2PaPb, 

(74) 

and 

{m~ + mb - (mal + mlJl)2 + 2 [Ea(Eb)min + Pa(Pb)min]) ~ O. (75) 

The integral (73) therefore reduces to, at most, a three-dimensional integral. 

(2d) Full Neutrino Kinetic Equation without Oscillations 

The integral (73) cannot, in general, be evaluated analytically. In the case 
of spectra of the charged particles in (73), these may be assumed to be the 
Fermi-Dirac distributions if they are fermions. This means that the collision 
integral may be written in the form 

leol = f Pbdpb f d(cos Os) f d(cos O*)Tr(Pa, Pb, Pb', Os, e*)fafb(l- fal)(l - fIJI) 

(-)F 
= Crala, (76) 

where c~1 is a function of all the kinematic variables and the phase spaces 
of the unobserved particles, r is a reaction type label and 

_ 16C2 PbPIJI (AC + ~B2) . 
Tr - (2pi)3 EaEalEb 

(77) 

The term (76) is the rate integral for incoming particles a and b. If the 
particles a and b are outgoing, then the integral is very similar, except that 
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the labels on the spectral functions are changed, so that the total collision 
term for the process a + b -+ a' + b' is given by 

Cr[fa] = f p~dPb f d(cos 8s) f d(cos 8*)Tr(Pa,Pb,Pb l , 8s, 8*) 

x [fa,fb l (l- fa)(l- fb) - fafb(l- fa l )(I- fbI)] 

(+) I' HI' = cra(I- la ) -Crala' (78) 

Note that collision integral coefficients c~a in addition to kinematic factors 
also depend on the temperature T and the phase space density functions f 
of the particles involved in the collision. 

The quantity of interest, as far as the kinetic equation is concerned, is 
the total reaction rate for all the processes involving particle a, including 
annihilations and pair production. This is obtained by summing over all the 
possible reactions, e.g. 

a+b-+ a+b, (79) 

a+il-+b+b, (80) 

a + a' -+ b + b' , (81) 

where (79) is a usual scattering reaction, (80) is an annihilation-pair production 
reaction, and (81) is a reaction which changes weak flavour of the type 
Ve + e+ -+ v,., + J1+ or Ve + ii,., -+ e± + J1+ etc. Therefore we get 

C[fa] = L Cr[fa]. (82) 
r 

In the case of (79) the summation is over all the particle species present; in 
reactions (80) the summation is over particle-antiparticle pairs, while in (81) 

the summation is over all the available charged current reactions. 
From equation (78) it is quite clear that the collision term is a non-linear 

function of the spectral particle distributions functions fa and may be written 
as 

where 

[ I' 1 (+) ) HI' Cia =Ca (I-fa -Ca la, 

C(±) - ~c(±) 
a - L ra 

r 

(83) 

(84) 

are functions of the fa, so that (83) is in fact non-linear in the fa. The c~+) 
are the rates of creation of particle type a in vacuum, while c~-) are the 
destruction rates from an occupied state. Therefore equation (31), without 
oscillations may be written as 

s: [(+) I' HI' 1 Drab = uab Ca (1 - I a(q» - Ca I a(q) . (85) 
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(2e) Explicit Form for the Full Kinetic Equation 

It is now possible to combine equations (46) and (85) to form the complete 
expression that needs to be solved in order to investigate the effects of neutrino 
oscillation in detail during the expansion of the universe. The expression is 

Dfaj3 = i 2: Ek(fayUykUpk - fyj3UakU;k) 
y,k 

+ 8aj3[c~)(l- fa(q» - c~)fa(q)l. (86) 

For purposes of computation it may be assumed that Ek »mk to give the 
approximation 

Ek ""p+mV2p (87) 

and, using the unitarity relation for the matrix Ua j3, (86) may be reduced to 

Dfaj3 "" f 2: m~(fayU;kUj3k - f;j3UakUyk) 
p y,k 

+ 8aj3[c~)(l- fa(q» - c~)fa(q)]. (88) 

The general case of equation (86), when there are only two weak flavours, leads 
to a 4 x 4 mass coupling matrix from equations (39) and (40), and therefore 
16 spectral functions faj3 describe this system. Consequently, the problem 
as defined above, is highly computation intensive, as each function faj3 is a 
function of the scaled momentum q. 

It must be noted here that the collision term only involves the usual 
neutrino eigenstates, and is either absent from the left-handed anti-neutrino 
and right-handed neutrino states, or the coupling constant G is much weaker 
for those collisions, so these terms practically vanish at the time of interest. 
In the general case with two generations, only the first two equations of the 
system (86) will include the collision term, while in the case with n generations, 
there are 2n mass eigenstates and only the first n of the equations (86) include 
the collision term. 

