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Abstract

A systematic development is given for the construction, at any energy in the conduction or
valence bands, of all of the solutions to the coupled second-order equations describing electron,
light hole, and spin-orbit split-off envelope functions, for arbitrary superlattice grading profile
of direct gap materials, retaining all coupling parameters. While some solutions achieve a
clear physical significance, attention is also given to those functions which, on their own, are
of questionable significance. The procedures are easy to use, and are applied to the case of a
sawtooth superlattice of composition Gal-xAlxAs.

1. Introduction

Interest in quantum wells and superlattices has now broadened (Jaros et ale
1985; Brum et ale 1986; Fasolino and Altarelli 1986; Sanders and Bajaj 1987;
Cheung and Chen 1988; Chuang et ale 1989, 1990) well beyond the study of
rectangular potential profiles, and the need is evident for a theory of these systems
which is reliable, physically descriptive, and readily adaptable to a wide variety
of circumstances. A methodology (Altarelli 1986; Bastard et ale 1988) widely
regarded as satisfying these criteria is that of the envelope function approximation
(EFA). Other methodologies (Giannozzi et ale 1990; Smith and Mailhiot 1990),
variants of self-consistent field calculations, have the appeal of being closer to first
principles than EFA, and have been used for a variety of superlattice (SL) and
quantum well (QW) problems. Where comparison has been possible between the
results of such calculations and the results of EFA, invariably the first-principles
procedures have added confidence to the use of EFA. Thus a preference for EFA
may safely be formed on the basis of economy of computational effort together
with the above-mentioned criteria. This is the basis of the work reported here,
where attention is restricted to superlattices.

The cornerstone of EFA is the Kane matrix, the k . p interaction matrix derived
from the zone-centre conduction, valence, and spin-orbit split-off states. When
taken to second order in the components of k, the interaction matrix includes to
that order indirect interactions via states not specifically included in the basis
just mentioned. EFA is achieved by an operator substitution in the matrix and
leads, in its full form, to a set of eight coupled second-order differential equations,
a daunting prospect. If attention is restricted to those states describing motion
wholly in the SL growth direction, and this is the only case treated here, a simpler
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situation arises-two sets of three coupled equations (the two sets are connected
by time inversion symmetry) and two uncoupled equations describing the heavy
hole states. Even a set of three coupled second-order differential equations can
be unattractive, and some authors have sought suitable approximations to reduce
the computational complications. Thus, for example, Hass and Kirill (1990),
following Johnson et ale (1990), recently used an approximation which deleted
all but one of the second-order operators, and that one only in the uncoupled
heavy-hole equations. Of course the elimination of operators from the equations
simultaneously eliminates the associated coupling parameters, and thus there
occurs some limitation on the flexibility to tie a non-first-principles theory firmly
to the material under consideration. [The further one drifts from first principles
the more essential it becomes to insert values for material-dependent properties
into the computations. Thus Schuurmans and 't Hooft (1985) pointed out that
a class of earlier single-parameter calculations (Bastard 1982) is restricted in its
capacity to simultaneously describe both electron and light hole effective masses.]
The purpose of the present work is to show that for direct gap materials, physically
meaningful uncouplings of the equations can be achieved for arbitrary material
gradings retaining the second-order terms, and with a minimum of approximation.

The focus of this work is the construction of algorithms which, for any
nominated band energy, reduce the coupled equation problem to the solution
of three uncoupled second-order differential equations. The three uncoupled
equations can be identified in turn as applying to conduction electron (el), light
hole (lh) and spin-orbit (so) states, and each leads to two sets of solutions at any
nominated energy. The algorithms may be applied with equal ease to materials
of continuously varying composition or to piecewise continuous materials, of any
grading profile. In principle, all six sets of solutions are needed to satisfy the
usual boundary conditions. However, several authors (White and Sham 1981;
Schuurmans and 't Hooft 1985; Smith and Mailhiot 1990) have drawn attention to
the fact that EFA, by virtue of its foundation on a limited basis set, inescapably
produces a set of spurious solutions which ought not to be included in the
description of the physical states of the system under" study. In the following
section the conditions under which spurious solutions appear are clearly identified,
and several strategies for dealing with the consequent difficulties in satisfying
boundary conditions are considered. By way of illustration, there follows in
Section 3 an application of the theory to the case of a sawtooth SL of composition
Gal-xAlxAs and, for comparison, some related approximate treatments for that
material.

