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Abstract 

Assuming that space-time is accompanied by hidden anticommuting coordinates, we have 
constructed 'fermionic' generalisations of the Dirac equation; these equations involve matrices 
(which can be construed as operating in an internal space) multiplying the Grassmann 
derivatives. We discuss several models, of varying degrees of complexity, with 'internal 
symmetries' including Sp(2) and SU(N). By appending the space-time Dirac operator, one 
is led to mass spectra with quantised values, suggesting that this approach may provide a 
model relating generations to internal symmetries. 

1. Introduction 

It is an attractive notion that any hidden additional space-time coordinates are 
fermionic in character rather than bosonic. An assumption of this type produces 
strongly constrained theories and leads to models with finite internal degrees of 
freedom; they are thus more amenable to experimental verification than models 
based on extra bosonic coordinates, where an infinite tower of states is usually 
entrained and one has to ensure that the higher excitations are sufficiently massive 
so as not to conflict with the known low-energy particle spectrum. 

The idea is not new. It originated in Fermi-Bose supersymmetry and has 
been applied to superparticles; for a review with a phenomenological emphasis 
see Ross (1985), while the technical complexities are discussed by, for instance, 
Lindstrom et al. (1990 and references therein). The idea has also been applied 
to superstrings (see e.g. Green et al. 1987), as well as providing a framework for 
extended BRST symmetry and the ghost spectrum in gauge theory (Bonora and 
Tonin 1981; Delbourgo and Jarvis 1982; Twisk and Zhang 1988). The concept has 
been advocated as a nice way of handling spin and picturing internal symmetry, 
with the choice of coordinates and superwave functions reflected in the resultant 
gauge group and the associated particle representations (Delbourgo 1988). It is 
even possible to contemplate a Kaluza-Klein generalisation of general relativity 
which encompasses fermionic coordinate extensions (Delbourgo and Zhang 1988). 

In two earlier papers (Delbourgo et al. 1989, 1990) we examined the consequences 
of a Grassmann scheme for quantum-mechanical models where the Hamiltonian 
H is a hermitian function of two (or more) fermionic coordinates. Generally H 
can be written as a harmonic, quadratic function of pairs of Grassmann variables 
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and their conjugate momenta plus anharmonic terms which are finite in extent 
because of the terminating character of Taylor expansions of anticommuting 
quantities. As a result, problems of this type are always completely soluble in 
principle and often in practice. 

In this paper, we would like to follow in Dirac's footsteps and look for a 
'square root' of the harmonic Hamiltonian, 

"""'( 1 2 1 2) H = ~ PkPk +XkXk , 

k 

which is the sum of k pairs of conjugate fermionic variables. Notice that we 
are not allowed to take the Hamiltonian as only the square of the Grassmann 
momenta P, because this is not strictly hermitian (the hermitian conjugate of 
the Grassmann variable x is the differential operator d / dx); the addition of the 
square of coordinates is essential for restoring hermiticity. In this respect we 
are departing from Dirac's brief. However, Moshinsky and Szczepaniak (1989) 
have demonstrated that this is not a very radical departure by square-rooting 
the bosonic harmonic Hamiltonian. Here we want to carry out the same thing 
but in a fermionic setting, which is why we have entitled our article a study of 
Fermi-Dirac equations. 

When the square root of the Hamiltonian is obtained in the form Q.D where 
D is some linear combination of x and P, and Q are the associated 'internal' 
matrices, it is generally true that the square (Q.D)2 equals a constant plus an 
operator whose eigenvalues sum to zero. We show this in the next section. There 
we also present the simplest model of this sort; it has an invariance which might 
be considered 'rotations around the z axis in symplectic space'; it does not have 
full Sp(2) invariance, but rather functions as a dynamical operator, very similarly 
to its role in the 0(4,2) formalism for the hydrogen atom (Wybourne 1974; Barut 
and Bohm 1970). 

Our preference is a different Hamiltonian which is an invariant under combined 
Sp(2) rotations of coordinates and 'internal spin', as that is in direct analogy to 
the Lorentz invariance of the ordinary Dirac equation. Therefore we construct 
in Section 3 an appropriate linear combination of coordinates and momenta, 
multiplied into related matrices, which possesses this Sp(2) symmetry. At first 
we do so for k = 1. 

