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Quantum wells can now be grown by molecular beam epitaxy in the Gal~xAlxAs system with 
almost any desired electron confinement potential V (z) in the growth or z direction. The 
wells can be filled by remote doping, giving finely controllable high-mobility electron gases 
with a dimensionality between two and three. Grating coupler techniques permit observation 
at finite surface wavenumber of the infrared plasmon modes of these structures. This provides 
in principle a window onto fundamental and applicable many-electron physics. Of special 
interest are the 'pseudo-jellium' properties of parabolic and parabolic~linear wells, which are 
discussed in detail here. A theorem applicable to more general wells is also introduced. 

1. Introduction 

The technique of molecular beam epitaxy (MBE) permits growth, atomic layer 
by layer, of high-quality GaAs crystals. Addition of aluminium to the process 
leads to crystals of Gal~xAlxAs in which the aluminium fraction x can be 
controlled during growth. Thus x is a specified function x( z) of the position 
variable z measured in the crystal growth direction (Sundaram et al. 1988; Gwinn 
et al. 1989). Since the bandgap Eg and hence the conduction-band minimum Ec 

of this direct-gap semiconductor system depend on the aluminium fraction x, 
one can grow layered samples with a chosen spatial profile Ec (z). Within the 
envelope function approximation (Bastard 1981; Burt 1992), the spatially varying 
energy Ec(Z) takes the role of an external potential energy function Vbare(z). 
Electron transport is then governed by a Schrodinger equation for an envelope 
wavefunction describing the motion of electron wavepackets with effective mass 
m*, confined in the Z direction by the 'potential' V bare(Z) plus their own 
self-consistent electrostatic field, but free to move in the x and y directions 
parallel to the epitaxial layers. At any given position z, the effective mass m* 
is determined in the usual way by the k-space curvature of the conduction-band 
dispersion E(k) at the Brillouin zone centre k = o. A slight complication arises 
because the spatially varying Al content also gives rise to a spatial variation 
of the effective mass and of the semiconductor's dielectric constant. For the 
experiments we consider these effects are of the order of 10% and we will ignore 
them for the bulk of the present discussion. 
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One familiar case of a Gal-xAlxAs quantum well is that formed at a relatively 
abrupt heterojunction between GaAs (x = 0) and GaA1As (Stern and Das Sarma 
1984). Here the effective bare external potential Vbare(z) introduced above has 
a step-function dependence on z. Motion of electrons in the potential leads to 
self-consistent space charge with consequent band bending, and the effective total 
potential Veff(Z) has a linear 'notch'-shaped minimum. Electrons supplied by 
spatially remote doping 'fall' into this potential minimum, where they form a 
quasi-two-dimensional electron gas. 
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Fig. 1. Comparison of bare positive background potentials for 
a finite thickness of regular jellium (thick dashed curve) and 
for a finite thickness of 'embedded electron gas' as in a wide 
parabolic quantum well (thin curve). The region of positive 
background in the regular jellium case is shown as a heavy 
line on the horizontal axis. The positive background extends 
to ± 00 in the non-neutral embedded (WPQW) case. [From 
Dobson (1992).] 

In addition to such abrupt interfaces, it is possible to grow wells having 
an essentially continuous variation of Ai content with z. A case of particular 
interest here is the parabolic quantum well (PQW), for which V bare(Z) = ~K:Z2 
(see the thin curve in Fig. 1). This case is special because a wide slab of uniform 
positive background of charge density no e per unit volume produces, by Poisson's 
equation, an electron potential energy Vbare(Z) = ~no e2c 1 z2 • Thus by growing a 
parabolic well of curvature K: one has effectively formed a uniform 'jellium' positive 
background with charge density no e = EK:/ e. Conduction electrons produced by 
spatially remote doping form a high-mobility gas in this normally empty well 
(Sundaram et al. 1988). 

The properties of an electron gas moving through a uniform jellium background 
have been the subject of a large amount of theoretical work over many years 
(Ceperley and Alder 1980; Mahan 1981; Green et al. 1985). The original reason 
for this interest is that the jellium model is a first approximation to the conduction 
electron system of the 'simple' (s-p bonded) metals, in which the effects of the 
discrete ionic lattice structure on the conduction electrons are fairly weak. The 
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geometrical simplicity of the jellium problem has allowed much progress to be 
made with the difficult problem of electron-electron interactions. Even when the 
translational symmetry is broken by the presence of a surface, the local density 
functional approximation (LDA) (Kohn and Sham 1965; Dreizler and Gross 1990) 
has allowed nontrivial calculation of electron gas properties (Lang and Kohn 1970; 
Lang 1973; Feibelman 1982; Rose and Dobson 1981; Dobson and Harris 1983, 
1988; Eguiluz 1983; Liebsch 1987). The sophistication of both jellium theory 
and experimentation on the simple metals and their surfaces (vom Felde et al. 
1989; Tsuei et al. 1991) has now reached a point where further progress on the 
many-body problem will probably require the inclusion of the detailed effects of 
discrete ions, a daunting prospect for the theorist. 

An alternative approach is suggested by the availability of wide parabolic wells 
in the Gal_xAlxAs system. As shown above, the high-mobility electron gas in 
these wells should be an analogue of the jellium electron gas. Furthermore, at 
typical experimentally achievable electron densities, both the Fermi wavelength 
AF and the Thomas-Fermi screening length ATF greatly exceed the underlying 
semiconductor lattice spacing. By contrast, in a real simple metal (e.g. AI, Na, 
Mg), AF and ATF are both comparable to the lattice spacing, so 'grainy' lattice 
effects on electron gas properties are more significant. 

In short, epitaxial parabolic quantum wells promise to be a 'better' jellium 
electron-gas system on which to test existing many-body theories, than are 
the simple metals for which the theories were originally formulated. The only 
modification required to the jellium model, to a first approximation, is to use the 
conduction band effective mass m* and a background semiconductor dielectric 
constant E which are very different from the free-space values. Some typical 
numbers for Gal_xAlxAs are as follows: dielectric constant E/Eo ~ 13·1; effective 
mass m* 1m ~ 0·069; effective Bohr radius aB = li,2E/m*e2 ~ 100 A:» lattice 
spacing. For much of what follows we will use 'starred' Hartree units, 
a.u.* for which e2 IE = 1, m* = 1, li, = 1. Thus the unit of energy or 
angular frequency is 1 a.u.* = 1 Hartree* = 11 meV = 1·7xlO-2I J, equivalent 
to a photon with reciprocal wavelength 9·Ox103 m- I (in the far infrared). The 
unit of length is 1 a.u.* = aB = 1·0xlO-8 m. For a grown effective density 
(as in Pinsukanjana et al. 1992) of no = 2·75x1022 m-3 , we have an inter
electron spacing rs = 2·07aB (analogous to aluminium), AF = 27rlkF ~ 677 A, 
ATF = 27rlqTF ~ 578 A, Wp = 0·581 a.u.* == 5·2x103 m-I . 

Fig. 2 shows an experimental setup (Pinsukanjana et al. 1992) for measuring 
the response of a wide quantum well to electromagnetic excitation in the far 

Gate 

Fig. 2. Experimental arrangement for far-infrared grating coupler 
experiments on a wide quantum well in Gal-xAlxAs. [Modified 
from Pinsukanjana et al. (1992).] 
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infrared region. A thin (semi-transparent) metal gate is used to set a d.c. bias 
relative to a side contact on the electron gas, and so attract a predetermined 
areal density of electrons into the electron gas layer. By variation of this gate 
bias a given sample can be converted from a truly 'two-dimensional' electron 
gas with only one sub-band lightly occupied, through to a thick electron layer 
with several sub-bands occupied, and therefore approaching a three-dimensional 
nature. A thick metal grating of spacing Ag is laid on top of the gate at position 
Zg. When irradiated normally with infrared (IR) radiation it produces near-field 
components with surface-parallel wavenumbers 21m/ Ag , to which the trapped 
electron layer responds. Peaks in transmission, reflection or absorption indicate 
a natural mode frequency of the electron gas. 
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Fig. 3. ( a) IR transmission data (percentage power transmission) 
obtained with the apparatus of Fig. 2 for a pure parabolic quan
tum well with r; = 2·07 and electron layer thickness 8·8 a.u.* 
( b) Theoretically predicted power absorption for the above experimental 
data, from time-dependent local density functional calculations (see 
Section 7). [Modified from Pinsukanjana et ai. (1992).] 

In the experiment shown (Pinsukanjana et al. 1992) the percentage variation in 
infrared transmission j}. T / T of the r; = 2·07 sample was measured (see Fig. 3a). 
It showed two strong resonances, near wp and W2D(27r/Ag ) respectively, where 
wp = (no e2/fm*)1/2 is the 3D plasma frequency and W2D(q) = (Ns e2q/2fm*)1/2 
is the 2D plasma frequency (see also Sections 2 and 3). There is also a third, 
weaker, resonance near W2D(47r/Ag ). In Sections 3 and 5 we shall see why, under 
irradiation with a grating coupler giving low surface-parallel wavenumbers, these 
are the only strong resonances of a parabolic well. This is confirmed by the 
numerical absorption predictions (Fig. 3b) made by the author from the theory 
of Section 7 below. 