3. Time Scales 

The combined kinetic equation (86) has three fundamental time scales 
associated with it. These are the shortest time scale for the oscillations, the 
mean interval between collisions and the time scale of the expansion of the 
universe, or the age of the universe. This last factor is of principal importance 
in establishing the scenario since if the expansion of the universe is too fast, 
then there is no time for any temporary equilibrium to occur. The approximate 
values and relationships to the age of the universe for these time scales are 
given below (and in McKellar and Granek 1982). 
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(3a) Age of the Universe 

The expansion rate of the universe is given by the equation for the Hubble 
parameter 

1 dR _ f8TTCN P _ k/R2. 
H=Rdt-~ 3 (89) 

so that the time scale tu is effectively given by H-l. Since the universe at the 
time of interest is assumed to be very hot and radiation dominated, then 

1 
tu - Te - ..jCNT2 • (90) 

where tu is the age of the universe and Te is the expansion scale of the 
universe. 

(3b) The Oscillation Time 

As may be easily shown, the shortest time scale for the oscillations is given 
by the equation 

T 
To - Llm~ • 

where 

Llm; = ~a,x I mr -mJ I • 
l>j 

and this may be written in terms of tu 

(3c) The Collision Time 

To - (Llm2tl/2C1/ 4)-1 * UN· 

(91) 

(92) 

(93) 

It may be noted from equations (77) and (78) that to the leading order, the 
collision rate is proportional to T5 with the coupling strength g2 = Cl,R and 
consequently, with the aid of equation (90), the mean collision time T e may 
be written as 

2 (rr- )5/2 Te - g- vCNtu • (94) 

where g is the total number of helicity states involved in collisions, counting 
1 per ultra-relativistic boson and 7/8 for ultra-relativistic fermion, while the 
contribution due to non-relativistic particles is reduced appropriately to account 
for their smaller numbers. 

(3d) Rate Comparison 

As was mentioned earlier, the time scales for the neutrino oscillations and 
the collision rate must be shorter than the age of the universe, i.e. Te, To < Tu 
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for these effects to play a significant role in the physical situation. Further it 
may be noted that while the mean time between collisions increases with time, 
the oscillation period is reduced, or in other words, the oscillations speed up. 
This means that if the expansion of the universe is not too fast, the neutrinos 
will be initially in their weak Hamiltonian eigenstate until the oscillations begin 
to take effect. Furthermore, if CP violations are to occur and the chemical 
potential asymmetry is to develop, it is essential that throughout most of the 
period preceding the decoupling of the left-handed neutrinos shortly before 
nucleosynthesis, the collision rate is fast and only some oscillation modes 
are faster, as will be shown shortly. The large collision rate is necessary to 
ensure that any deviations from equilibrium due to neutrino oscillations are 
quickly thermalised. 

From the the above argument and using (89) and (93) we may evaluate 
the lower limit on Llm~, which satisfies the requirement that TclTo ~ 1. This 
constraint on the left-handed neutrino species turns out to be Llm~ ~ 10-9 eY, 
which is well below the experimental limits to date (a number of experimental 
groups have undertaken to examine the possibility of neutrino oscillations 
and a range of results was reported at the Fourth Moriond meeting [Lanceri 
(CHARM collaboration) 1984; Wotschak 1984; Schreckenbach 1984; Conforto 
1984; Thenard 1984; Greenwood 1986; Durkin et al. 1988]. All the reports, 
when put together, restrict neutrino oscillations to either very small mixing 
angles or to Llm2 ~ 0·2 ey2, while Yanucci (1984) reduces this constraint to 
Llm2 ~ 0·01 ey2. This is probably also an appropriate place to mention some 
recent results concerning the number of weakly interacting species. Some 
recent laboratory experiments reported by the L3 (Adeva et al. 1989), ALEPH 
(Decamp et al. 1989), OPAL (Akrawy et al. 1989) and DELPHI (Aarnio et al. 1989) 
collaborations (Close 1989; Dydak 1991; Carter 1992) constrain the number 
of weak neutrino flavours with light masses to 2· 99±0· 05. 

In order that the transition probabilities 

LP(Va; 0 ..... vf3; t) ~ LP(va; 0 ..... v/3; t) ~ 1 (95) 
a a 

may be satisfied, where the sums are taken over the particles present rather 
that all possible interactions, at least one, but not all, of the Llm~, must satisfy 
the requirement To < TU before the neutrino weak interactions decouple. 

Let us now consider the right-handed neutrino components. These may 
(but this is not essential for the model) interact superweakly with the coupling 
constant GR «GL, then they will have decoupled from the rest of the universe 
at some early stage at temperature TN. and from then on they expand with 
-temperature TR. Then as the universe cools and expands adiabatically, as in 
the conventional model, the various species annihilate and convert to photons, 
the weak neutrino flavours and e±. This process heats up this coupled gas to 
the temperature h such that 

TR = ({JB - {JA )1/3 , 
TL {JB 

(96) 

where {JB is the number of weakly interacting spin states just after the 
decoupling of the right-handed interactions and before annihilations, while 
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9A is the number of the spin states that have annihilated by the time the 
oscillations become significant, where we count 1 for each boson state and 
7/8 for each fermion state. We also assume that none of the spin states, 
other than the right-handed neutrinos, decouple before practically complete 
annihilation. 