The generalisation to higher k values may be done in more than one way. 
In Section 3b we consider the most straightforward approach. This has a 
permutation symmetry among the Grassmannian coordinates of different index; it 
has the unusual feature that the component operators for the different coordinates 
anticommute rather than commute. 

A more common internal symmetry group is SU(N). It turns out that there 
is more than one way to write the SU (N) generators within this framework. 
Two of these methods are demonstrated in Sections 4 and 5; both lead to the 
same invariant Hamiltonian. In the final section we adjoin these Grassmann 
coordinates to space-time and consider the full Fermi-Dirac equation to determine 
the repercussions for the mass matrix. 
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2. Grassmann Coordinates and Matrices 

(a) Internal Space Operators 

Let us begin by briefly summarising our notation. We are dealing with 
coordinate pairs of fermionic variables xl and x% and their conjugate momenta, 

p% = i8/8xl = -Pkb p}. = -i8/8x% = Pk2, (1) 

connected with the raising and lowering index rules, 

Pkr = 7]rsP'k; 7]21 = 7]12 = 1 , (2) 

and in agreement with the 'Heisenberg commutation relations', 

{ r S} . rS8 xk,Pl = ~7] kl, {Xk' xl} = {Pk,Pl} = o. (3) 

For this purpose, note that the index k is a spectator, simply serving to count 
the number of independent pairs. 

All of this may look more familiar if one defines creation and annihilation 
operators, 

A! = (x}. + ip}.)/v'2 = (8/8x% + x}.)/v'2, 

Ak (x% - iP%)/v'2 = (8/8x}. + x%)/v'2, (4) 

Bt = i(x% + iP%)/v'2 = i( -8/8x}. + x%)/v'2, 

Bk i(x}. - ip}.)/v'2 = i( -8/8x% + xk)/v'2. (5) 

The harmonic Hamiltonian can be re-expressed as Lk(A!Ak + BtBk) if one so 
wishes. However, for the most part we shall stick to the coordinate-momentum 
operators rather than Fock space combinations. 

Acting on the Grassmann variables are the Sp(2) generators, 

Sl = i(x1p1 - X2p2) = (x18/8x2 + x28/8x1) , 

S2 = (X1p1 + X2p2) = -i(x18/8x2 - x28/8x1) , 

S3 - i(X1p2 + X2p1) = (x18/8x1 _ x28/8x2). (6) 

These obey the standard spin algebra rules. For later use, we should point 
out the existence of 'quasispin' operators which are quadratic in momenta or 
coordinates that also obey the commutation rules of angular momentum, and 
which include the harmonic Hamiltonian: 

L1 = X1x2 + p1p2 = x1x2 + 82/8x28x1 , 

L2 = i(_X1X2+p1p2) = i(_X1X2+82/8x28x1), 

L3 - i(X1p2 - X2p1) = x18/8x1 + x28/8x2 -1. (7) 
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It should be noted that all the L operators are Sp(2) invariants (i.e. they are 
unaffected by the action of the § operators). In particular, the scale operator 
L3 measures the degree of an x-monomial. 

(b) Internal Space Matrices 

The aim of this paper is to obtain a square root of the Grassmannian 
harmonic Hamiltonian in much the same way that Dirac tackled the relativistic 
energy equation. We are looking for an operator g.D whose square produces 
the quadratic H plus possibly other operators which commute with it. The D 
are linear combinations of Grassmann coordinates and/or momenta, while 9 are 
internal space matrices, direct analogues of the Dirac gamma matrices. Since 

4(9iDi)2 = [gi, 9j][Di, Dj ] + {Qi, 9j}{Di , Dj }, 

we can reduce the square to the product of two commutators by requiring either 
that {Di,Dj } = 0 or that {Qi,gj} = o. Furthermore we would like 

[Di , Dj ] ex 'f}ij(H + 0) 

where 0 vanishes or at least commutes with H. One may even relax the 
conditions by ensuring that when i = j the anticommutators of gi and of Di 
reduce to the identity, in which case the square is still given by the product of 
two commutators up to an additive constant. The various models that we shall 
study attempt to satisfy the above requirements or variants thereof. In any case, 
since by necessity 4(giDi)2 contains a commutator of g, that part of the square 
has zero trace; so the sum of its eigenvalues is zero. 