The discussion above might appear to suggest that a wide parabolic quantum 
well (WPQW), partially filled with electrons, should be a perfect analogue of 
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Fig. 4. (a) Self-consistent ground-state Kohn-Sham potential 
in a regular neutral jellium slab (dotted curve) and a non
neutral embedded jellium slab (WPQW, solid curve). Nominal 
electron gas width Lis 25 a.u.* and r; = 3. Five sub-bands are 
occupied. (b) Self-consistent ground-state electronic charge 
density n(z) in a neutral jellium slab (dotted) and a WPQW 
(solid), for the same well as Fig. 4a. 
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a slab of jellium metal of finite thickness. This is not in fact the case: in a 
finite electrically neutral slab of jellium, the parabolic external potential extends 
only to the edge of the positive background, outside which it is replaced by a 
gradient-matched linear potential satisfying Poisson's equation with zero charge 
density (Fig. 1, thick line). When filled to charge neutrality with electrons, the 
neutral jellium slab has a total self-consistent potential which asymptotes to 
a constant as z -? ± 00, thus permitting definition of a work function cjJ (see 
Fig. 4a, dotted curve). By contrast, in a typical WPQW the bare potential 
(Fig. 1, thin curve) continues to grow parabolically outside the region occupied by 
electrons. The system is effectively non-neutral, so that the total self-consistent 
potential, while relatively flat inside the electron gas layer, rises quadratically 
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outside the layer (Fig. 4a, solid curve). Far from the electron layer the grown 
parabola flattens off because of practical chip design considerations, but doping 
and bias regimes can be chosen so that this occurs well outside the electron gas 
layer. In more pictorial terms, the difference between a neutral jellium slab and 
a WPQW device is summarised in Fig. 5, which shows how the electron gas is 
'embedded' deep inside the positive background in the WPQW case, in contrast 
to the regular neutral jellium case where the edges of the electron gas and of 
the positive background coincide. The electron density is fairly uniform inside 
either a WPQW or a regular jellium (Fig. 4b) but the electron gas surface is 
different in the two cases. 

(a) Regular jellium slab 

e.g. thin metal film: mimicked by parabolic-linear AlGaAs well 

_ Electrons +ve Backgrd ~ 
A neutral system with total e- charge equal to tot. backgrd. charge 

(b) Embedded electron gas 

Mimicked by Wide Parabolic Quantum Well ryJPQW) in AIGaAs 

illI Electrons +ve Backgrd ~ 
A non-neutral system with electrons embedded inside backgrd. 

Fig. 5. (a) Schematic view of electron charge distribution 
(vertical hatching) and positive background charge distribution 
(horizontal hatching) in a neutral jellium slab. (b) As in (a) 
but for an embedded electron gas layer (non-neutral jellium, 
WPQW). 

In due course we will show that, at least for spatially homogeneous m* and 
E, the infrared spectrum of a pure parabolic well, for experimentally achievable 
surface-parallel wavenumbers much less than kF' is not particularly revealing 
about fundamental issues in many-electron physics, being constrained by two 
theorems. However, the same considerations also show that if one uses larger 
wavenumbers, or grows a parabolic well with a linear lip or lips, then a richer 
spectrum occurs which may shed more light on fundamental issues. By the 
discussion of the previous paragraph, this parabolic-linear configuration is seen 
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to mimic a true jellium slab, provided suitable gate bias is supplied to ensure a 
'neutral' jellium edge. 

The remainder of this paper is set out as follows. In Section 2, a 
simple hydrodynamic treatment is given which qualitatively describes, at small 
wavenumber, the collective electronic modes of (a) a bulk 3D electron gas; (b) a 
bulk 2D electron gas; (c) a halfspace of 3D electron gas (giving surface plasmons); 
and (d) a finite slab of electron gas. For the finite slab we find modes which 
are surface plasmons for large surface wavenumber qll' one of which has a 2D 
plasmon-like dispersion at small qll' There are also standing bulk plasma waves 
fitting across the slab. 

n is also argued that more sophistocated hydrodynamic models with diffuse 
surfaces should yield an additional mode or modes, the multi pole surface plasmons. 
Clearly this hydrodynamic approach misses peaks in the infrared response which 
are due to transitions between particular quantum eigenstates of the confined 
z-motion. In the case of wide parabolic and near-parabolic wells, however, 
single-particle modes turn out to be less prominent than one might have expected, 
because of level crowding and Landau damping. Nevertheless, a more complete 
description will treat the quantum many-body nature of the response problem, 
and this is addressed in the following sections. 

In Section 3 we turn to the special case of an exactly parabolic quantum 
well, summarising a Kohn-theorem argument (Brey et al. 1989) to show that for 
excitation with a spatially uniform finite-frequency electric field directed in the z 
(quantum confinement) direction, a resonance occurs at exactly the bulk plasma 
frequency (no e2 / Em *) 1/2, irrespective of the electron gas width. This result is 
also independent of the detailed form of the interaction between electrons. The 
relevance to IR grating coupler experiments is discussed, and it is argued that 
such a peak does appear in the data of Pinsukanjana et ai. (1992) (Fig. 3a). 

To investigate other IR absorption phenomena at a level beyond hydrodynamics, 
one must set up a microscopic description of quantum-mechanical motion of 
electrons in a total potential consisting of external, self-consistent Hartree and 
exchange-correlation contributions. The relevant theory is outlined in Section 4, 
using local density functional theory to handle the exchange and correlation 
phenomena. 

In Section 5, it is shown analytically, within a rather general class of 
approximations for exchange and correlation, that all quantum wells with a 
1D confining potential and free motion in the two other dimensions, however 
wide, complicated or highly populated, and at any temperature, exhibit a '2D 
plasmon' oscillation mode with frequency w = (Ns E2qll/Em)1/2. Here Ns is the 
well population in electrons per unit area, qll is the surface-parallel wavenumber 
of the mode, and the dielectric constant E and effective mass m* are assumed 
spatially homogeneous and isotropic. The above result holds when qll W « 1, 
where all electron density (including the dynamically excited part) is confined 
to a region of width W. This result is somewhat more general than others 
appearing in the literature: along with the Kohn theorem of Section 3, it accounts 
completely for the observed low-qll IR spectrum, up to about the bulk plasma 
frequency, of a pure parabolic quantum well. 

For quantum wells which are not exactly parabolic, or for higher surface-parallel 
wavenumbers such that the theorems of Sections 3 and 5 do not apply, it is 
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necessary to perform numerical calculations to predict the IR spectrum. These 
are reviewed in Section 6, where the two basic approaches are compared: 

(a) an eigenfunction basis-set approach wherein, at least for low numbers of 
occupied sub-bands and unevenly spaced levels, the modes divide into 
'intraband' (low-frequency) and 'interband' (high-frequency) groupings; 
and 

(b) a real-space (z, z ') formalism emphasising the spatial distribution .6. n( z) 
of oscillating charge density, and relating more directly to the simple 
hydrodynamic approach reviewed in Section 2. 

The two formalisms, when correctly converged, give the same answers, including the 
phenomena of single-particle (particle-hole) resonances, collective resonances and 
Landau damping, but some phenomena are more readily understood qualitatively 
in one formalism than in the other. 

In Section 7, using the real-space formalism, the IR spectra of parabolic 
and linear-parabolic wells are investigated numerically, and it is shown that 
linear-parabolic wells (mimicking a true jellium slab) should have multipole 
surface plasmon modes which do not occur for pure parabolic wells. 

Finally, in Section 8 the above discussion is summarised, and the prospects 
for future theoretical, experimental and device-oriented work is discussed. 

2. Qualitative Expectations from Hydrodynamics 

A dispersive hydrodynamic model (Jackson 1962) is the simplest formalism 
able to tie together the collective behaviours of bulk 3D and 2D electron gases, 
as well as various known simple-metal surface effects such as monopole and (at 
least qualitatively) multipole surface plasmons (Bennett 1970; Eguiluz et al. 1975; 
Eguiluz and Quinn 1976; Das Sarma and Quinn 1979; Mahanty 1982; Schwartz 
and Schaich 1982, 1984). We also use it here for a qualitative picture of standing 
plasmon resonances and coupled surface excitations of finite jellium slabs. A 
detailed account was given in Eguiluz (1979). 