2. Theory

(2a) The Differential Equations

EFA for the description of the electron and hole states in a semiconductor
SL or QW has been described by many authors (Altarelli 1986; Bastard et ale
1988; Giannozzi et ale 1990; Smith and Mailhiot 1990). It involves the operator
substitution k ~ -i V' in the Kane matrix representing the k , p interaction among
the T6(Td) electron, Ts(Td) light and heavy hole, and T7(Td) spin-orbit split-off
states. For uniform materials the structure of the Kane matrix may be derived
solely from group-theoretical considerations, and when thus derived it contains
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symmetry parameters which may be selected to match material properties. It is
assumed here that, with arbitrary continuous (or piecewise continuous) grading
of composition, locally the appropriate Kane matrix has the same structure as
for the uniform materials, subject to the following conditions:

(i) Some procedure is known for specifying continuously the parameter values
appropriate to each position in the material (e.g. the parameters describing a
uniform material of average composition in the neighbourhood of that position).

(ii) The appropriate form of continuity of the envelope functions from one
locality to neighbouring localities of slightly different composition is properly
described by adjusting the operator substitution procedure to ensure the hermiticity
of the differential operators in the manner usually used to derive matching conditions
at boundaries (Eppenga et al. 1987; Giannozzi et al. 1990). Specifically, following
Eppenga et al., we have

8
2

8( 8)A(z)--+- A(z)- ,
8z 2 8z 8z

8 ( 8 8 )B(z) - -+ ~ B(z) - + - B(z) ,
8z 8z 8z

(1)

(2)

where A(z) and B(z) are any composition-dependent functions of position. Clearly,
this adjustment has no effect for rectangular composition profiles except at the
composition discontinuities.

For notational simplicity in the following theory, the envelope functions for
the conduction, light hole, spin-orbit split-off, and heavy hole states will be
designated by 1/;,0, cP, 1] respectively. For the present purpose a useful enunciation
of the Kane matrix is that of Schuurmans and 't Hooft (1985). On making
the operator substitution and adjustments (as described above) in their Kane
matrix (but incorporating a slight change of notation), the equations satisfied by
1/;,0, cP, 1] are

8 (81/;) (80 °8P) 1 (8cP cP 8P)-- s- - P- + - - +J- P- + - - = (E-Eel)1/;, (3)
8z 8z 8z 2 8z 2 Bz 2 8z

81/; 1/; 8P 8 ( 80) 8 ( 8cP )P- + - - + - (1'1+ 21'2)- -2J2- 1'2- =(E-Ey)O, (4)
8z 2 Bz 8z 8z 8z 8z

1 (81/; 1/; 8P) 8 (80) 8 ( 8cP )-J-P-+-- -2J2-1'2- +-1'1- = (E-Eso)cP, (5)
2 8z 2 8z 8z Bz 8z 8z

8( 81])- 8z (21'2 -1'1) 8z = (E - Ey )1] . (6)

In these equations the fundamental constants have been eliminated by choosing the
energy unit to be the Rydberg, and the unit of distance to be the Bohr radius; E is
the (position-independent) energy eigenvalue for the SL state under consideration;
and Eel, Ey, Eso are position-dependent parameters locally specifying respectively
the conduction, valence and spin-orbit split-off band edges for the T-point basis
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states from which the k , p interaction is constructed. (If the interband matrix
element P employed here were replaced by y'~ P it would then have the same
form as has been used by other authors.) It is convenient to introduce the
standard symnbols for the energy gap Eg and the spin-orbit splitting d:

E g = Eel-Ey,

d = E; - Eso .