As a matter of fact, a set of natural internal matrices 9 does exist. Because 
all wavefunctions can be expressed as linear combinations of the basic states, 

(1 +x2x 1)/V2, 1 x, 2 x, (1 - X 2x 1 )/V2, 

we may determine the action of coordinates x and momenta p in this basis and 
extract a set of corresponding matrices, 

hXl~G 
0 1 

D hX2~G 
-1 0 

D 
0 0 0 0 
0 0 0 0 
0 -1 1 0 

VWl~G 
0 -i 

~i ) vw'~G 
i 0 

~} 0 0 0 0 (9) 
0 0 o ' 0 0 -~ 

0 -i 0 i 0 0 

Obviously, the anticommutation relations between the matrices X and Pare 
precisely the same as those for the original variables x and p. The same applies 
to the matrix representations of the Fock space operators, namely A and B, 
where A = (X2 - ip2)/V2, and so on. For later use we should record that the 
'ground state' spinor on which these matrices act is 



Fermi-Dirac Equations 625 

X6= (1,0,0,1)/v'2, 

the first two excited spinors (obtained by applying x r to Xo) are 

xi = (0,1,0,0), xi = (0,0,1,0), 

while the 'highest weight' spinor (annihilated by the X) is 

xI = (1,0,0, -1)/v'2. (10) 

(c) A 'Dynamical' Hamiltonian Model 

Our first model uses a couple of D and a corresponding pair of internal 
matrices g. For simplicity we identify the two D with appropriate creation and 
annihilation combinations: 

Dl = Xl - ip2 = a/axl + xl, 

D2 _ ix2 _ pI = i(a/ax2 _ x2). (11) 

Thus D~ = D~ = 1 and {Db D2 } = 0. Also both D's are hermitian. In order to 
ensure that {91,92} = 0, we make the simplest two-dimensional choice, namely 
91 = 0"2, 92 = 0"3 signifying an 'internal spin space' with two degrees of freedom. 
This way one arrives at 

(g.D)2 (0"2Dl + 0"3D2)2 = iO"l [Db D2J + D~ + D~ 

20"1(Q2 /ax2axl + X 1 X 2 - x la/ax2 - x2a/axl ) + 2 

20"1(H - 81) + 2. (12) 

In this model, the extra operator 0 equals the first spin component 81, which 
indeed commutes with H. 

Because the eigenvalues of H are ±1 on the bosonic states and ° on fermionic 
states in equation (8), while the eigenvalues of 81 are the reverse (±1 on 
fermionic combinations Xl ± x2 and ° on bosonic states), we conclude that the 
full eigenvalues of (9.D)2 are 2 ± 20"1 whether the states are Bose or Fermi and 
hence the range of eigenvalues is 0, 2 and 4. We notice in this model that the 
Hamiltonian is associated with the matrix 0"1 and is only invariant under rotations 
about the first axis. It is, in fact, invariant under the full Sp(2) rotation about 
this axis, 81 + 0"1. 

Since the Hamiltonian is not invariant under the full Sp(2) group, it is 
a 'dynamical' operator of this group including the 'spin'. This concept of a 
dynamical symmetry including the Hamiltonian is well known in a number of 
contexts. Our Fermi-Dirac equation is merely another example, albeit in an 
unusual setting. 

One may develop this idea and double the internal space by extending the D 
with another hermitian pair, 
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D3 = i(8/8xl - Xl), D4 = (8/8x2 + x2 ) 

and finding another matrix pair g3 and g4 which anticommute with the previous 
g. In the sections below we develop this idea, yielding models with full Sp(2) 
symmetry, and with SU(N) symmetry. 