The variables used in this approach are the electron gas density perturbation 
nCr, t) and the fluid velocity u( T, t). By eliminating u between linearised continuity 
(electron number conservation) and Euler (F = ma) equations one obtains a 
second-order differential equation for the density perturbation nCr) exp(-iwt) in 
a region of uniform background density no: 

,82V2n + w(w + iT-I) n = -no m-1V 2¢. (1) 

Here T is a phenomenological Drude damping time and ¢ is a total electron 
potential energy perturbation. The 'pressure', 'dispersion' or 'diffusion' coefficient 
,8 has dimensions of velocity and arises from an assumed force -,82Vn/no in the 
Euler equation. The conventional value ,82 = 0·6v~ = 0·61i2m-2(37f2no)2/3 for 
plasmons in degenerate electron gases is usually justified by comparison of the 
predictions of (1) with those of the finite-frequency microscopic Lindhard response 
function (Mahan 1981) in the limit of small wavenumbers. Correspondingly, the 
hydrodynamic theory is most plausible for phenomena varying slowly in space. 

In the simplest (mean-field) approach, ¢ is the total electron potential energy 
due to the electron number density perturbation n, plus any external source: 

¢ = Vc * n + ¢ext . (2) 
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Here the asterisk represents convolution in real space, V c is the bare Coulomb 
potential whose space Fourier transform V c ( q) is e2 / E q2 in 3D and e2 /2E q in 2D, 
and E is the background dielectric function of the medium (e.g. GaAs) through 
which the electrons move. 

(2a) Plasmons in Bulk 3D and 2D Systems 

We can combine (2) and (1) for the case of an unforced (¢ext = 0) wavelike 
density disturbance with n = exp(iq. r-iwt). This gives the hydrodynamic 
dispersion relation for 3D bulk plasmons when wp T » 1 as 

2 2 (32 2 . -1 
W3DP = wp + q - lWp T , 2 2/ Wp = noe Em. (3) 

Similarly, the plasmon dispersion for a 2D electron gas of infinite extent in the 
limit W2D T » 1 is predicted to be 

2 2 (32 2· -1 
W2DP = W2D + q - lW2D T , (4) 

Here N s is the traditional 2D notation for the electron number no per unit area. 
Of particular note is the ..;q dependence of the 2D plasmon frequency W2D in the 
limit q ...... 0, T ...... 00, compared with the finite 3D plasma frequency as q ...... O. 

(2b) Plasmons at the Surface of a Three-dimensional Electron Gas 

We assume that the electron gas occupies the half-space z < o. In addition 
to reflecting incident 3D plasmons, the surface can support surface plasmons 
whose oscillating density disturbance is wavelike in the x direction parallel 
to the surface but decays exponentially into the bulk (Ritchie 1957): thus 
n(r, t) = const. exp( Qz + iqU x - iwt). Boundary conditions are needed for the 
hydrodynamic Euler equation. The simplest assumption is that the surface-normal 
fluid velocity vanishes at the surface, uz(z=O) = 0: this will be termed the 
'hard-wall' condition. Assuming that n(z) is zero for z > 0, and that the electric 
field and potential are continuous at the surace, one finds (Mahanty 1982; 
Schwartz and Schaich 1982) a surface plasmon frequency 

w = ~(J1 +x2 +x), 

which approaches wp / V2 as qu ...... O. The inverse penetration depth is 

Q = -qu /2 + (0· 25qrr + O· 5w~ (3-2)1/2 , 

(5) 

(6) 

which approaches wp /V2(3 as qu ...... 0: this is of order qTF, the Thomas-Fermi 
wavenumber. 

The conclusion that w ...... wp /V2 as qu ...... 0 is borne out by more sophisticated 
treatments of the bounded electron gas problem, and is independent of surface 
details (Harris and Griffin 1971; Feibelman 1971). The positive dispersion 
predicted by (5) is, however, an artifact of the hydrodynamic and hard-wall 
approximations made here: for example, the initial (qu ...... 0) dispersion of surface 
plasmons on simple metal surfaces is found both experimentally (Tsuei et al. 1991) 
and in more complete theories (Feibelman 1982; Liebsch 1987) to be negative. 
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(2c) Dispersive Hard-wall Hydrodynamic Model for Electron Gas Slab 

A simple model for a slab of electron gas with finite thickness L can be made 
from the dispersive hydrodynamics already presented, with hard walls at z = ±L/2 
and an electron density perturbation of the form n(z) exp(iqll x-iwt), and with 
n(z) zero for Izl > L/2 (Eguiluz 1979). Free (undriven) plasmon solutions can 
be divided into even and odd categories with density profiles as follows: 

n(z) cosh(Qz) f)(L/2 -Izl) (even solution), 

sinh(Qz) f)(L/2 -Izl) (odd solution). 

(7) 

(8) 

We first discuss solutions with real Q, corresponding to coupled surface plasmon 
modes in which the disturbance is localised near the surfaces, with inverse 
penetration depth Q. There are also standing-wave (cosine and sine) solutions 
corresponding to (7) and (8) but with imaginary Q: these will be discussed later. 

We assume e8</>/8z -m/32no-l 8n/8z = 0 at z=±L/2 [equivalent to Euler's 
equation with uz (z=±L/2) = 0]. Then, using Poisson's equation with electric 
field and potential continuous at both surfaces, we obtain an equation for the 
inverse penetration depth Q in the even surface-plasmon case corresponding to 
equation (7): 

( 
2/32 q2 _ Q2 ) 

qlltanh(qll L/2) = Qtanh(QL/2) 1 + -2 II _ L . 
wp 1 +e qn 

(9a) 

In the odd case corresponding to (8), equation (9a) is replaced by 

( 2/32 qrr - Q2 ) 
qll coth(qll L/2) = Qcoth(QL/2) 1 + -2 _ L . 

wp 1- e qll 
(9b) 

The dispersion relation in both cases is 

(10) 

which is simply the bulk dispersion relation with an imaginary wavenumber ±iQ 
in the z direction. 

Equations (9) always have the solutions Q = ±qll which are in fact spurious 
for the case {/3#0, L finite} since they make the potential infinite. The other 
solutions are admissible. 

For thick slabs (L - 00) the tanh factors in (9a) are unity and after cancelling 
a factor (Q-qll) we recover (6) which relates Q to qll for a single surface. 
Thus from (10) we recover the surface plasmon dispersion relation (5) as for a 
semi-infinite slab. The interpretation is that, for thick slabs, the surface plasmon 
modes of the two surfaces are decoupled because the Coulomb interaction between 
two sheets of wavelike charge distribution, separated by a distance z = L, falls 
off as exp(-qll L). 

In the long-wavelength limit, qll L «: 1, the left side of (9a) is of order qrr so 
that the term in the large parentheses on the right vanishes to O( qll), giving 

(11) 
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Thus the leading term in (10) is the 2D plasmon relation (4). Hence in this 
model it is not necessary to have a thin (two-dimensional) electron gas in order 
to obtain the 2D plasmon dispersion relation: it is sufficient that the wavelength 
along the surface be much greater than the slab thickness. Like the qll ~ 0 
limit of the surface plasmon dispersion relation discussed earlier, this is also 
a universal result, not restricted to the hydrodynamic model or to hard-wall 
boundary conditions, as will be seen later in this article. Despite the 2D form of 
the dispersion relation in the case qll L« 1, the spatial distribution of oscillatory 
density in the present model is not two-dimensional. Equation (ll) shows that 
Q "" wp / {3 "" qTF so that, from (7), the plasmon charge density for a thick slab 
(qTF L ~ 1) resides in a layer roughly one Thomas-Fermi screening length wide 
on each side of the slab, corresponding to coupled surface plasmons. This will 
also be borne out later by more complete calculations. 

The odd surface-plasmon solution is obtained from (9b). Once again the 
solutions Q = ±qll are spurious for {3 =f 0 when L is finite, but the other real 
solution for Q is valid and when inserted into (10) gives a dispersion relation. The 
thick-slab limit qll L ~ 1, qTF L ~ 1 gives once again the single-surface plasmon 
dispersion relation (5), indicating electrical decoupling between two out-of-phase 
surface plasmons. 

eM (sloshing) 
mode 

Fig. 6. Qualitative snapshot of the dynamic 
electronic density distribution in a sloshing mode 
(centre-of-mass mode, odd ripplon) on a jellium 
slab. 

The thin-slab limit of equation (9b) is more delicate than for the even modes 
described by (9a). When qll = 0 it is readily shown that the only real solution 
of (9b) has Q = 0 which, from (8), corresponds to an unacceptable null density 
disturbance. In fact there is a minimum qll value, called by Eguiluz (1979) 
the critical wavenumber qc, such that the odd-surface-plasmon condition (9b) 
yields a real penetration wavenumber Q. When qll < qc the odd mode does not 
disappear, however, but changes to an odd standing-bulk-plasmon mode which 
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in effect has an imaginary penetration wavenumber, Q = ik: this type of solution 
is discussed in the next paragraph. This behaviour leads to a single continuous 
mode which changes from standing-wave character to surface-plasmon character 
as gil increases through gc· The dispersion relation is smooth and shows no 
anomaly at gil = gc· This mode is related to the 'sloshing' excitation shown in 
Fig. 6. 