The fraction (96) need not be very small (e.g. a value of O· 1 means that 
in excess of 5000 spin states have annihilated), but since the temperature 
enters the number densities as T3, this means that nYL »nYR before the 
commencement of oscillations. 

(3e) CP Non-conservation 

The transition probability P(oc -+ f3) may be derived from equation (41) (e.g. 
Bilenky and Petcov 1987) using 

P(oc ---+ f3) = a*(oc ---+ f3)a(oc ---+ f3) 

= ~ I U~kU/3kUPIUccil cos (Ll;Zfl t -cPk/;CC/3) • 
k,l P 

(97) 

while 

- - '" * * I (Llmfl ,J,. ) P(oc---+f3)=LIUiickUPkUpPiicl cos -2-t+'f'kl;iic/3 •• 
k,l P 

(98) 

where 

cPkl;cc/3 = arg(U~kU/3kUiJlUccl), (99) 

and the imaginary part may be ignored since it must cancel for P to be real. 
It may be noted firstly that the phase cPkl;cc/3 occurs with an opposite sign 

in (97) and (98) and consequently it is not essential that P(oc ---+ f3) = P(6< ---+ B), 
provided not all cPkl and Llmfl vanish. It has been shown by several authors 
(e.g. Kobayashi and Maskawa 1973; Cabbibo 1978) that this effect, which 
violates CP conservation, requires an additional constraint of at least three 
non-degenerate mass eigenstates entering the mixing scheme (41), and under 
such circumstances maximal CP violations may occur. 

4. Lepton Number Non-conservation during Expansion 

In view of the possibly unequal transition probabilities between the transitions 
Vcc ---+ v/3 and Vcc ---+ V/3, it is possible to envisage a scenario where the net lepton 
number L = ny", - nv", for species ()( is not conserved. 

The evolution of the universe is thought to occur as follows. Initially, when 
the oscillation length of the so-called sterile neutrinos becomes shorter than 
the size of the universe, they freely oscillate into the weakly interacting ones 
because their typical energy is much lower, and the weakly interacting neutrino 
oscillations are suppressed by the collisions with other weakly interacting 
particles. These collisions lead to regeneration of the weak eigenstates, 
while the subsequent thermalisation results in a very slight increase in the 
temperature of the universe (Khlopov and Petcov 1981, seem to have changed 
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their mind about this stage of the evolution in their errata). This leads 
to almost complete extinction of the sterile component, but eventually the 
temperature of the weakly interacting neutrinos drops sufficiently low so that 
the neutrinos at the low energy end of the spectrum begin to oscillate faster 
than they collide and turn back into the sterile component, i.e. they leak out of 
the thermal distribution at an increasing rate as the universe cools. This occurs 
when the temperature of the universe drops down to, say, below 100 MeV, so 
that when the oscillations of the weakly interacting neutrinos commence, the 
left-handed neutrinos will initially oscillate into the sterile components at a 
different rate to the right-handed anti-neutrinos. At the same time inelastic 
collisions will attempt to thermalise the weak eigenstates by generating more 
vii pairs, effectively cooling the photon-electron gas and accelerating the 
oscillations. This process is expected to continue until the number of sterile 
neutrinos has increased sufficiently, so that the reverse oscillations just cancel 
the oscillations from the weak eigenstates. The situation now is one where 
the weakly interacting neutrinos have not decoupled from the rest of the 
universe, but the oscillations are much faster than the collisions. 

The scenario described here is that of non-equilibrium evolution, that is, 
while the neutrino oscillations are developing, the neutrino gas exists mainly 
in the form of weakly interacting eigenstates. This situation is rapidly rectified 
as the oscillations develop and speed up as a result of (93) until the system 
attains new equilibrium form, where number density operator { is diagonal 
with respect to the Hamiltonian iro, i.e. 

[{,iro] = O. (lOO) 

This eliminates the oscillation term from the kinetic equation (see e.g. 47). The 
collision term will enforce an equilibrium distribution for the system through 
collisions. Consequently, the system (86) will be characterised at that stage 
by mass eigenstate distributions given by the Fermi-Dirac distribution 

fij = 8ij(l + exp(Ei/T - ~i»-l , (101) 

with ~i being the chemical potentials for the various mass eigenstates, not all 
equal to zero and, in general, different to each other. 

It must be noted here that what we call equilibrium before the commencement 
ofthe oscillations is not the same equilibrium as that attained through oscillations, 
because effectively, a new type of interaction that ultimately dominates the 
neutrino interactions, is involved. 