3. Sp(2) Symmetric Models 

(aJ l1asic <7ase 

Recall that a natural set of spinorial matrices exists in the form of X and P 
of equation (9). For them one can also construct a triple of Sp(2) spin matrices: 

81 = i(Xlpl - X2p2) , 

82 = (Xlpl + X 2p2) , 

83 _ i(Xlp2 + X 2pl) , (13) 

and by the same token there arise the 4 x 4 quasi-spin matrix analogues, 

£1 XlX2 +plp2, 

£2 i( _Xl X2 + plp2) , 

£3 _ i(Xlp2 _ X 2pl) , (14) 

which stay invariant under 8 rotations. 
We are now guaranteed that the hermitian linear combination 

g.D = -irJrs(xrps + xrps) (15) 

is Sp(2) invariant under combined coordinate-spin rotations generated by the full 
generators S + 8. A fortiori its square will also be Sp(2) symmetric; in fact the 
result can be manoeuvred into the pleasing form, 

(g.D)2 = 1 - 8.S -l.l, (16) 

where the last term on the right is also quasi-spin invariant. 
It only remains to find the eigenspectrum. This is readily done by splitting 

the operator in question into the sum of two commuting parts, g.D = U + V, 
where 

U = _i(Xlp2+ xlp2), V = i(X2pl + x2pl), (17) 

and determining the eigenfunction of each part, 1/Ju and 1/Jv, with eigenvalues Au 
and Av respectively. Nevertheless we should point out that the total eigenvalue 
of the product wavefunction 1/Ju1/Jv equals A = Au ± Av; the possible change in 
sign is due to the fact that the eigenstates 1/Ju are sometimes fermionic; passing 
the operator V through the product can induce this curious sign reversal. 

By expanding the wavefunction 1/Ju in the form 
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'lj;u = [a + ,6Xl + ,Xl + OXI Xllxo 

because it depends purely on the first Grassmann components, we may derive 
the four eigenvalues and wavefunctions 

Au 1 : 'lj;u = [Xl + Xl]Xo, 

Au 0: 'lj;u = XO or XlXlXO, 

Au -1 : 'lj;u = [Xl - Xl]Xo. (18) 

Note that the wavefunctions are 4-component spinors in the fermionic variables 
because the bracketted quantities in (18) act on the ground state spinor Xo. For 
instance, 

'lj;u(l) = (x l /V2,I,O,x l /V2). 

Similar sets can be found for V, with the second Grassmann component replacing 
the first. Paying proper attention to sign changes, the combined operator U + V 
possesses the 5 eigenvalues and 16 eigenfunctions, 

A = 2: 'lj; = [Xl + Xl][x2 - X 2Jxo, 

A = - 2 : 'lj; = [Xl - Xl ][x2 + X 2Jxo , 

A 1 : 'lj; = [xl + XI]Xo, 'lj; = [x2 + X2]XO , 

'lj; = [xl + XI](x2X2)XO' (XIXI)[x2 + X 2Jxo, 

A -1 : 'lj; = [Xl - XI]Xo, 'lj; = [x2 - X 2]Xo, 

'lj; = [Xl - XI](X2X2)XO, (XIXI)[X2 - X 2]Xo, 

A 0: 'lj; = [1, Xl Xl, x2 X 2, Xl X l X2 X 2]Xo, 

'lj; = [xl + XI](x2 + X 2)Xo, (xl - XI)[x2 - X 2]Xo. (19) 

(b) Extension to Higher k 

We shall treat the case k = 2 in some detail and then sketch the results for larger 
k-values. The added 'normal' Grassmannian coordinates x~, x~ anticommute with 
each other and with the previous xL xi according to the relations in (3). When 
one considers the internal matrices Xl, Xi, however, one sees that a standard 
type construction will result in {Xl, Xi} = 0, but [X~,Xf] = o. . 

The reason for this is that the internal spaces 'attached' to xi and ~ are 
similar to the spin spaces attached to two different particles in standard quantum 
mechanics. Just as the spin operators for different particles commute, the 
analogous symplectic matrices for different symplectic spaces will commute. 

We will have a similar situation for spin-like matrices and wavefunctions for 
our internal coordinates Xl and X2; hence the matrices ~h and 92 commute 
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even though the operators Dl and D2 made of normal Grassmannian coordinates 
anticommute. This has a number of very positive features, but it also introduces 
one or two complexities into the computation of the eigenfunctions of the extended 
Hamiltonian operator. Let us consider these in turn: 

First, by using the 9 and D operators as defined in (15) for each coordinate 
k, our new operator (the square root of the new Hamiltonian) is Ej9j.Dj ; this 
is the sum of operators for individual j which anticommute with each other. 
Hence the Hamiltonian becomes automatically a sum of Hamiltonians for the 
individual coordinates: 

(Ej 9 j .Dj )2 = E k(Qk. D k)2. (20) 

The individual coordinate Hamiltonians commute with each other; hence if ). 
is an eigenvalue of the whole Hamiltonian, and }.k is an eigenvalue of the kth 
Hamiltonian, the eigenvalues for larger numbers of dimensions can be computed 
from those of lower dimensions by 

}.2 = Ek }.% . (21) 

Hence mass contributions of these extra dimensions add in quadrature; that is a 
very nice feature of the system. 