We turn now to the even and odd standing-wave plasmon solutions obtained 
from equations (9a) and (9b) by setting Q = ik thoughout, where k is real. 
In this case the density has spatial oscillations in the z direction, representing 
standing plasma waves fitting across the slab (Fig. 7). The U z = 0 boundary 
condition allows discrete wavenumbers k = M 7r / L. For gil -:f. 0, M takes discrete 
but non-integral values. Using (10) we obtain the dispersion of standing bulk 
plasma waves across the slab: 

(12) 

Equation (12) is readily understood as the bulk dispersion relation (3) with a 
wavenumber q = gil x+(M7r/L)2. 

Standing plasmon 

(case qll = 0) 

Fig. 7. Qualitative snapshot of the electronic charge distribu
tion in a bulk standing wave plasmon mode fitting across the 
slab width L. 

(2d) Omissions of the Hard-wall Hydrodynamic Model 

The assumption of the hard-wall boundary condition U z = 0, and of a sharp 
electron gas surface, is mathematically convenient, giving rise to near-analytic 
solutions as discussed in Sections 2b and 2c above. This simplified boundary 
condition does lead to the loss of some interesting physics, however. A case 
in point is the multipole surface plasmon (Bennett 1970; Schwartz and Schaich 
1984; Dobson and Harris 1988; Tsuei et al. 1991). Its existence can be surmised 
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qualitatively along the following lines. For frequencies below the bulk plasma 
frequency, equation (3) shows that bulk 3D plasmons are evanescent (qz is 
imaginary). If a smoothly-falling surface density no(z) (a 'selvage') is present, 
standing plasmons with frequency below the bulk wp but above the local plasma 
frequency [no(z)e2/Em]1/2 may become trapped in the selvage since they cannot 
propagate into the bulk. Such standing modes require a sufficiently wide selvage. 
There is an extensive literature on multipole surface plasmons (Tsuei et al. 1991), 
which have now been seen experimentally at a frequency near 0·8 wp on the 
surfaces of simple metals. A key point emerging from this work is that the 
integrated surface charge-density perturbation J n dz is zero in the limit qll ---+ 0, 
in contrast to the regular surface plasmon which has a monopole or nonzero 
net charge, J n dz =f. O. An unequivocal prediction of multi pole surface plasmons 
seems to require a microscopic theory in which the static density profile and the 
dynamic response can be made fully compatible (Dobson and Harris 1988). 

SWP 
5 SWP 

SWP 
~4 . 
::i SWP cO 

'I OddSP 
0 3 ,.... 
8 

2 

0.5 1.0 1.5 2.0 2.5 

qll (10-1 a.u.*) 

Fig. 8. Summary of the expected dispersion relations of 
collective plasmon excitations on a jellium slab of finite width, 
within a dispersive hydrodynamic approximation. Solid curves 
represent plasmons as predicted analytically using hard-wall 
boundary conditions [numerical solution of equations (9) and 
(10)]. The dashed line represents qualitatively the multipole 
surface mode expected when the hard-wall boundary condition 
is relaxed. SP denotes surface plasmons; 2DP, the mode 
with two-dimensional plasmon dispersion; SWP, bulk standing
wave plasmons; and MSP, multipole surface plasmons. Note 
that the standing-wave plasmon branches have an uneven 
spacing dependent on boundary conditions. (Solid curves were 
calCulated for rs = 3 and L = 18 to allow comparison with the 
microscopic WPQW calculation shown in Fig. 12.) 

The above conclusions are summarised in Fig. 8, where the solid curves are 
the dispersion relations of the modes in the dispersive hard-wall approximation, 
as given by equations (9) and (10), with allowance for both real and imaginary 
values of Q. The dashed line represents a multipole surface plasmon whose 



404 J. F. Dobson 

existence one might surmise from the smooth falloff of electron density at the 
edges of the well, as just discussed. 

Other features of the excitation spectrum of quantum wells which plainly cannot 
be described in the hydrodynamic model include discrete-electron quantum effects 
such as resonances at single-particle transition energies, and other discrete-orbital 
and quantum size effects. Nevertheless the overall picture given in the above 
hydrodynamic model (Fig. 8) is a surprisingly good representation of the infrared 
spectrum of wide Gal_xAlxAs quantum wells. Further progress, especially a 
reliable description of multi pole surface plasmon and single-particle transition 
resonances, will require more microscopic models. These are established in the 
following two sections. 

3. Kohn's Theorem: An Exact Result Specific to Parabolic Quantum Wells for 
qll = 0 

The special case of an electron gas in a purely parabolic bare confining 
potential (WPQW) is unusual among quantum many-body systems in that an 
exact quantum mechanical result is available. In essence, the entire electron gas 
oscillates with a 'sloshing' motion in the z direction, at the same bare simple 
harmonic frequency wp = J K / m as applies for a single electron oscillating in the 
parabolic well. This holds for any central pair potential u(Jrl) acting between the 
electrons, and in particular it applies for the case in hand, that of the Coulomb 
pair potential. Note that wp is numerically equal to the 3D bulk plasma frequency 
for the positive background density no corresponding to the given parabolic well 
(see the Introduction). 

A formal proof of this 'Kohn (1961) theorem' result, which is the zero
magnetic-field case of a more general result given for parabolic wells including 
a static magnetic field by Brey et al. (1989), is as follows. For N particles 
labelled Ct = 1, ... , N in a parabolic well, the total-z momentum and centre-of-mass 
operators P z = 2:aPz", and Z = 2:aza commute with the pair interaction. (The 
P z case amounts to conservation of total momentum when only central pair forces 
act between particles.) Then their commutators with the exact Hamiltonian are 
determined only by the kinetic energy part and the quadratic external-potential 
part mw~ 2:", z;/2, giving 

(13) 

where 
(14) 

are ralsmg and lowering operators. Thus by standard operator algebra, as for 
a single simple harmonic oscillator, there exists a set of exact (many-body) 
eigenstates \[In with energies spaced equally by nwp. Under a spatially homogeneous 
perturbing field Ee-iwt in the z direction, the perturbation is linear in 2:", z"" 
i.e. in (a++a-), and thus couples states differing in energy by nwp , leading to 
a sharp absorption peak at wp. 

While this generalised Kohn theorem only applies to resonance under a strictly 
uniform driving rf field, the physical nature of the electron gas motion in this 
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mode is a sloshing in the Z direction across the parabolic well. Thus we 
expect, in the presence of a weakly nonuniform driving field of a grating-coupler 
WPQW experiment in the small-qll limit, to find a mode in which the sloshing is 
modulated in the x direction perpendicular to the electron gas surface (Fig. 6). 
If a transverse mode grades continuously into the uniform Kohn-theorem sloshing 
mode as qll -> 0, we expect that its frequency will approach wp in that limit. 
Such a mode does not compress the electron gas as qll -> 0, so that its finite 
frequency in this limit is not due to the electron-electron interaction, in contrast 
to the case of a bulk q -> 0 plasmon which also has frequency Wp. Indeed, the 
Kohn-theorem mode of a jellium slab is a transverse plasmon, owing its finite 
frequency in the qll -> 0 limit to the parabolic confining potential. Later we will 
see from an explicit (but necessarily approximate) many-body calculation that 
the WPQW does indeed have a Kohn-theorem mode smoothly approaching wp 
as qll -> O. 

4. Approximate Microscopic Many-body Description of Quantum Well Plasmons 

While the hydrodynamic treatment in Section 2 gives a rough guide to expected 
modes of oscillation, and a restricted exact result is available from Section 3 
for a purely parabolic well, we need a detailed microscopic theory to cover all 
quantum wells of interest in a more reliable way. 

The simplest such microscopic formalism is the time-dependent Hartree approach 
in which single electrons are treated quantum-mechanically, and are assumed to 
move in a mean-field potential determined self-consistently via Poisson's equation 
from the instantaneous electron density. Such an approach neglects exchange 
phenomena (due to the antisymmetry of many-electron wavefunctions under 
particle label transposition). It also neglects correlation phenomena (due to the 
tendency of individual Coulomb-interacting electrons to avoid one another, over 
and above the average repulsive effect inherent in the Hartree mean field). The 
simplest way to include exchange and correlation in inhomogeneous sytems in 
general is the local density approximation (LDA) of Kohn and Sham (1965) (see 
Dreizler and Gross 1990). 