(7)

(8)

Schuurmans and 't Hooft (1985) have established the following relationships which
here have the effect of defining the other parameters used in equations (3)-(6):

where

mlmel = S + A(1 + !r),

mlmlh = 1'1 + 21'2 + A,

mlmso = 1'1 + !Ar ,

mlmhh = 1'1 - 21'2 ,

Eg
r=-~-

Eg + d '

A = p2lEg.

(9)

(10)

(11)

(12)

(13)

(14)

Here mel, mlh, m so and mhh are the effective masses for conduction, light holes,
spin-orbit split-off and heavy hole states respectively.

Equation (14) does not determine the sign of P, but this is of no consequence
as a simultaneous reversal of the signs of P, () and ¢ leaves equations (3)-(5)
invariant. Equation (6) describing the heavy hole envelope function contains
no coupling to the other functions. The use of equation (12) in (6) renders it
physically transparent with no particular difficulty of solution, and so will be
subject to no further comment here:

- !-(~ 8TJ)
= is; - E)TJ·

8z mhh 8z
(15)

In uncoupling equations (3)-(5) it is always assumed that derivatives of the
parameters 1'1, 1'2, P, S, Eel, e., Eso are all small quantities and that products
and derivatives of such small quantities may be neglected. For the uncoupling
procedures of the following subsections, it is convenient to introduce the notations

€1 = E - Eel - S K 2
,

€3 = E - Eso + 1'1 K 2,

€2 = E - E; + (1'1 + 21'2)K2,

€4 = E - E y + (1'1 - 21'2)K2 ,

(16a, b)

(16c, d)

where the parameter K2 will be defined below.
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(2b) Conduction States

Intuitively one expects that for energy E in the conduction band, the function
'l/J will be oscillatory with a wavelength locally determined from E - Eel and
an appropriate effective mass. This wavelength would be echoed in the coupled
functions 0 and ¢, but these two functions need not be in phase with 'l/J; inspection
of equations (3)-(5) shows that 0 and ¢ are predominantly out of phase with 'l/J,
and so prototype solutions for these functions are

8'l/J
O=A- +a'l/J,

8z

8'l/J
¢=B- +b'l/J.

8z

(17)

(18)

In these, and in all subsequent equations, all coefficients written as small Latin
letters are assumed to be small quantities. That is, here it is anticipated that all
terms in an expansion of a and b contain factors which are derivatives of the
parameters entering (3)-(5). All coefficients are expected to be position-dependent.
On substitution of (17) and (18) into (3), the result is

8 ( 1 8'l/J)-- (S+PA-J-PB)-
8z 2 8z

(
1 1 1 8P) 8'l/J- P(a-J-b)--(A-J-B)- -=(E-Eel)'l/J. (19)
2 2 2 8z 8z

If the small quantity P(a - J!b) - !(A - J! B)8P/8z is set equal to zero, then
equation (19) has the same form and physical transparency as equation (15);
however, it is not necessary to make this approximation as the coefficients can
be determined by substitution of (17) and (18) into (4) and (5), then separating
the two quadratures in each equation.

The substitution of (17) and (18) into (4) and (5) introduces a third-order
derivative of 'l/J, and this will be reduced to first order by the assumption that
locally

8'l/J
fj27j; = _K27j; + k oz '
8z2 (20)

an immediate analogue of equation (19). The second term on the right in (20)
indicates that the wavelength and/or amplitude of'l/J may be slowly varying. Two
of the relationships provided by the separation of quadratures (SOQ) process for
equations (4) and (5) are

[E - E; + (1"1 + 21"2)K2]A - (2J21"2 K 2)B = P ,

(2J21"2 K 2)A - (E - Eso + 1"1 K 2)B = J! P.