The eigenfunctions '¢ of the whole operator E j 9j.Dj are not, however, simple 
products of the eigenfunctions listed in (19); this is best illustrated by an example 

92.D2(xi + Xl) = (-xi + xl )Q2.D2 . (22) 

In other words, if we define Y2 = 92.D2, then for each '¢1 such that Y1'¢1 = }.1'¢1, 
we have Y2,¢1 = '¢~Y2' where '¢~ may be different from '¢1. Hence even though 
'¢1 may be an eigenfunction of Y1 , and '¢2 may be an eigenfunction of Y2 , the 
state '¢1 '¢2 is not necessarily an eigenfunction of Y1 + Y2 • 

Such an eigenfunction can, however, always be found from a linear combination 
of '¢1 '¢2 and '¢1' '¢2 . Notice that (,¢1')' = '¢1, and that since Y1 and Y2 anticommute, 
we can prove that '¢1' is an eigenstate of Y1 with eigenvalue -}.1 if '¢1 is an 
eigenstate of Y1 with eigenvalue +}.1. Hence linear combinations of products of 
the states with eigenvalues ±}.i can be used to form a basis in which to calculate 
the states with net eigenvalue}. such that }.2 = Ek}.%. 

For example, the states 

{a[xi + Xl] + ,6[xi - Xl]} [x~ + xi ][x~ - Xi] (23) 

with (J = a(l =F J5)/2 are eigenstates of the overall Hamiltonian with), = ±J5. 
One might have some prejudice that a state with an even number of powers 

of x7 or X ik would be a 'boson' and one with an odd number of such powers 
would be a 'fermion'. Using this classification (which mayor may not ultimately 
be useful), there are equal numbers of Fermi and Bose states. 

For 2 pairs of Grassmannian coordinates, one therefore has 256 states, of which 
128 are Fermi-type. There are 11 eigenvalues: ±J8, ±J5, ±2, ±J2, ±1 and O. 
There are 96 Fermi-type states with eigenvalues ±1, and 32 'heavy' Fermi-type 
states with eigenvalues ±J5. 
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Since there are 16 states for each coordinate dimension, the total number of 
states grows very rapidly like 16n as more dimensions of symplectic space are 
added. Hence direct implementation of a higher symmetry by the addition of 
n such pairs of dimensions would require an additional selection rule to reduce 
the number of physical states. Alternatively, one may search for a more subtle 
representation of the symmetry in spaces of dimension lower than n. Work on 
this approach is currently under way. 

4. SU(N) Symmetry: Approach I 

(a) Introduction 

As we discussed above, it is natural to generalise the result for one pair of 
Grassmannian coordinates x, Y to the case of several symplectic dimensions by 
simply adding the symplectic Hamiltonians for the various pieces: H = 'EHi with 
(see equation 15) 

8 8 8 8 
Hi =Xi- +Xi- +Yi- +Yi-. 

8Xi 8Xi 8Yi 8Yi 
(24) 

(For the remainder of the paper we use Xk,Yk instead of xl,x%. This simplified 
notation stresses the index under discussion here-that of the different pairs.) Since 
the symplectic spinors for different dimensions commute, whereas the 'ordinary' 
symplectic coordinates anticommute, the Hamiltonians Hi anticommute. The 
eigenvalues then add in quadrature, A2 = 'EiA;. This is perhaps unusual, but a 
complete theory can be composed in this way. 

Although the Hamiltonian constructed in this way has permutation symmetry 
among the indices, it does not have SU(N) symmetry. In Subsection 4b we discuss 
and solve the problem of representing the SU(N) generators on the symplectic 
spinor coordinates. 