5. Mass Eigenstate Representation of Boltzmann's Equation 

The kinetic equation (86) or the approximation (88) form a set in the weak 
interaction basis. As oscillations become the dominant process, however, it 
becomes very important to know the form of the distribution function in the 
mass Hamiltonian basis, particularly since in complete thermal and oscillation 
equilibrium it is the mass eigenstates that acquire the Fermi-Dirac type particle 
distribution. 
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The transformation of (88) is done with the aid of the unitary matrix U, so 
that 

and then (88) becomes 

flm = L U;IU/3mflX/3. 
1X,/3 

Dflm = _i.1;fm flm + L U~IU/3mCIX(~/3 - flX/3)D IX/3. 
P IX 

where 

CIX = c~) + c~) • 

and 

DIX/3 
.cO = H (+) 
11X/3 1 +CIX IclX 

(102) 

(103) 

(104) 

(105) 

gives the equilibrium distribution function of the weak eigenstate basis at any 
given time t. It may also be shown that the collision term is responsible for 
regeneration similar to that of the K meson (Okun 1982, chapter ll), where 
CIX is equivalent to the scattering amplitude. The transition amplitude is given 
by the off-diagonal coefficients of the flm. This could also be made valid for 
neutrino oscillations in matter, of the MSW type, discussed by (Wolfenstein 
1979; Mikheyev and Smirnov 1985; Rosen 1986; Bahcall and Haxton 1989 etc.). 

The equation (103) may now be rewritten in another form: 

AA i A A AA A 

Df+ 2pMLlf+Tf=Z. (106) 

where D is a differential operator. as before, f may now be thought of as 
a vector whose each element has the original matrix f labels 1m, MLl is a 
diagonal matrix in the mass eigenstate basis with diagonal elements .1mfm and 
T is the hermitean collision matrix operator with elements 

Tlm;ij = L UIXIU~mUlXiU~jCIX = Tji;ml. (107) 
IX 

where ij and 1m make up one index each, while 

Z=Tf1!v. (108) 

and rg. is the operator that represents the instantaneous equilibrium tendency 
of the system in the absence of oscillations. 

Since the operator D here is just an ordinary time differential operator, 
then equation (106) may be immediately written in an integral form 

f = U:o dt'z(t')exp{fo dt"[iMLl/2p + T(t")]}) 

x exp{ - (0 dt'[iMLl/2p + T(t)]}. (109) 
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It is also easy to show t: 

~ H ~ ~ 

(Mtl)/m;ij = (Mtl)ji;m/ = -(Mtlhm;ij, (110) 

because the matrix is both symmetric and .1mfm = -.1m~/, so that the operators 
inside the square brackets in equation (109) may be diagonalised to give 

iMtl/2p + t = VAVH = :if; , (11l) 

where A is a diagonal matrix operator (with N2 non-zero elements), while V is a 
N2 XN2 unitary matrix. The equation (11l) represents the neutrino interaction 
Hamiltonian Hi, with Z representing a forcing term due to interactions with 
other particles in the system. The instantaneous neutrino state vector is given 
by 

h = VfM, (112) 

and this shows that in the absence of collisions h = fM, while if the matrix 
Mtl = 6, then V = U and so h = fw, the weak interaction eigenstate. It may also 
be shown, by expanding equation (109) with respect to time, that 

fM(t +.1t) = if;-1 Z + e-ilitlt(fM(t) - if;-1 Z) + O(.1t)2 , (113) 

so that when collision rates are fast, the computation of the phase space 
distribution functions effectively consists of computing the total interaction 
Hamiltonian consisting of :if; and Z. Note that equation (113) may be rewritten 
in a form resembling the relaxation time approximation to the Boltzmann 
equation (see e.g. Reif 1965, chapter 13), if the equilibrium phase space 
distribution operator is defined as 

1Rt = j£-1 Z I , 

and an operator t-1 as 

t-1 = :if; , 
resulting in the usual expression 

dfM ::; _t-1 (fM -lRt). 
dt 

(114) 

(115) 

(116) 

Now with the aid of equation (108) we find that the operator if;-lt transforms 
the equilibrium tendency operator in the absence of oscillations to the one 
in the case where neutrino oscillations are present, i.e. 

co ~ -1 ~ co 
1M = Jf; T/ w· (117) 
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6. Simplified Version of Boltzmann's Equation 

Let us now return to the kinetic equation (86) to try to simplify it somewhat. 
Even if some of the assumptions that are made are not entirely true, it is 
hoped that at least the leading order results may be obtained from such a 
system. 