(21)

(22)
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(23)

The remaining two relationships are stated below. A comparison of equations
(19) and (20) yields

K 2 _ E-Eel
- S+PA-J~PB'

The set of simultaneous equations (21)-(23) determine A, Band K2, but they
are a nonlinear set; they are locally equivalent to equation (8) of Schuurmans
and 't Hooft (1985). If E is low in the conduction band the envelope function
will be of long wavelength, so K will be small. Neglecting K2 in (20) and (21)
yields zero-order estimates of A and B:

P
A ~ , (24)

E-Ev

P
B ~ - J2 (E - Eso ) ·

These estimates, when used in (23), give a zero-order estimate of K2:

(
p2 P2)

S + + ( ) K
2
~ E - Eel.E - Ev 2 E - Eso

(25)

(26)

Comparison of (26) and (9) using (14) shows that the value of K2 as estimated
in (26) is indeed a physically sound approximation in that the coefficient of K 2

closely resembles the local zone-centre inverse effective mass. The estimate of K2
may then be used to initiate a rapidly converging iterative procedure determining
A, Band K2 by the use of equations (21)-(23), exploiting the fact that for
known K2 equations (21) and (22) are linear. The meaningful starting value
of K 2 ensures that, within the conduction band, the converged values will not
belong to the spurious solutions identified by a number of authors (White and
Sham 1981; Schuurmans and 't Hooft 1985; Smith and Mailhiot 1990). Once a
self-consistent set of A, Band K2 is found at anyone site in the sample, it
becomes the initial estimate for use at neighbouring locations of slightly different
composition. So with minimal further iteration A, Band K2 may be quickly
calculated as functions of position throughout the sample.

Returning to equations (4) and (5) as substituted by (17), (18) and (20), the
second pair of equations deduced by SOQ is

[E - E; + (1'1 + 21'2)K2]a - 2J21'2 K 2b+ [(1'1 + 21'2)A - 2J21'2 B]K2k

8
- 8z {[(')'1 + 21'2)A - 2J21'2 B]K2}

(
8A 8B) 8P

- (')'1 + 21'2) 8z - 2J21'2 8z K
2+! 8z' (27)

-2J21'2 K 2a + (E - Eso + /'1 K 2)b+ (1'1 B - 2J21'2 A)K2k

8 2 ( 8B 8A) 2 1 8P= - -[(1'1 B - 2J21'2 A)K ] - 1'1 - - 2J21'2 - K - - -. (28)
8z 8z 8z 2J2 8z
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belong to the spurious solutions identified by a number of authors (White and 
Sham 1981; Schuurmans and 't Hooft 1985; Smith and Mailhiot 1990). Once a 
self-consistent set of A, Band K2 is found at anyone site in the sample, it 
becomes the initial estimate for use at neighbouring locations of slightly different 
composition. So with minimal further iteration A, Band K2 may be quickly 
calculated as functions of position throughout the sample. 

Returning to equations (4) and (5) as substituted by (17), (18) and (20), the 
second pair of equations deduced by SOQ is 

[E - Ev + (')'1 + 2/'2)K2]a - 2y'2/'2K2b + [(')'1 + 2/'2)A - 2y'2/'2 B]K2k 

8 2 
- 8z{[(')'1+ 2/'2)A-2y'2/'2 B ]K} 

( 8A 8B) 2 1 8P 
- (')'1 + 2/'2) 8z - 2y'2/'2 Dz K +"2 8z' (27) 

-2y'2/'2 K 2a + (E - Eso + /'1 K2)b + (')'1 B - 2y'2/'2 A)K2k 

= _ ~ [(')'1 B - 2/2/'2 A)K2] - (/'1 8B _ 2/2/'2 8A) K2 __ 1_ 8P. (28) 
8z 8z 8z 2/2 8z 
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In like manner, (20) substituted into (19) proves a third relation

-Pa+ J!Pb- (S+PA- J!PB)k

83

8 1 1 1 8P==-(S+PA-J-PB)--(A-J-B)-. (29)8z 2 2 2 8z

With all parameters tabulated, including A, Band K2, equations (27)-(29) form
a set of linear equations determining a, band k, and as expected these are all
seen to be small quantities, as is shown by the explicit forms of the equations.
If K2 is small, these relations simplify to

a = ~(E - Ev)-l 8P
Bz '

b == _1_(E _ E )-1 8P
2J2 so Bz '

8 2
k == - In[K /(E - Eel)] .