In Subsection 4c we give a modification of the Hamiltonian which does have 
the desired SU(N) invariance. This Hamiltonian has the feature that the iIi do 
commute with each other; the eigenvalues of the total H are then sums of the 
eigenvalues for the individual ih 

(b) SU(N) Genemtors in Symplectic Spaces 

'Ordinary' symplectic coordinates. When one deals with standard symplectic 
coordinates Xi, Yi such that XiYj = -YjXi, the basic SU(N) generators are well 
known (Delbourgo 1989). They are (for i =J. j) 

C" 8 8 
S / =Xi- -Yj- (25) 

8xj 8Yi 

and the commutators thereof. For example, the SU(2) generators are 

SC 2 
1 

SC3 

8 8 C1 8 8 
X1- -Y2-; S 2 =X2- -Y1-; 

8X2 8Y1 8X1 8Y2 

[ 
C 2 C 1] 8 8 8 8 

= S 1 ,s 2 = Xl -8 X2 -8 - Y1 -8 + Y2 -8 . 
Xl X2 Y1 Y2 

(26) 
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Internal space matrices. One might be tempted to simply make a copy of 
(25) using Xi, Yj instead of Xi, Yj, and add it to (25) in order to get the overall 
SU(N) generators .. This procedure was successful in defining the symplectic 
group generators, equation (13). (For more than one coordinate Xi, one simply 
adds copies to equation 13.) This will not work, however, because Xl commutes 
rather than anticommutes with X3 , so an imitation of (26) in the symplectic 
spinor space would need some additional way to specify that one should take the 
anti commutator of 8 1 2 with 82 3 but the commutator of 8 1 2 with 8 2 1 • 

The solution to this problem is to realise that, just as 1'5 anticommutes with all 
the ordinary gamma matrices, there is a '1'5-equivalent' matrix in the symplectic 
spin space. For a given set of symplectic coordinates Xi, Yi with associated spinors 
Xi, Yi we can form 

Z· = (~+x).(~ -x).(~ +Y')'(~ -y.). (27) 
• aXi • aXi • aYi • aYi • 

This has the feature that it anticommutes with all the four basic matrices 
Xi, a/axi , Yi and a/aYi' Hence insertion of the matrix can help change 
commutators into anticommutators as desired. 

We are then led to define the 'spinorial' contribution to the SU(N) generators 
as 

88j 
• (Xi a~j + Yj a~JZi ... Zj-1 if i < j, 

8 S j i _ (Xj~ + Yi "a )Zi ... Zj -1 if i < j. 
aXi uYj 

(28) 

By forming the sum 8G i j + 8 s i j , and making all commutators of these with 
each other, we generate the entire algebra of SU(N). 

It can easily be seen that these do not commute with the sum r.Hi of the 
operators Hi in (24). If we take, for instance, just H = HI + H2, the commutator 
of 8 S 12 with H2 will lead to a messy expression which cannot be cancelled by 
the other terms. The 'natural' thing here would be the anticommutator. 

(c) BU(N) Invariant Hamiltonian 

Again, the thing to do is to convert some commutators into anticommutators. 
This can be guaranteed by a slight modification of H. We now choose 

H = r.iHiZ1Z2 .... Zi-1 . (29) 

This has the feature that it commutes with all Bi j constructed from the sum of 
(26) and (28). Hence it commutes with all their commutators, and is an SU(N) 
invariant. 

Furthermore, the 'sub-Hamiltonians' HiZ1Z2",Zi-1 commute with each other. 
Hence eigenstates of the entire Hamiltonian may be formed from eigenstates 
of the individual coordinate Hamiltonian Hi' These were derived in Section 3, 
where we show they have eigenvalues ±2, ±1, and O. 
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For two coordinates, consider a product eigenfunction of the form 'l/JT = 'l/Jl 'l/J2. 
Action on this of our Hamiltonian HI +H2Zl will yield )..l'I/JT + H2Zl'I/J1'I/J2. To 
use the fact that H2'I/J2 = )..2'I/J2, we must 'push' H2Z l through 'l/Jl. Fortunately, all 
the eigenstates of HI have a definite 'parity' under this operation. For instance, 
H2Z l (Xl + Xl) = -(Xl + Xl )H2. 