(4a) Ground State of Electrons in a Quantum Well 

The Kohn-Sham theory approximates exchange and correlation effects in 
inhomogeneous systems by using known results for the homogeneous electron gas. 
In its usual form it is a theory of the many-electron ground state. Applied to the 
ground state of a three-dimensional electron gas of area A in a bare quantum 
well potential V(z) it gives the following equations (Dobson 1992) for effective 
one-electron eigenfunctions iJf and electron number density n (z): 

iJfkll,J(r) = A-1/2 exp(ikll·r)'l/Jj(z), (15) 

( 1i,2 d2 Deff) 
- 2m dz2 + V (z) 'l/Jj(z) = Ej'l/Jj(Z), 'l/Jj(Z)->O as z-> ±oo, (16) 

n(z) = L liJfkll ,j(r)1 2 = 2(27r)-2 L 7r(k~ - 2mEj/1i,2)'l/J;(z). (17) 
kll ,j DCC 
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The self-consistent confining potential VOeff (z) is composed of the bare well 
potential Vext(z) plus a Hartree field and an exchange-correlation potential: 

(18) 

The Hartree (uncorrelated mean-field) potential satisfies the Poisson equation 

(19) 

The exchange-correlation potential tLxe is the only additional term which 
distinguishes the Kohn-Sham theory from the approximate Hartree theory. The 
exact nonlocal functional tLxe[n] is, however, unknown. The LDA (Kohn and 
Sham 1965) consists of replacing this unknown functional by a local one: 

tLxe(z) = 8/8n(nExe ) In=n(z). (20) 

Here the exchange and correlation energy f xe per electron of the uniform electron 
gas is reasonably well known for 'metallic' electron densities, by a variety of 
analytical and numerical methods (see e.g. Dreizler and Gross 1990). A very simple 
approximation, fairly accurate at metallic densities, is the Wigner interpolation 
formula (Mahan 1981, p. 397) 

f xe = -0·458/1's - 0·44/(1's + 7·8) a.u.*, (21) 

where 1's = a~-l (3n/41f)-1/3 is the inter-electron spacing in units of the Bohr 
radius. 

The total number of electrons per unit area is 

In the experimental situation (Fig. 2) the areal density N 2 is controlled by (a) 
the amount of spatially remote doping, supplying free conduction band electrons 
to 'fall' into the well, and (b) the d.c. bias voltage maintained between the 
electron gas and the semi-transparent gate. 

In solving the above Kohn-Sham equations for a given areal density N s of 
electrons, the Fermi energy fF = 1i2k~/2m and the number Noee of occupied ID 
orbitals ('sub-bands') are determined self-consistently by increasing N oee until 
the value of fF determined via (22) satisfies fNocc < fF < fNocc+l. 

Figs 4a and 4b show the total Kohn-Sham potential VOeff and ground-state 
electron density n(z) resulting from a self-consistent solution of equations (15)-(22) 
for zero-temperature parabolic (WPQW) and neutral parabolic-linear ('jellium 
slab') wells. (See the Introduction for a discussion of these well structures: the 
bare external well potentials for these cases are shown in Fig. 1.) In both cases 
the electron gas lies in a fairly uniform layer of density equal to that of the 
fictitious epitaxially grown effective positive background, and VOeff is almost 
uniform inside the layer. The differences between the two types of well are 
found at the edges. In the jellium slab case the correctly filled well plus effective 
positive background constitute an electrically neutral system, and accordingly 
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the total effective potential VOeff (z) levels off outside the electron gas, glvmg 
rise to a well-defined work function VOeff (z---+oo )-fF. The electron density has 
considerable penetration into the vacuum. In the WPQW case we effectively 
have a system which is not electrically neutral, since the positive background 
extends outside the layer of electron gas. The potential VOeff rises quadratically 
outside the well, forcing the electron gas density to fall rather abruptly at its 
edges. These sharp edges have been termed (Dobson 1992) 'embedded' electron 
gas edges, and they constitute a new type of surface physics problem distinct 
from the standard jellium edge situation described theoretically by Lang and 
Kohn (1970). The contrast between the 'regular' or Lang-Kohn electron gas edge 
density and that of the 'embedded' electron gas edge is highlighted in Fig. 9 
using a suitable scale. We will see shortly that the dynamic properties of the 
embedded electron gas edge are correspondingly different from those of regular 
jellium (Dobson 1992; Pinsukanjana et al. 1992). 
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Fig. 9. Details of the static electron density distribution near the 
edge (set here to z = 0) of the electron gas layer in a WPQW, showing 
its stability as a function of electron gas layer thickness L (symbols), 
with r; = 2·07. The thin curve (visible only near the top of the 
figure) is the case L -+ 00. All the above results show a sharper edge 
profile than a regular jellium surface (dashed curve). [From Dobson 
(1992).J 

(4b) Bare Response of Quantum Well Electrons to Time-varying External Fields 

To linear order, the density response of an interacting zero-temperature many
electron system to a static external potential 6Vext (r) can be derived without 
further approximation from the Kohn-Sham equations (see e.g. Dobson and Rose 
1982, Appendix A2). The method stems from the fact that the Kohn-Sham 
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density is formally that of independent electrons moving in an effective field. The 
density response 8n(r) of such independent electrons to a change 8Veff(r') in the 
effective potential can be found straightforwardly by adding the squared moduli 
of one-electron wavefunctions augmented with a standard first-order perturbation 
correction. The result is, in general geometry, 

8n(r) = J dr'xo(r,r')8Veff(r')=xo* 8Veff , (23) 

where the asterisk represents spatial convolution and the bare (generalised Lindhard 
or single-bubble) susceptibility is 

Xo(r, r', w) = 2 L fr - h . WHr) wj(r') WJ(r) WJ(r'). (24) 
EJ - EJ - nw - 10 

J,J 

We have included a finite frequency w from standard time-dependent perturbation 
theory even though so far we are only justified in using the w --., 0 limit. In (24) 
{E J} are the unperturbed Kohn-Sham eigenenergies, which for the slab gemetry 
of interest here are 

(25) 

and f J is, in the present case, the zero-temperature Fermi distribution. Note 
that for a uniform electron gas the space Fourier transform Xo (q, w) of (24) is the 
standard Lindhard response containing logarithmic singularities (Mahan 1981). 
Using (25) in (24) we find 

Xo(r, r', w) = (27r)-2 J d2qll exp(iqll·r) Xo(qll, z, z',w), (26) 

where 

Xo(qll, z, z', w) 21)27r)-2 J d2kll f(fi + n2k~/2m) 'l/Ji(Z) 'l/Ji(Z') 'l/Jj(z) 'l/Jj(z') 
<,J 

X [{fi - fj + nw + n2 (2kx qll - q~)/2m}-1 

+ {fi - fj -nw -n2 (2kx qll + qIT)/2m} -1]. (27) 

The dummy labels i and j have been interchanged in obtaining the second term 
in braces. 

(4c) Screening the Bare Response 

In Section 4b the density response to a change 8Veff , rather than to a change 
8 V ext , was obtained. The change 8 V eff in the total effective potential must 
now be related to the externally imposed perturbation 8 V ext by linearising the 
self-consistency conditions (18)-(20). There results a spatial integral equation 
(the 'screening' equation) which in convolution notation can be abbreviated as 

8n = Xo * (oVext + Vc * On + fxc on) . (28) 
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Here, for the static case, 

(29) 

The case of time-dependent perturbations requires further assumptions since the 
standard Kohn-Sham approach is a ground-state theory. Nevertheless, it is 
now commonplace (Ando 1977; Zangwill and Soven 1980; Dobson and Harris 
1986; Tsuei et al. 1991) to use equations (24), (28) and (29) at finite frequency, 
unmodified. The resulting scheme is widely known as the time-dependent local 
density approximation (TDLDA). Although a general density functional approach 
to time-dependent phenomena is difficult, Gross and Kohn (1985) and Iwamoto 
and Gross (1987) have proposed a tractable scheme for the special case of linear 
response. In their scheme, which we term the dynamic local density approximation 
(DLDA), fxc in equation (29) is replaced by fxc(n(r),w) where the w dependence 
is determined by an analytic interpolation between the static limit (29) and the 
high-frequency limit determined from frequency moment sum rules. Results from 
the DLDA are not very different from those of the TDLDA for the low-rs jellium 
surface (Dobson and Harris 1990), but the differences are expected to be greater 
at higher rs. 

Both the TDLDA and DLDA discussed above have a local exchange-correlation 
term, but since the screening equation (28) already involves convolutions it is 
not difficult to allow for a nonlocal but linearised xc term: 

On = xo * (OVext + 11;, * On + Fxc * On), (30) 

where both XO and Fxc can depend on qll' z, z' and w. Of course, it will only 
be valid to use a nonlocal linearised xc term F xc in (30) if the ground-state 
equation (20) is also made nonlocal and consistent with f xc in the static limit. 

5. Proof of Existence of a Mode with 2D Plasmon Dispersion as qll -+ 0 

We now show that the bare response formula (27) and the generalised screening 
equation (30) imply the existence, for an arbitrary bare confining potential Vext(z) 
acting on 3D electrons, of a plasmon mode with dispersion 

(31) 

The only restrictions on this result are as follows: 
(a) The background dielectric constant E and effective mass m are assumed 

to be position-independent. 
(b) The wavevector must be small: specifically, qll W «1, qll Vo «W2D. Here 

W is the distance, in the z direction, between the outermost limits of the electron 
charge distribution (both the static and dynamic parts), while Vo is a mean 
electron velocity, VF at low T or VthermaI at high T. 