The collision term in (86) may be written in the form resembling a relaxation 
equation 

e[fa] = c~)(1- fa) - c!;)fa = (f~ - fa)/Tc, (1l8) 

where (Tda = c;.l is defined by equation (104), fa = faa and fg = f~a so that 
if this system tends to equilibrium, the expression (1l8) must tend to zero, 
where fg = fg(q, t) with the collision rate being given by Tc = (Tda(q, t). The 
equation (1l8) may be simplified for the purpose of computation by assuming 
that (Tda is a constant (at least with respect to q), and also by making some 
assumption about the form of ,g, e.g. by saying that it has some sort of 
average behaviour of the collision integrals c~) given in Sections 2c and 2d: 

(+) 
Cra = «(1 - f(3)f al f{3la'(a' (3' --+ a(3)} 

~ naln{3lu(a' {3' --+ a{3; i-r)e(Q,-ic)/T , (119) 

where na are the particle number densities, u is some average cross section 
for the process a'{3' --+ a{3, r is its label and i-r is the Hamiltonian for this 
process. The remaining factor is the Boltzmann factor for creation of the 
particle a in the reaction r with a given value of Q = Qr and temperature T. 
The other term may be written in a similar manner: 

H Cra = «(1-fa/)(l-f{3/)f{3a"(a{3--+ a'{3')} 

~ n{3u(a{3 --+ a' (3'; i-r)e-Q,/T (120) 

and the total rates c~) and c!;) are obtained by summing over all possible 
reactions Y. At this stage t and 1~ may be evaluated using equations (105) 
and (l06), so that if; and Z may be evaluated at each time step with the 
aid of equations (108) and (lID). Given that the mixing matrix U (equation 
41) and the matrix Mil are defined, then the iteration, as defined by equation 
(1l3) may be computed resulting in the phase space density functions at the 
new time t + Llt. This procedure can then be repeated until all reactions of 
interest decouple. 

7. Summary and Discussion 

We have dealt here with the possibility of generation of a significant 
neutrino chemical potential with the aid of neutrino oscillations. The scenario 
requires neutrinos to have non-zero masses and also that these masses not 
all be degenerate, but the differences squared between some of them must be 
;:: 10-9 eV. In addition to the usual weakly interacting species, the scheme also 
requires superweakly interacting neutrinos which decouple from the rest of 
the universe at a very early time, well before the weakly interacting species 
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begin to oscillate. This leads to the numbers of such neutrino species being 
very low, much lower than the number of weakly interacting species because 
of the temperature difference. When an appropriate mass matrix is chosen and 
mass eigenstates satisfy the above requirements, then the rates of oscillation 
of the left-handed neutrino species will be different from the rates for the 
anti-neutrino counterparts. At the same time the weak interactions attempt 
to compensate for the oscillations by production or annihilation of vii pairs. 
These interactions also shift the neutrino distributions in momentum space. 
These CP violating processes will continue until the reaction rates in both 
directions are in balance, but the excess will not be destroyed, since the 
system attains a new form of equilibrium that includes the oscillations. A 
recent argument (Enqvist et al. 1990) suggesting that if B - L is conserved 
[where B(L) is the total baryon (lepton) number of the universe], then large 
neutrino asymmetry cannot develop is true in this case as well, as they assume 
only two neutrino species (see Section 3e). 

In Section 2 mathematical formalism for the kinetic interactions was 
introduced, based on the electro-weak theory and the theory of neutrino 
oscillations in vacuum. These were combined into a general expression for 
the coupled sets of kinetic equations in the weak interaction space. Equation 
(47) represents the kinetic equation for oscillating neutrinos interacting via 
collisions with other matter in the expanding universe, while equation (46) 
gives a low mass approximation for the oscillation term. 

The model theory has been developed to the stage where either the 
suggested collision term approximation may be used to estimate the effect 
of oscillations on the neutrino chemical potential, or an alternative technique 
for quick and efficient evaluation of the collision term must be found. One 
potential deficiency of the collision term approximation suggested in Section 
6 is that the flow of particles in momentum space is not well accounted 
for, and consequently that approximation is unlikely to be adequate on its 
own. In other words, a more satisfactory approximation will require higher 
momentum derivatives of f, probably up to at least the second order, since 
the processes here are similar to some of those discussed elsewhere (Granek 
1988; Granek and McKellar 1990). Details of such an expansion are beyond 
the scope of the present paper; however, we would like to suggest that if the 
system is considered close to equilibrium for most of its evolution time, then 
modifications to the linear theories, as discussed by deGroot et al. (1980), 
could lead to a form more reasonable from the computational point of view. 
The computation itself needs to be done to fully test this model, but we shall 
not attempt it for now. 

Acknowledgments 
The authors would like to thank Dr Ian G. Enting at the CSIRO Division of 

Atmospheric Research for assistance with the sometimes tedious conversion 
of this manuscript from Lotus Manuscript format to LaT£'{. 