Define Pi to be the 'parity' of 'l/Ji under commutation with HjZi , i -I=- j. Then 
H as defined in (29) has eigenfunctions 'l/Jl 'l/J2 ... with eigenvalues 

).. =)..1 + (-1)P')..2 + (-1)P,P2)..3 + ... (30) 

We see, therefore, that although the Hamiltonian of (29) may appear rather 
ugly, its eigenfunctions and eigenvalues are simple to construct. 

5. SU(N) Symmetry: Approach II 

In the previous section, the SU(N) generators were constructed by first taking 
generators composed entirely of Grassmannian coordinates and then adding to 
them ones composed entirely of Grassmannian 'spin'. (The obvious analogy is 
orbital angular momentum plus spin angular momentum.) This is, however, 
not the only way to achieve operators which have the commutation relations 
of SU(N). In this section we display another approach, which combines the 
Grassmannians and their spins in a different way. 

The Hamiltonian operator is the same as in the previous section. Our 
construction here demonstrates that in fact it has not only SU(N)xSp(2) 
invariance, but also SO( 4N) invariance. 

Let us begin with the H of (29), for two sets of Grassmannians: 

1t HI +ZlH2 

o 0 0 0 
Xl- + Xl - + Yl- + Yl-

oXl OXI OYI OYI 

( 0 0 0 0) 
+ Zl x2 oX2 + X2 OX2 + Y2 OY2 + Y2 OY2 . (31) 

The eigenstates are products 'l/Jt'I/J~ with eigenvalues )..i + (-1)Pt)..j where PI is 
the parity for pushing H 2Z l through 'l/Jf. 

Now consider the SU(2) generators Ri and the Sp(2) generators Sj defined as 
follows: 

R+ 1 [0 0 (0 0 )] - Xl-+Yl-+Zl Xl-+Yl- , 
J2 OX2 OY2 oX2 OY2 

R_ 1 [0 0 (0 0 )] - X2-+Y2-+ Z 1 X2-+Y2- , 
J2 oXl OYI OXI OYI 

R3 l[ 0 0 0 0 
2" Xl-+Yl-+Xl-+Yl-

oXl OYI OXI OYI 

( 0 0 0 0 )] - X2-+Y2-+ X2-+Y2-
oX2 OY2 OX2 OY2 

(32) 
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and 

8+ 1[ a a a a] - Xl-+X2-+ Xl-+ X2- , V2 aYl aY2 aYl aY2 

8_ 1[ a a a a] V2 Yl aXl +Y2 aX2 +Yl aXl +Y2 aX2 ' 

83 - Xl-+X1-+X2-+ X2-l[ a a a a 
2 aXl aXl aX2 aX2 

( a a a a )] 
- Yl aYl + Y2 aY2 + Yl aYl + Y2 aY2 . (33) 

Not only do we have [1t, Ril = 0 = [1t,8j ] , but also [Ri ,8j ] = o. We therefore 
see that this Hamiltonian has SU (2) x Sp(2) invariance. 

Actually, however, 1t has a larger invariance group than this. It has SO(8) 
invariance. This can be seen by explicitly constructing an SO(8) invariant using a 
trick discussed in Georgi (1984). In this method, sigma matrices for 4 commuting 
coordinates are used to construct an 8-dimensional vector representation of SO(8): 

f 1 2 3 4 
1 = a2 a3a3a3' 

234 
f3 = a2a3a3' 

3 4 
f5 = a2 a3' 

4 
f7 = a2' 

f 1 2 3 4 
2 = -ala3a3a3' 

234 
f4 = -ala3a3' 

3 4 
f6 = -ala3' 

fs = -aj'. (34) 

The matrices Mjk = (1/4i)[fj ,fk] have SO(8) commutation relations, and 
[Mjk,fd = i(8j1 fk - 8k1 f j ) as required for the vector representation. 

We now construct mutually commuting sigmas from our Grassmannian 
coordinates and spin matrices. We use separate 'gamma-5 equivalents' for the 
Y and x coordinates; i.e. zY = -1 + 2ya/ay anticommutes with Y and a/ay, 
whereas ZX plays the same role for x. Of course z = zY ZX anticommutes with all 
of these. 