(c) We must have precisely slab geometry--electrons are free to move in the x 
and y directions and are confined by a potential V (z) independent of x and y. 

(d) The exchange-correlation kernel F xc must be less singular than q Ii 1 as 
q II -+ 0 (this is certainly true of any local form because F xc is then independent 
of qll). 
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Note that, although the dispersion law (30) is as for a 2D electron gas, the 
electron gas does not have to be thin: condition (b) merely requires a small 
surface-parallel wavevector. In fact the theorem holds even for multiple well 
structures, in which case W in condition (b) above is approximately the entire 
width of the multi-well structure. It alsa holds for any temperature (though 
note that the width W as defined above will increase with temperature). It 
furthermore holds for all local and many nonlocal xc expressions. 

To establish the theorem, we investigate the solutions of (30) in the limit of a 
small surface-parallel wavevector q", for finite w. To this end we first expand the 
braces in (27) to third order in the small quantities (fi2/2m)(2kx q,,±q,,2)/fiw. 
After integrating over z, using orthonormality of the {'¢i(Z)} we obtain 

J q2 6q4 
Xo(w, q", z, Zl) dz ' = -2" nO(z) + -2"4 t2(z) + O(q6,,/w4) 

wm mw 
(32a) 

(32b) 

where 

° ~ 2 J 2 ( fi2 2) 2 n (z) = L..- (271l d k" f Ei + 2m k" l<Pi(Z)1 
• 

(33) 

is the static zeroth-order density profile and 

(34) 

is the density of kinetic energy of the x-motion (parallel to q,,) in the static 
problem. Equation (32b) is identical to (32a) except that Z and Z 1 have been 
interchanged inside XO (reciprocity). Similar results have been used previously 
(Harris and Griffin 1971; Feibelman 1971) to prove that the surface plasmon 
mode on metallic surfaces approaches a frequency wp /..j2 in the long-wavelength 
limit. 

[At finite temperature the energy denominators in (27) for small q" can always 
vanish at sufficiently large kx of order mw /fiq", formally invalidating the above 
expansion. However, the corresponding Landau damping terms are down by 
a factor exp( -mw2 / q,,2 kB T) because of the thermal distribution f appearing 
in (27), and are hence negligible in solid state applications. In the present 
case of the '2D plasmon mode', w2 is proportional to q", leaving a very small 
exp( -const./ q,,) factor in the neglected terms.) 

The screening equation (30) can be written, with the most general form of xc 
kernel, 

J ° (21Te2, I '" ) 8n(z) - dz 1 dz" X (w, q", z, z ') QjJ e-qll Z -z + Fxc(w, q", z I, z") 8n(z") 

= J XO(w, q", Z, Zl) 8Vext (zl) dz ' . (35) 
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In the DLDA (Gross and Kohn 1985), for example 

F(w, qll' z', zIt) = 8(z' - zIt) fxc(w, n°(z')) for all qll' (36) 

with fxc replaced by its zero-frequency value (8ILxc/8n)lno(r) in the case of the 
more usual TDLDA. 

In equation (35) we allow in fact for a more general, nonlocal exchange and 
correlation kernel F xc(w, z, z '): to obtain (31) we need to assume that it is 
less singular as qll -t 0 than the bare Coulomb kernel 271'e2q~lexp(-qlllz - z'\). 
The plasmon modes are the homogeneous solutions of equation (35), i.e. those 
self-sustaining oscillatory solutions for which 8Vext (z) = O. We break up the 
Coulomb kernel as follows: 

(37) 

where the second term approaches the finite limit -e2 Izl/2E as qll -t O. 
Using the decomposition (37) we integrate (35) with respect to z, putting 

8 V ext = 0 as appropriate for free plasmon oscillations. Then using the identity 
(32) and writing 

J 8n(z) dz = Mo, (38) 

we obtain the dispersion relation 

( 271'e2 I' "I ) x --(e-qll Z -z -1) + Fxc(w, qll' z', zIt) 8n(z") = O. 
qll 

(39) 

Here Ns = JnO(z) dz is the static areal electron density and 

T2 = J t~(z) dz/N~ 
~ L roo ~k3 f(Ei + ~ k2) dk/ L roo k f(Ei + ~ k2) dk (40) 
2m . 1o 2m . 1o 2m 

t t 

is the equilibrium kinetic energy, per electron, of motion parallel to qll' 
Letting qll -t 0 and keeping only the 0(1) and O(qll) terms in (39) we recover 

the well-known lowest-order 2D plasmon dispersion relation w2 = e2 Ns m-1 qll/2E, 
where we have assumed that M ° i= 0 so that M ° can be cancelled throughout. 
Taking this value of w in the higher terms and multiplying (39) throughout by 
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w2 / M ° we obtain a formal expression for the leading qll --> 0 corrections to the 
'2D plasmon' dispersion of an arbitrarily thick slab: 

(41) 

Here 

Uo = J dz' dz" nO(z')[e2 I z ' - z"I/2€ 

-Fxc (W2D(qll)' qll-->O, z', z")] 8n(z") I J 8n(z) dz (42) 

is the positive energy of Coulomb repulsion per electron in the qll --> 0 limit, 
averaged between the equilibrium density and the plasmon mode profile 8n(z) 
(which solves equation 35). This is well-defined provided that the exchange
correlation kernel F xc remains finite as qll --> O. This is certainly the case for 
local approximations to F xc, such as the TDLDA or DLDA, but one can deduce 
indirectly that it cannot be the case if F xc is sufficiently nonlocal to change the 
effective mass: in that case the UO term above must presumably be singular 
enough to, compete with the leading dispersion term w2 = Ns e2qll/2€m, in such 
a way as to change the effective value of m. 

For the case of a sufficiently wide well the Iz - z'l term in (42) is dominant 
over the other term in (42) and also over the T~ term in (41). If we introduce 
a maximum width W of the density distributions n(z) and 8n(z), then the 
modulus of UO is bounded as follows: 

(43) 

where N s is the ground-state areal density and 

a = J 18n(z)1 dz II J 8n(z) dz I (44) 

is a number of order 1 for the case at hand in which the denominator of (44) 
is finite. [Strictly speaking it is necessary to assume that a does not diverge as 
qll --> 0, which amounts to assuming that 8n(z) has a stable limit as qll --> 0: 
this is borne out by numerical calculations. J 

Using (43) in (41) we find, for wide wells, 

(45) 

Thus, even for wide wells, the '2D' plasmon dispersion law holds. 
The above derivation assumes that we are dealing with a mode for which 

8n(z) remains finite and has a nonzero integral Mo = J8n(z) dz in the limit 
qll --> o. There are other modes such as the 'centre of mass' or sloshing mode of 
a wide parabolic quantum well (or 'interband' modes in general), plus in some 
cases other 'intraband' modes (Fasol et al. 1989) which do not have this property 
and correspondingly have quite a different low-qll dispersion. 

There are other ways (Kempa et al. 1989; Das Sarma 1992, personal 
communication) of obtaining a 2D plasmon-like dispersion on a general well, 
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but the present approach has the advantage of including exchange-correlation, 
quantifying the next term and obtaining a simple physical criterion for the region 
of validity. 

6. Formulae for Numerical Quantum Well Response Calculations 

(6a) Discrete Basis Methods 

The expression (24) for the bare response, while written in real (z, z ') space, 
employs an infinite sum over the 1D eigenfunctions for motion across the well. 
Some numerical work has used this infinite discrete eigenfunction expansion, 
coupled with a Fourier series (kz, kz') representation in the z direction (Eguiluz 
1983; Kempa et al. 1989). 

Another variant is exemplified by Das Sarma (1984): he used a fully matrix
element oriented description, which can be derived by decomposing the density 
response into components 

representing the density perturbation due to a small amount of the sub-band n 
becoming mixed into the sub-band m by the time-dependent potential. The bare 
response of {jPmn has peaks at the single-particle ('sub-band') energy eigenvalue 
difference Em -En' The screening equation (30) becomes a matrix equation and the 
condition for free plasmon oscillations can be written, within the time-dependent 
Hartree (RPA) approximation (Das Sarma 1984), as 

o = det{ Eijmn (qll' w)} = det{ {jim {jjn - Vijmn X~·tn} . (47) 

This is an N 2 x N 2 problem, where N is the number of sub-bands kept: for 
exact results, of course, we must let N -+ 00. For only one or two sub-bands 
occupied, and with unevenly spaced energy levels, equation (47) can be reasonably 
approximated by a 4x4 system (N = 2), however. Das Sarma (1984) has shown 
that this approach gives essentially analytic results for 'intra-sub-band' (2D 
plasmon) and 'inter-sub-band' plasmons in the case of heterojunctions with only 
one occupied sub-band: this version of the formalism clearly has great advantages 
in this limit. Here, however, we are interested in wider wells for which N must be 
increased, making the N 2 x N 2 nature of the eigenproblem increasingly unwieldy. 
A real-space approach is more suitable for elucidating the surface nature of the 
plasmon modes in wider parabolic and related wells, and we outline this next. 