8z

(30)

(31)

(32)

Thus the procedure for deducing the coupled functions 'l/J, (), ¢ for some nominated
energy E is as follows:

(i) Tabulate the band parameters f!1,f!2,S, P, Eel, Ev, Eso at each of the grid
positions using equations (7)-(14); (ii) initiate an iterative process using (26)
and thus tabulate at all grid positions A, Band K 2 from equations (21)-(23);
(iii) use equations (27)-(29) to deduce a, band k at each grid position; (iv)
solve equations (20) for 'l/J using any standard numerical procedure; and (v)
construct () and ¢ from equations (17) and (18) respectively.

Since equation (20) is second order, steps (iv) and (v) yield two linearly independent
sets of solutions.

If the energy E is in the valence range, it is clear that equations (24)-(26)
are unsuitable for starting the iterative process. More suitable expressions may
be constructed by rewriting (23) as

K 2 == [E - Eel - PK2(A - J! B)]/S, (33)

and then in equations (21) and (22) neglecting the energy differences that cause
the difficulties in (24)-(26). The alternative initial estimate of A and B is then

A == (P/K 2)/ (f!1+ 4f!2) ,

J!B == - !A,

and this leads to the alternative initial estimate of K 2 of

K 2 == [E - Eel -1·5p2/(f!1 + 4f!2)]/S,

(34)

(35)

(36)
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Again iterative refinement is rapid and is then followed by steps (iii)-(v) above.
The solutions corresponding to these values of K2 are of short-scale distance and
thus have large magnitudes for K2, thereby post facto adding legitimacy to the
neglect of (E - Ev ) / K 2 and (E - Eso )I K 2 in constructing the initial estimate.
These solutions are the 'spurious solutions' mentioned above.

(2c) Light Holes

The procedure for light holes parallels that for the conduction states. For the
purposes of derivation, the notion is that an energy appropriate to light hole
states allows oscillatory solutions, this time with f) leading the establishment of
wavelength, and with 'ljJ and ¢ locally following. Thus, again recognising f) and
¢ to be more or less in phase, and 'ljJ to be more or less out of phase with these
two, the parametrised equations which start the derivation are

of)
'ljJ == A - + af),

OZ

4> = BO + b ()O
Bz '

of)
{)20 = _ K 20 + k ()z .
oz2

(37)

(38)

(39)

The SOQ procedure is used again following substitution of (37)-(39) into (3)-(5),
and this leads directly to

A = P( -E3 + 21'2 K
2
)

E1 E3 - ~p2K 2 ,

B = (2J2'Y2 El - J~ p
2
)K

2

E1 E3 - !p2K-
2

== J2(1 + E1 AIP) ,

-(1'1 + 21'2 + P A - 2J21'2 B)K2 == E - E; .

(40)

(41a)

(41b)

(42)

The coefficient of K2 in (42) resembles the inverse effective mass for light holes
as is seen by comparison of (42) with (10), a comparison made more vivid when
the small K approximation is made. Thus, for energies near the top of the light
hole band,

P
A;::;j Eel-E'

B~O,

(43)

(44)
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and the initial estimate of K2 is

K 2 ~ Ev -E,1 + 2'2 + p2 / (Eel - E) .

85

(45)

The initial estimate of K2 from (45) launches the iterative determination of A, B
and K2 through the use of equations (40)-(42), a rapidly converging procedure.
Once more the appearance of a coefficient for K2 resembling the effective mass
expression ensures that, for energies in the valence band, K 2 will not correspond
to a spurious solution.

If the energy E is in the conduction band, the initial estimates (43)-(45) are
not appropriate because of the potentially vanishing energy denominator E - Eel.
More convenient forms can be found by a minor extension of the derivation.
Using equations (37), (38) and (41b) in (4) provides A in terms of K2:

A = P€4/(4,2 €1 - p 2)K2.

Next we eliminate 'lj; between equations (4) and (5):

K 2 = -[E - Ev + V 2fj B/(1 + V2B)]/C'Y1 - 2'2).

For K2 given by this relationship it immediately follows that

€4 = -V2fjB/(1 + V2B).

(46)

(47)

(48)

Since this is small when fj is small, it is reasonable to· expect that A, which
contains a factor of €4, will also be small. Thus the estimates for this case,
replacing (43)-(45), are

A~O,

B~V2,

K 2 = (Ev - E - 2fj/3)/(,1 - 2'2).