References 
Aarnio, P., et al. (DELPHI collaboration) (1989). Phys. Lett. B 231, 539. 
Abazov, A. I. (SAGE) (1988). Proc. XVI INS Int. Symp. on Neutrino Mass and Related Topics, 

Tokyo, March 1988 (Eds S. Kato and T. Ohshima), p. 313. 



Kinetic Equation with Neutrino Oscillations 615 

Acker, A., Pakcasa, S., and Pantaleone, J. (1990). The solar neutrino problem: Some old solutions 
revisited. Univ. California Riverside Preprint UCRHEP-T61; Univ. Hawaii UH-511-710-90. 

Adams, E. N. (1988). Phys. Rev. D 37, 2047. 
Adeva, B., et al. (L3 collaboration) (1989). Phys. Lett. B 231, 509. 
Aglietta, M., et al. (LSD at Mont Blanc) (1988). Proc. XVI INS Int. Symp. on Neutrino Mass and 

Related Topics, Tokyo, March 1988 (Eds S. Kato and T. Ohshima), p. 329. 
Akrawy, M. Z., et al. (OPAL collaboration) (1989). Phys. Lett. B 231, 530. 
Bahcall, J. N. (1989). 'Neutrino Astrophysics' (Cambridge Univ. Press). 
Bahcall, J. N., and Haxton, W. C. (1989). Phys. Rev. D 40, 931. 
Barbieri, R., and Dolgov, A. (1990). Phys. Lett. B 237, 440. 
Barbieri, R., and Mohapatra, R. N. (1988). Phys. Rev. Lett. 21, 67. 
Barish, B. (1992). European High Energy Physics Conference and Lepton-Photon Conference, 

Geneva (to be published). 
Bergkvist, K. E. (1985a). Phys. Lett. B 154, 224. 
Bergkvist, K. E. (l985b). Phys. Lett. B ISS, 408. 
Bilenky, S. M., and Petcov, S. T. (1987). Rev. Mod. Phys. 59, 671. 
Bjorken, J. D., and Drell, S. D. (1964). 'Relativistic Quantum Mechanics' (McGraw-Hill: New 

York). 
Boesgaard, A. M., and Steigman, G. (1985). Annu. Rev. Astron. Astrophys. 23, 319. 
Borge, M. J. G., De Rujula, A., Hansen, P. G., Jonson, B., Nayman, G., Ravn, H. L., Rusager, K., 

and the ISOLDE Collaboration (1986). Phys. Scr. 34, 591. 
Boris, S., Golutvin, A., Laptin, L., Lubimov, V., Novikov, E., Nagvizin, V., Soloshenko, V., 

Tihomirov, I., and Tretjakov, E. (1985). Phys. Lett. B 159, 217. 
Boris, S., Golutvin, A., Laptin, L., Lubimov, V., Nagovizin, V., Nozik, V., Novikov, E., Soloshenko, V., 

Tihomirov, I., and Tretjakov, E. (1987). Phys. Rev. Lett. 58, 2019. 
Burrows, A. (1988). Astrophys. J. 328, LSI. 
Cabbibo, N. (1978). Phys. Lett. B 72, 333. 
Carter, J. R. (1992). European High Energy Physics Conference and Lepton-Photon Conference, 

Geneva (to be published). 
Close, F. (1989). Nature 342, 619. 
Conforto, G. (1984). Proc. 4th Moriond Workshop on Massive Neutrinos in Astrophysics and 

in Particle Physics (Ed. J. Tran Thanh Van), p. 133 (Editions Frontieres). 
Cowsik, R. (1988). Phys. Rev. D 37, 1685. 
Daniel, H., Hiddemann, K.-H., and Schwentker, o. (1988). Proc. XVI INS Int. Symp. on Neutrino 

Mass and Related TopiCS, Tokyo, March 1988 (Eds S. Kato and T. Ohshima), p. 125. 
Dar, A., Goodman, J., and Nussinov, S. (1987). Phys. Rev. Lett. 58, 2146. 
David, Y., and Reeves, H. (1980). Les Houches XXXII Conf. on Physical Cosmology (Eds R. Balian 

et al.), pp. 443-62 (North Holland: Amsterdam). 
Davis, R. Jr (1980). Proc. Neutrino Mass Miniconf. (Eds V. Barger and D. Cline), p. 38 (Univ. 

Wisconsin Press). 
Davis, R. Jr, Harmer, D. S., and Hoffman, K. C. (1986). Phys. Rev. Lett. 20, 1205. 
Decamp, D., et 01. (ALEPH collaboration) (1989). Phys. Lett. B 231, 519. 
deFroot, S. R., van Leeuwen, W. A., and van Weert, Ch. G. (1980). 'Relativistic Kinetic 

Theory-Principles and Applications' (North Holland: Amsterdam). 
De Leener-Rosier, N., Deutsch, J., and Prieels, R. (1987). Phys. Rev. Lett. 59, 1868. 
Deliyannis, C. P., Demarque, P., Kawaler, S. D., Krauss, L. M., and Romanelli, P. (1989). Phys. 