(6b) Real-space (z, z') Approach 

Another form suitable for numerics can be obtained by noting (Feibelman 
1982) that the sum over 1D eigenstates 'ljJj in (27) is the Green function for 
a 1D Schrodinger equation. This Green function can also be represented as a 
product of left and right eigenfunctions 'ljJL, 'ljJR with an appropriate derivative 
discontinuity at z = z '. Then, after some algebra, (27) becomes 
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Xo(qll, z, z', w) = -2m(1f21l?)-1 L 'ljJi(Z) 'ljJi(Z') jk i dkx (k; - k;)1/2 
i OCC -ki 

Here 

(49) 

Z> = max(z, z') and z< = min(z, z'). 

In (48), 'ljJR and 'ljJL are homogeneous solutions of equation (16) satisfying zero 
boundary conditions at Z -t +00 and Z -t -00 respectively. The Wronskian 

(50) 

of the left and right solutions can be shown to be z-independent because both 
'ljJR and 'ljJL satisfy (16) at the same (complex) energy. 

Equation (48) avoids the infinite sum over intermediate states j inherent in 
(24), but instead the left and right wavefunctions 'ljJL, 'ljJR are obtained numerically 
at each kx value sampled in the numerical kx integration. For small finite values 
of q II, (48) is considerably more efficient than (24) for calculation of XO because, 
as shown by (49), the argument of 'ljJL, 'ljJR hardly varies and the kx integration 
can be done with a handful of points. The square root in the kx integral is 
handled by a purpose-built algorithm so that fine sampling is not required. 

7. Numerical Results for Parabolic and Related Wells under Grating 
Coupler Excitation 

The response of parabolic wells at qll = 0 is relatively uninteresting because of 
the generalised Kohn theorem (see Section 3) and because external fields with 
qll ::::; 0 have the wrong z-dependence and hence cannot excite standing plasmon 
waves with discrete wavenumber across the well (see Section 2c). More interesting 
behaviour occurs if we excite the well at finite qll using a grating coupler (see 
Fig. 2). While a more detailed theory has been given for the strong coupling 
of a grating to a nearby two-dimensional system (Zheng et al. 1990; Zheng and 
Schaich 1991; Schaich 1992, personal communication), we consider here only the 
case of weak coupling between the grating and the electron gas. This case may 
be understood by introducing the grating strength parameters f3n(w) defined as 
follows. Consider an r.f. field incident normally on the grating. In the absence 
of the electron gas it produces a qll = 0 electric field component at the grating 
position Zg given by Eo i exp( -iwt). The grating then produces a near field 
with components at surface-parallel wavevectors qll = qn = (21fn/ Ag)i. Because 
this field has \7 X E ::::; 0 in the nonretarded limit, it may be represented as the 
gradient of a near potential ¢: 

00 

¢(r) = Eo L f3n(W) exp( -qnlz - zgl + iqn x - iwt). (51) 
n=l 

Note that this potential has \72¢ = 0 for Z -I Zg, and that the higher components 
fall off more rapidly away from the grating than do the low ones n = 1,2 .... Note 
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also that f3n could depend on Eo (i.e. the grating could respond nonlinearly), 
but we assume here that the incident and returned fields are weak enough 
that the nonlinearity can be neglected. Using the screening equation (28), (35) 
we calculate numerically the linear density response 8n(z) exp(iqll x-iwt) of the 
confined electrons in the well to this potential: 

00 

8n(r, t) = -eEo L f3n(w) 8n(n) (z) exp( -qn Zg + qn X - iwt) . (52) 
n=l 

Here 8n(n) exp(iqn x-iwt) is the response from the screening equation (28), (35) 
to a single component n of the grating field, of unit strength: that is, it is 
the response to a potential ¢ = exp( qn z+iqn x-iwt). We have assumed that the 
grating lies outside the electron gas and to the right, so that in the perturbing 
potential we may write exp(-qnlz-zgl) =exp(qnz)exp(-qnZg). 

Using E = -\l¢ and integration by parts, we calculate the power absorbed 
per unit area of well: 

n 

Here M is an exponential moment of the density response, 

M(qll' w) = J 8n(z) exp(qll z) dz 

J exp(qll ZI) X(qll' W, z, zl)exp(qll z) dz dz ' , (54) 

where 8n(z) is the solution to the screening integral equation (35) with 
8Vext (z) = exp(qll, z) and X is the screened susceptibility. In (53) the cross 
terms involving n -I- n ' vanish because the surface integral of A-1exp{(qn-qn')x} 
vanishes for n -I- n I in the limit of large surface area A. 

The above method takes into account the effect of the grating in adding surface
parallel momenta, ~qll = qn (n -I- 0). In order to obtain realistic experimental 
absorption predictions for the '2D plasmon' line by this method, one should 
also take into account the ~qll = 0 effect of the grating and gate: in a first 
approximation these act as a grounded conducting plane for the self-consistent 
fields of the confined electrons. Thus, the Coulomb kernel in the screening 
equation (35) should be replaced as follows: 

e2exp( -qlliz - z 'I) ---+ e2exp( -qlliz - z 'I) - e2exp( -qll 12z - zol) . 

[In a more complete theory of strongly-coupled gratings (Zheng et al. 1990; Zheng 
and Schaich 1991; Schaich 1992, personal communication) the ~qll = 0 and the 
~qll -I- 0 effects of the grating and gate are treated on an equal footing.] 

To obtain the numerical results shown below, the bare susceptibility xo 
(equation 48) was evaluated on a discrete grid of z, z I points for frequencies 
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Fig. 10. Spectral absorption function -Im[M(gll'w)] from equation (54) for r; = 3, with an 
arbitrarily chosen imaginary frequency component Im(w) = 0·002 a.u.*: 

(a) Spectra for electron gas layer 18 a.u. * wide with a low surface wavenumber gil = 0 ·03 a.u. *, 
showing the presence of the multi pole surface mode (middle peak, squares) for a linear-parabolic 
well representing regular jellium. The surface multipole is absent for the WPQW (solid curve). 

(b) Spectrum fora WPQWwithL = 18 a.u.* and a larger surface wavenumber gil = 0·15 a.u.*. 
The two main peaks are beginning to coalesce into a single surface plasmon frequency, and 
standing-wave plasmons (with vertical scale amplified by 10) are starting to strengthen. 

(e) Spectrum for a WPQW with L = 18 and a large surface wavenumber gil = 0·25. Only 
a single surface plasmon peak can now be resolved, and there are two standing-wave plasmons 
with a hint of a third. 

(d) Spectra for a WPWQ (solid curve) and for a neutral jellium (linear-parabolic) well 
containing a wider electron gas, L = 25 a.u. *, and a low surface wavenumber. The multipole 
surface plasmon between the two main peaks is still visible on the regular jellium slab and 
absent on the WPQW. 
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Fig. 11. Calculated mode profiles .6.n(z) (spatial distribution of oscillatory electron charge 
density perturbation) for 1's = 3, L = 18 and qll = 0·01: (a) Mode with '2D plasmon' 
dispersion, showing that despite its dispersion it is an even combination of two surface charge 
perturbations. (For very thin electron layers these perturbations coalesce to form a true 
2D plasmon.) (b) Centre-of-mass, Kohn-theorem or 'sloshing' mode, showing out-of-phase 
disturbances at the two surfaces. (c) Multipole surface plasmon on a neutral jellium slab. 
Each half of the slab is approximately charge neutral. [From Dobson (1992).J 
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wR+iwI lying just above the real axis (WI was arbitrarily chosen as 0·002 a.u.*). 
The Wronskian (50) has zeros whenever E± = Ej (see equation 49) for any well 
eigenstate j. These zeros correspond to the unshifted single-particle resonances in 
the discrete-summation approaches mentioned above, and they are smeared by the 
kx integration for finite qll. These singularities in (48) were treated numerically 
by adding and subtracting an analytically-integrable expression with the same 
poles and residues, leaving a smooth function to be numerically integrated, plus 
an analytic correction term. The 1D screening integral equatioR (35) (with 
local static Wigner xc) was discretised on the same discrete set of z points, 
using appropriate weights to convert z integration to summation taking into 
account the cusps at z = z' in XO and in the Coulomb kernel. The density 
response 8n(z) = !Xexp(qlliz - z'l)dz' was thus found as the solution of N 
linear equations, where N is the number of discrete z points, which ranged up 
to 149. For each value of W and each qll' the absorption function M(qll'w) from 
equation (54) was then computed by one further 1D numerical integration. Some 
typical results are shown in Figs 10, 11 and 12 for pure parabolic wells and also 
for linear-parabolic quantum wells filled to neutrality. Some further cases can 
be found in Dobson (1992). 
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Fig. 12. TDLDA dispersion relations on a WPQW for r: = 3 
and L* = 18. The 2D-plasmon-like mode (2DP) and the centre
of-mass mode (eM) clearly coalesce at high qll to form the 
surface plasmon (SP). Three standing-wave plasmons (SWP1, 
SWP2, SWP3) are also apparent at high qll. The weak low 
frequency modes marked '7' may be related to the intraband 
modes of Fasol et al. (1989). The high-frequency modes 
marked '?' may be higher standing-wave plasmons. The 
general similarity to Fig. 8 is striking. 