(49)

(50)

(51)

Self-consistency is rapidly achieved by the use of these initial estimates in equation
(46) which then leads to (41b) and (47), yielding A, Band K2 respectively.

The set of equations complementary to those used to determine A, Band
K 2 , as provided by SOQ, determines a, band k. They are

PK2

€1 a + -- b - SAK2k
V2

= ~(SAK2 PB) SK2 8A ~ 8B _! 8P (52)
8z + 2V2) + 8z + 2V2 8z 2 8z '
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P
/ 2 8A A 8P

a+2v21'2 K b+(PA+1'1+ 21'2- 2J21'2 B)k=-P- - --
8z 2 8z

K. J. Duff

8 (8~ 8B)- -(1'1 + 21'2) + 2J2 B - + 21'2 - ,
8z 8z 8z

Pa + J2 €3 b+ (P A + 41'2 -,- J2 'n B)k = _ P 8A _ A 8P _ 4 81'2
8z 2 8z 8z

(
81'1 8B)+ J2 - B + 21'1 - .
8z 8z

(53)

(54)

Once (40)-(42) have been solved, all coefficients in (52)-(54) are known and so
elementary procedures yield the desired values of a, band k.

It follows that a second set of 'l/J, (), ¢ which satisfy the coupled equations
(3)-(5) may be obtained as follows:

(i) Tabulate the band parameters 1'1,1'2,S, P, Eel, Ev, Eso at each grid position
as before: (ii) commence the self-consistent determination of A, Band K2 at
each grid position with the estimate of K 2 given by equations (43)-(45), or
for conduction band energies the alternate set (49)-(51), then proceed via the
iterative use of (40), (41) and (42); (iii) use equations (52)-(54) to solve for
a, band k; (iv) use standard methods to solve equation (39)-two linearly
independent solutions may be obtained; and (v) construct 'l/J and ¢ from
(37) and (38)-for each of the two solutions () obtained in the previous step,
separate pairs of functions 'l/J and ¢ may be constructed.

(2d) Spin-Orbit Split-off States

The theme used in the previous two subsections is replayed here with the
appropriate variations. The previously recognised phase relations commence the
derivation with

8¢
'l/J=A- +a¢,

8z

(J = B¢+b 8¢
8z '

and the local variation of ¢ is given by

82¢
8z2 = -K2¢+k 8¢8z .

(55)

(56)

(57)
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A 8P 
2 8z 

(53) 

8A A 8P 8"(2 
Pa + )2 E3 b + (P A + 4"(2 - )2 "(1 B)k = - P - - - - - 4 -

8z 2 8z 8z 
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Substitution of (55)-(57) into (3)-(5) followed by SOQ yields

A _ I: ( €2 - 4')'2 K
2

)
- 2 2 'J2 €1 €2 - P K

B _ K
2

( 4')'2 €1 - p
2

)
- 2 2J2 €1 €2 - P K

= J! - €1 A/ P ,

(')'1 - J! PA - 2J2')'2 B)K2 = Eso - E.
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(58)

(5ga)

(5gb)

(60)

The small-K approximation is appropriate to energies high in the spin-orbit
split-off band, and leads to initial estimates of

P ( 1,)A"'J-
"'J J2 E-Eel '

B~O,

(
1 p

2
) 2

71 + '2 Eel _ E K ~ Eso - E ·

(61)

(62)

(63)

Comparison of (63) with (11) [using (13) and (14)] clearly shows that (60) is
structured to present a similarity to the effective mass equation for such states.
Iteration is commenced with the estimate from (63), or from the alternative
result below, and leads to the self-consistent solutions at each grid position for
A, Band K 2 from (58)-(60), and for energies E in the range appropriate to
spin-orbit states they would not be on a spurious solutions branch.

The starting values (61)-(63) are inappropriate for energies in the conduction
band because of the potentially vanishing energy denominator. Alternative starting
values may be derived by similar procedures to those used already. Elimination
of 1/J between equations (4) and (5) yields

B = -J2[1 + L1/(€2 - 4')'2 K 2
) ] ,

so that, on regarding L1 as a small quantity, the initial value of B is

B ~ -J2.