Rev. Lett. 62, 1583. 
Denegri, D., Sadoulet, B., and Spiro, M. (1990). Rev. Mod. Phys. 62, I. 
Dolgov, A. D. (1981). Sov. J. Nucl. Phys. 33, 700. 
Durkin, L. S., et al. (1988). Phys. Rev. Lett. 61, 1811. 
Dydak, F. (1991). Proc. 25th Int. Conf. on High Energy Physics (Eds K. K. Phua and Y. Yamaguchi), 

p.3. 
Enqvist, K., Kainulainen, K., and Maalampi, J. (1990). Phys. Lett. B 244, 186. 
Fritschi, M., et al. (Zurich group) (1986). Phys. Lett. B 173, 485. 
Granek, H. (1988). Ph.D. Thesis, Univ. Melbourne. 
Granek, H., and McKellar, B. H. J. (1981). Univ. Melbourne Report UM-P-81/87. 
Granek, H., and McKellar, B. H. J. (1991). Int. J. Mod. Phys. A 6, 2387. 



616 H. Granek and B. H. J. McKellar 

Greenwood, Z. D. (1986). Proc. AlP Conf. 150 on Intersections between Particle and Nuclear 
Physics, Lake Louise, Canada (Ed. D. F. Geesaman), p. 1042. 

Hetherington, P. W., Graham, R. L., Lone, M. A., Geiger, J. S., and Lee-Whiting, G. E. (1987). 
Phys. Rev. C 36, 1504. 

Hirata, K. S., et al. (KAMIOKANDE-II) (1988). Proc. XVI INS Int. Symp. on Neutrino Mass and 
Related Topics, Tokyo, March 1988 (Eds S. Kato and T. Ohshima), p. 226. 

Hobbs, L. M. (1987). Proc. 13 th Texas Symp. on Relativistic Astrophysics, Chicago (Ed. M. P. Ulmer), 
p. 185 (World Scientific: Singapore). 

INS group (1987). Phys. Lett. B 187, 198. 
INS group (1988). Proc. XVI INS Int. Symp. on Neutrino Mass and Related Topics, March 1988 

(Eds S. Kato and T. Ohshima), p. 82. 
Kayser, B. (1984). Proc. 4th Moriond Workshop on Massive Neutrinos in Astrophysics and in 

Particle Physics (Ed. J. Tran Thanh Van), p. 11 (Editions Frontieres). 
Khlopov, M. Yu., and Petcov, S. T. (1981). Phys. Lett. B 99, 520. 
Kobayashi, M., and Maskawa, T. (1973). Prog. Theor. Phys. 49, 652. 
Krauss, L. M. (1984). Phys. Lett. 53, 1976. 
Krivoruchenko, M. I. (1988). Sov. J. Nucl. Phys. 48, 306. 
Kundig, W., Fritschi, M., Holzschuh, E., Stussi, H., and Wang, Z. (1988). Provo XVI INS Int. Symp. 

on Neutrino Mass and Related Topics, Tokyo, March 1988 (Eds S. Kato and T. Ohshima), p. 96. 
Lancieri, L. (CHARM collaboration) (1984). Proc. 4th Moriond Workshop on Massive Neutrinos 

in Astrophysics and in Particle Physics (Ed. J. Tran Thanh Van), p. 73 (Editions Frontieres). 
Lattimer, J. M., and Cooperstein, J. (1988). Phys. Lett. 61, 23. 
Lindley, D. (1985). Astrophys. J. 294, 1. 
Lubimov, V. (1988). Proc. XVI INS Int. Symp. on Neutrino Mass and Related Topics, Tokyo, 

March 1988 (Eds S. Kato and T. Ohshima), p. 115. 
McKellar, B. H. J., and Granek, H. (1980). Proc. Neutrino Mass Miniconf. (Eds V. Barger and 

D. Cline), p. 165 (Univ. Wisconsin Press). 
McKellar, B. H. J., and Granek, H. (1982). Proc. Neutrino Mass Miniconf. (Eds V. Barger and 

D. Cline), p. 91 (Am. Inst. Phys.: New York). 
Manohar, A. (1987). Phys. Lett. B 186, 370. 
Matsumoto, T., Hayakawa, S., Matsuo, H., Murakami, H., Sato, S., Lange, A. E., and Richards, 

P. L. (1988). Astrophys. J. 329, 567. 
Mikheyev, S. P., and Smirnov, A. Yu. (1985). Sov. J. Nucl. Phys. 42, 913. 
Mikheyev, S. P., and Smirnov, A. Yu. (1988). Proc. 7th Moriond Workshop on New and Exotic 

Phenomena, Les Arcs, France, p. 405. 
Mohapatra, R. N. (1988). APS-DPF Meeting, Storrs, Connecticut, August 1988. Univ. Maryland 

Report No. 89-070. 
Mohapatra, R. N., and Nussinov, S. (1989). Phys. Rev. D 39, 1378. 
Molaro, P. (1987). Astron. Astrophys. 183, 241. 
Nakamura, K. (1991). Proc. 25th Int. Conf. on High Energy Physics (Eds K. K. Phua and 

Y. Yamaguchi), p. 281. 
Okun, L. B. (1982). 'Leptons and Quarks' (North Holland: Amsterdam). 
Olive, K. A., Schramm, D. N., Steigman, G., Turner, M. S., and Yang, J. (1981). Astrophys. J. 