Consider first the pure parabolic wells (WPQWs). The IR absorption function 
-Im[M(qll'w)] at low qll (curves in Figs 3b, lOa and 10d) shows only two 
significant peaks. One is at the 2D plasmon frequency (equation 45) predicted by 
the theorem of Section 5, and one is close to the Kohn-theorem frequency wp. This 
is in good agreement with the experimental data of Pinsukanjana et al. (1992) 
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(Fig. 3a). The dominance of the 2D plasmon peak at low qll can be understood 
from its mode profile 6.n(z) (Fig. lla) which has a nonzero moment J 6.n(z) dz. 
It therefore couples to the grating's near-field potential [which is proportional to 
exp(qll z) ~ 1 +qll z ... J even in the limit qll -7 O. The Kohn-theorem or sloshing 
mode has an odd profile (Fig. llb) and so only couples to O(qll)' As qll is 
increased (Figs lOb and 10c) some peaks above wp gain strength. These appear 
to be standing plasmons with oscillatory mode profiles, explaining their weak 
coupling at low qll' Unfortunately, for r: = 2·07 and qll ~ 0·016, as in the 
Pinsukanjana et al. (1992) experiment, the standing plasmons couple too weakly 
to be visible. It is also interesting to note that absorption peaks corresponding 
to single-particle transitions, if present, are also too weak to be seen (unless 
one regards the Kohn-theorem, sloshing or centre-of-mass mode as a coalescence 
of depolarisation-shifted single-particle transitions). Next consider the WPQW 
dispersion curves (Fig. 12). Arrows on the qll axis indicates the first two grating 
coupler wavenumbers qn for a grating of spatial period 4x 10-6 m, the value used 
in the experimental data of Pinsukanjana et al. (1992). The dispersion curves show 
that the centre-of-mass mode frequency does indeed approach Wp = 0·333 a. u. * 
as qll -70, in agreement with Kohn's theorem. They also show (in conjunction 
with the mode profile data not given here) that the hydrodynamic model of 
Section 2 was correct in predicting that the '2D plasmon' behaves like an even 
combination of surface plasmons at large qll' 

The modified parabolic-linear wells (open symbols in Figs lOa and 10d) are 
predicted to have a richer absorption spectrum than the strictly parabolic wells. 
The '2D plasmon' peak is present as required by the theorem of Section 5. 
Kohn's theorem does not apply but there are resonances in the general vicinity 
of Wp for small qll' These are presumably 'interband' modes in the terminology 
of Stern (1967) and Das Sarma (1984). In the present wells there is considerable 
'depolarisation shifting' plus coupling among interband resonances and between 
interband and intraband resonances, so that this type of classification is not 
as clearcut as it is for the heterojunction wells discussed e.g. by Das Sarma 
(1984). In those cases the very uneven spacing of energy levels Ei allowed a clear 
distinction between different interband modes, not available in parabolic-type 
wells because of the nearly even energy level spacing of the higher levels in the 
latter. At least one of the additional modes is best described, in the author's 
opinion, as a multipole surface plasmon. For neutral linear-parabolic wells this 
mode appears, for all well widths studied numerically including cases not shown 
here, at about 0·8 wp (middle peak, squares, Figs lOa and lOc). Its mode 
profile (Fig. llc) is neutral separately at each electron gas surface, just as for 
the multipole surface plasmon on simple metals (Dobson and Harris 1988; Tsuei 
et al. 1991). There is no such mode on the pure parabolic wells, presumably 
because of their narrower 'embedded electron gas' surface density profile (see 
the argument in Section 3 and Dobson 1992). The linear parabolic well also 
shows standing plasmon resonances (data not shown here), but their strength is 
distributed differently, as a function of qll' from those of the WPQwt. 

t (Note added in proof). On the linear-parabolic wells it does not seem possible to distinguish 
single-particle effects induced by boundary conditions from the weak standing plasmons which 
might be present (Schaich, W. L., and Dobson, J. F., to be published). 
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8. Summary, Conclusions, Future Directions 

We have stressed that the infrared response of parabolic Gal-xAlxAs wide 
parabolic quantum wells (WPQWs) is roughly, but not exactly, equivalent to the 
response of jellium slabs whose thickness can be varied, by gate bias, from the 2D 
to the 3D regime. Linear-lipped parabolic wells (LPQWs) are better jellium slab 
analogues, better in fact than simple metal samples. This is because, provided 
the band effective mass m* and semiconductor dielectric constant are E are taken 
into account, the discrete-lattice effects in Gal_xAlxAs are much smaller than 
those in simple metals. 

The WPQW, wheh excited in an IR grating coupler experiment at low 
surface-parallel wavenumber, has two strong absorptions which can be understood 
as even and odd combinations of surface charge oscillations, or equivalently as 
low-frequency longitudinal (intraband) plasmon and high-frequency transverse 
(interband) centre-of-mass sloshing modes. The low-frequency mode has the same 
JQiT dispersion as a 2D plasmon, a result proved in Section 3 to hold for all 
quantum wells at low enough qll. (For wide wells, despite its dispersion, this 
mode is not really two-dimensional, charge perturbation occurring disjointly at 
the two surfaces: see Fig. lla.) The upper mode appears to be continuous, 
as qll ---- 0, with the Kohn-theorem mode described in Section 3, and so occurs 
close to the 'bulk' plasma frequency wp. Additional single-particle transition 
peaks appear both from experiment and theory to be weak or nonexistent in 
this regime. Thus to a first approximation the WPQW resonance frequencies 
at low qll are completely described by theorems without the need for numerical 
calculation. While disappointing from a many-body theorist's viewpoint, this 
stability of the mode frequencies might be useful in device applications. 

At higher qu the grating-coupled WPQW (like the regular jellium slab) is 
predicted to show measurable absorption peaks above Wp which are due to 
standing bulk plasmons fitting across the electron layer (see footnote on preceding 
page). The spacing and qll dispersion of these peaks do show many-body effects 
and it would be particularly interesting to observe these for shallower parabolic 
wells (5 < r= < 6), in view of the anomalous results obtained experimentally 
(vom Felde et al. 1989) for the bulk plasmon dispersion in cesium. Very accurate 
measurements of the dispersion of the '2D plasmon' mode of WPQWs could also 
shed light on many-body effects, since the first correction to the JQiT dispersion 
is sensitive to these (Beck and Kumar 1976; Dahl and Sham 1977; Batke et 
al. 1986). Small observed anomalies (Pinsukanjana et al. 1992) in the upper 
(centre-of-mass) mode frequency of WPQWs as a function of gate bias may 
reflect genuine many-body effects dependent on layer thickness (Das Sarma et al. 
1990), but could also be related to inhomogeneous m* and E values (Das Sarma 
1992, personal communication). 

The transition of the grating-coupled IR spectrum of WPQWs from the 2D 
limit (L ---- Q) to the 3D limit (L ---- 00) proceeds as follows. The two strong 
10w-qU resonances coalesce at larger values of qll L, to even and odd 3D surface 
plasmons. It is the standing plasmon modes, very weakly excited in grating 
experiments at low qll' which become bulk plasmons in the limit L ---- 00. 

Linear-parabolic wells (LPQWs), when correctly filled with electrons, are 
a better approximation to. neutral jellium slabs than are the pure WPQWs. 
LPQWs are predicted to have additional resonance lines at low qu, compared 
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with the WPQW. For narrow slabs some of these are shifted single-particle 
transitions, but for all widths the theory shows a 'multipole surface plasmon' 
(MSP) peak (Dobson 1992; Tsuei et ai. 1991) at about 0·8 wP ' whose absence 
on the pure WPQW can be understood in hydrodynamic terms as arising from 
the more steeply-falling static surface electron density profile in the WPQW. 
(The term 'multipole surface plasmon' should not be confused with the term 
'multipole excitation' used by some authors to describe any resonance due to 
single-particle transitions between different well eigenstates or sub-bands.) In the 
WPQW the electron gas edge is qualitatively different from that in a neutral 
jellium slab, being 'embedded' inside the jellium background (see Dobson 1992). 
Theory suggests that the MSPs in linear-parabolic wells can be switched on or 
off by a modest gate bias variation, pulling the electron gas edge on or off the 
edge of the effective positive background from the 'regular' to the 'embedded' 
edge configuration. Such a switching effect might have technological uses. The 
understanding of edge effects gained here may be useful in other systems such 
as quantum dots. 
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