(64)

(65)

Use of this together with €1 ~ -8K2 in (5gb) provides the alternative estimate
of A:

A ~ -3P/J28K2
• (66)

These estimates of A and B when used in (60) provides the alternative starting
estimate

K 2 ~ -(E - Eso + 1·5p2 /8)/(')'1 + 4')'2)' (67)
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The parallel with the estimate (36) is evident, so these are the short-scale distance
solutions for conduction states.

The relations complementary to (58)-(60) as derived by SOQ are

2 2 8 2 2 8A 1 1 8P
€1 a - PK b - SAK k = -8 (SAK - PB) + SK - + "2(B + J"2)-' (68)

z 8z 8z

8A A 8P 8
-Pa+€2 b-[PA+(1'1+ 21'2)B-2J21'2]k=P- + - -8 +B-(l'l +21'2)

Bz 2 z 8z

8B 81'2
+ 2(1'1 + 21'2)-8 - 2J2-, (69)

z 8z

Pa - 4'Y2 K 2b + (P A - J2'Y1 + 4'Y2 B)k = - P oA _ A oP - 4 0'Y2 B
8z 2 8z 8z

8B 81'1
-81'2- +J2-. (70)

8z 8z

Thus the steps required for the determination of this third set of functions
which solve the coupled equations (3)-(5) are similar to the other procedures:

(i) Tabulate the band parameters 1'1,1'2, S, P, Eel, E v, E so at each grid position as
the most elementary requirement; (ii) initiate the self-consistent determination
of A, Band K2 with the use of (63) or (67), then iterate to desired tolerance the
relations (58)-(60); (iii) calculate the remaining parameters a, b, k provided by
the linear equations (68)-(70); (iv) solve the second-order differential equation
(57) which can provide two linearly independent solutions; and (v) construct
the dependent functions 'l/J and cP from (55) and (56), one set of 'l/J and () for
each of the two linearly independent solutions from the previous step.

(2e) The Physical Solutions

The boundary conditions usually specified for solutions of the coupled set of
equations (3)-(5) are continuity across the boundary of the functions 'l/J, (), cP and
of the first integrals of equations (3)-(5). Thus six conditions are to be met, and
the procedures of the previous three subsections can each supply two linearly
independent sets of solutions, apparently meeting the requirement. That is,
routine application of standard procedures suggests the construction of physical
solutions as linear combinations of the six sets

[ : ] = t ai [~:] .
q, 2-1 cPi

(71)

However, serious difficulties arise in following this apparently innocuous process,
and inevitably some physical compromise is required. In order to establish a
foundation for making some possible choice of compromises, such considerations
will be set aside temporarily, and the discussion will proceed as if the difficulties
were not present. The topic will be resumed.
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If in the SL repetition length d there is more than one section of piecewise
continuous material, matching at all but one of the boundaries (as described
above) within length d is otherwise unconstrained. Once such matching has
taken place the SL may be treated as though all repetition intervals consist of
just one continuous material, so without loss of generality the assumption can be
made that the material is of this latter kind. The matching across the boundary
at the end of the repetition length must additionally satisfy the Bloch theorem,
and thus the secular equation determining the wavevector q is generated:

where

6 6

L Cji(d)ai = eiqd L Cji(O)ai,
i=1 i=1

C1i(Z) = 'l/Ji(Z) ,

8'l/Ji P 1
C2i(Z) = - S 8z - 2:((}i - V2 cPi),

C3i(Z) = (}i ,

oo, P 8cPl
C4i(Z) = ("'/1 + 2"'/2) 8z + 2: 'l/Ji - 2V2"'/2 8z '

C5i(Z) = cPi(Z) ,

8cPi oe, ~ .t;
C6i(Z) = 1'1 8z - 2V21'2 8z - 2V2 'Po •

(72)

(73)

(74)

(75)

(76)

(77)

(78)

As described in Sections 2b-2d the procedure in each centred on what may be
called a prime function, with the other functions being derivative from the prime
function. For each subsection the prime function achieves a physical significance
for energy ranges appropriate to that function, in that a meaningful effective
mass is associated with that function. Thus, in each range physical solutions
should exist where these prime functions dominate the expansion (71). A check
is now made to confirm that the structure of the matrix C(z) as specified in
(73)-(78) permits the fulfilment of this expectation.