For the Grassmann spin matrices, therefore, the sigmas are 

~1 (a:2 + X2 )Z?, 
1 .( a ) y 1 a 

~2 = Z - - X2 Z2' ~3 = -1+ 2X2-1 aX2 aX2 ' 

~2 (a~2 +Y2), ~~ = i (a~2 - Y2) , 
2 a 

~3 = -1+2Y2-1 aY2 ' 

~3 (a:1 +X1)zr, ~~ = i( ~ -Xl)Zr, 3 a 
~3 = -1+2X1-1 aXl ax1' 

~4 (a~l +Yl), E~ = i (a~l - Yl ), 
4 a (35) E3 = -1 +2Yl-. 1 aYl 

And the corresponding sigmas for the Grassmann coordinates are 
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1 (a ) y O"~ = i(a~2 - X2)Z~Zl' 1 a 
0"1 = aX2 + X2 Z2 Z1, 0"3 = -1 + 2X2-, aX2 

O"~ = (a~2 + Y2) Zl, 2 .( a ) 2 a 
0"2 = Z aY2 - Y2 Z17 0"3 = -1+2Y28 , Y2 

3 (a ) y O"~ = i (a~l - Xl) zf, 
3 a 

0"1 = aX1 + Xl Zl , 0"3 = -1 + 2X1a ' 
Xl 

O"t = (a~l + Y1). 4 .( a ) 4 a (36) 0"2 = Z au1 - Y1 , 0"3 = -1 +2Y18 · Y1 
8taxting with these, the equivalents to the Georgi r axe 

G 1 = E~E~E~E~, 1 234 
gl = 0"20"30"30"3 , 

G2 = -EiE~E~E~, 1 234 
g2 = -0"10"30"30"3 , 

G 3 = E~E~E~, 234 
g3 = 0"20"30"3 , 

G 4 = -E~E~E~, 234 
g4 = -0"10"30"3, 

G 5 = E~E~, a 4 
g5 = 0"20"3, 

G 6 = -E~E~, a 4 
g6 = -0"10"3' 

G7 = E~, 
_ 4 

g7 - 0"2' 

G 8 = -Ei, 4 
g8 = -0"1· (37) 

The quantity EaGaga is cleaxly invaxiant under commutation with the 80(8) 
generators Mij = Mij + mij where Mij = (1/4i)[Gi , Gjl and mij = (1/4i)[gi' gjl· 
The remaxkable result for our purposes is that 

EaGaga = 211.. (38) 

The inclusion of further Grassmann vaxiables is obvious. For three different 
Grassmannian sets, the construction produces a Hamiltonian invaxiant under 
80(12), which contains 8U(3)x8p(2). 

6. Grafting on Space-Time 

The eventual purpose of this exercise is to tie in the internal degrees of 
freedom, namely the Grassmann X and p, with the space-time degrees of freedom 
through an extended Fermi-Dirac equation. Thus the total Dirac operator is to 
be regaxded as some lineax combination of 'Y.P and g.D. Because the space-time 
and Grassmann spin operators commute, it becomes obligatory to include a factor 
of 'Y5 (='Yo'Yl'Y2'Ya) with the fermionic derivatives, in order that the space-time 
and Grassmannian terms add in quadrature when the overall Hamiltonian (squaxe 
of our wavefunction operator) is calculated. This leads us to the full Fermi-Dirac 
equation, 

b·P + J1.'Y5g.D - m)1fJ = 0, (39) 
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where p, is an arbitrary mass scale factor. 
Squaring the complete derivative operator ('Yg = -1) then produces the mass 

spectrum, 

M2 = m 2 + (p,Q.D)2 = m 2 + (np,)2; n = 0, 1,2, (40) 

with various degeneracies of eigenstates implied. For k additional pairs of 
Grassmannian variables, with a permutation symmetry invariant Hamiltonian, 
the mass spectrum will be 

M2 = m 2 + (p,Q.D)2 = m 2 + :E~~~(njp,)2; n = 0,1,2. (41) 

For k additional pairs of Grassmannian variables with an SUCk) invariant 
Hamiltonian, the mass spectrum will be 

2 '-k 2 M2 = m2 + p, (:E~:lnj) ; nj = ±2,±1,0. (42) 

We see, therefore, that the 'hidden degrees of freedom' in the symplectic spaces 
have immediate consequences for the mass spectrum. This suggests a tantalising 
possibility that 'families' of quarks and leptons might be 'explained' in this way. 
Study of this possibility is currently under way. 
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