246, 557. 
Pakvasa, S. (Borex) (1988). Proc. XVI INS Int. Symp. on Neutrino Mass and Related Topics, 

Tokyo, March 1988 (Eds S. Kato and T. Ohshima), p. 291. 
Reif, F. (1965). 'Fundamentals of Statistical and Thermal Physics' (McGraw-Hill: New York). 
Rood, R. T., Bania, T. M., and Wilson, T. L. (1987). Proc. 13th Texas Symp. on Relativistic 

Astrophysics, Chicago (Ed. M. P. Ulmer), p. 180 (World Scientific: Singapore). 
Rosen, S. P. (1984). Proc. 4th Moriond Workshop on Massive Neutrinos in Astrophysics and 

in Particle Physics (Ed. J. Tran Thanh Van), p. 53 (Editions Frontieres). 
Rosen, S. P. (1986). Proc. Summer Study on the Physics of the Superconducting Supercollider, 

Snowmass, Colorado, p. 681. 
Rosen, S. P., and Gelb, j. M. (1989). Phys. Rev. D 39, 1989. 
Sarkar, S., and Cooper, A. M. (1984). Phys. Lett. B 148, 347. 
Schramm, D. N. (1987). Proc. Leptonic Session of the 22nd Recontre de Moriond, Vol. I, 

Les Arcs, France (Ed. j. Tran Thanh Van), pp. 123-33 (Editions Frontieres). 



Kinetic Equation with Neutrino Oscillations 617 

Schreckenbach, K. (1984). Proc. 4th Moriond Workshop on Massive Neutrinos in Astrophysics 
and in Particle Physics (Ed. J. Tran Thanh Van), p. 125 (Editions Frontieres). 

Simpson, J. J. (1984). Phys. Rev. D 30, 1110. 
Simpson, J. J. (1986a). Proc. 6th Moriond Workshop on Massive Neutrinos in Physics and 

Astrophysics, Tignes, France (Ed. j. Tran Thanh Van) (Editions Frontieres). 
Simpson, J. J. (1986b). Phys. Lett. B 174, 113. 
Thenard, J. M. (1984). Proc. 4th Moriond Workshop on Massive Neutrinos in Astrophysics 

and in Particle Physics (Ed. j. Tran Thanh Van), p. 143 (Editions Frontieres). 
Tremaine,S., and Lee, H. M. (1987). In 'Dark Matter in the Universe', Vo\. 4 (Eds J. Bahcall et 

al.), p. 103 (World Scientific: Singapore). 
Vanucci, E (1984). Proc. 4th Moriond Workshop on Massive Neutrinos in Astrophysics and 

in Particle Physics (Ed. J. Tran Thanh Van), p. 45 (Editions Frontieres). 
von Feilitzsch, E, and Oberauer, L. (1988). Phys. Lett. B 200, 580. 
Wagoner, R. V. (1969). Astrophys. J. Suppl. 18, 247. 
Weinberg, S. (1972). 'Gravitation and Cosmology' (Wiley: New York). 
Wilkerson, J. E, Bowles, T. J., Browne, J. c., Maley, M. P., Robertson, R. G. H., Cohen, J. 5., 

and Martin, R. L. (1987). Phys. Rev. Lett. 58, 2023. 
Wolfenstein, L. (1979). Phys. Rev. D 20, 2634. 
Wotschak, J. (1984). Proc. 4th Moriond Workshop on Massive Neutrinos in Astrophysics and 

in Particle Physics (Ed. J. Tran Thanh Van), p. 85 (Editions Frontieres). 
Zaglauer, H. W., and Schwarzer, K. H. (1987). Phys. Lett. B 198, 556. 
Zel'dovich, Ya. B., and Khlopov, M. Yu. (1981). SOY. Phys. Usp. 135, 733. 
Zhaol, G., Zhao, Y., Huang, J., Feng, L., Huang, K., Peng, Q., and Lu, T. (1988). Astrophys. Sp. 

Sci. 141, 167. 
Zlimen, I., Kaucic, 5., Ljubicic, A., and Logan, B. A. (1988). Phys. Scr. 38, 539. 

Manuscript received 22 October 1990, accepted 20 June 1991 