First consider the conduction states. Let i = 1 and 2 in equations (72)-(78)
indicate the two sets of solutions from Section 2b. Consider the possibility of
a3 = a4 = a5 = a6 = 0 in equation (71). In this case the eigenvalue problem
posed by (72) would reduce to three 2x2 matrix equations which must be satisfied
simultaneously:

(
Cj,l(d) Cj,2(d) ) (a1) _ iqd ( Cj,I(O) Cj,2(O) ) (a1) (79)

Cj+1,1(d) Cj+1,2(d) 0!2 - e Cj+1,1(O) Cj+1,2(O) 0!2'

Equations (17) and (18) show that at either Z = 0 or z = d both () and cP are
almost proportional to 8'l/J/8z (in as much as a and b have been demonstrated
to be small), so that C3,i and C5,i are multiples of C2,i, also C4i and C6i are
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L Cji(d)O:i = eiqd L Cji(O)O:i , (72) 
i=1 i=1 

where 

Cli (z) = 'l/Ji(Z) , (73) 

8'I/Ji P 1 
C2i (Z) = - S 8z - "2(Oi -';2 ¢i), (7L,t) 

C3i (Z) = Oi, (75) 

80i P 8¢1 
(76) C4i (Z) = (-r1 + 272)- + - 'l/Ji - 2';272 a' 8z 2 Z 

C5i (Z) = ¢i(Z) , (77) 

8¢· 80· P 
C6i (Z) = 71 8z' - 2';272 8: - 2';2 'l/Ji. (78) 

As described in Sections 2b-2d the procedure in each centred on what may be 
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function. For each subsection the prime function achieves a physical significance 
for energy ranges appropriate to that function, in that a meaningful effective 
mass is associated with that function. Thus, in each range physical solutions 
should exist where these prime functions dominate the expansion (71). A check 
is now made to confirm that the structure of the matrix C(z) as specified in 
(73)-(78) permits the fulfilment of this expectation. 

First consider the conduction states. Let i = 1 and 2 in equations (72)-(78) 
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multiples of Cli, and the multiples are independent of the two values of i, If the
multiples were also independent of z, then they could be cancelled throughout
equation (79), leaving the three 2x2 matrix equations identical, justifying the
solutions aI, a2 =1= 0, a3 = ... = a6 = O. This is the case of a uniform material.
Thus the appearance of nonzero coefficients a3, ... , a6 for the conduction states
is dependent on the extent to which the multiples (composed of the spatially
dependent band parameters) change in the repetition length d. These coefficients
would be small in the sense that, if it were possible to start with a uniform material
and then continuously vary the concentrations to reach the final composition,
the coefficients a3, ..., a6 would start at zero and grow as the composition varied.
Similar considerations may be used to show that, in the appropriate energy
ranges, expansions (71) may be found in which solutions from Section 2c and
then from Section2d respectively dominate the physical solutions.

The problem with this comfortable procedure has been well enunciated by
Schuurmans and 't Hooft (1985), and in the above it has been pointed out that
crucial relationships are equivalent to features of their work. At any nominated
energy E, the set of coupled equations (3)-(5) permits three values of K2. One
of these values represents solutions of such short wavelength or scale distance as
to compromise the very meaning of an envelope function and it is undesirable to
rely on such functions for an expansion such as (71). It is therefore not possible
to find three sets of linearly independent, physically significant functions with
which to carry out the matching procedure described above, and compromise is
essential. The choices would seem to be as follows.

(a) Accept the short-scale distance solutions on the basis that the admixture
of such functions will be small, and thereby unimportant, and it is of the nature
of discontinuities to produce ripples or small-scale distance effects. This allows six
sets of functions and the carrying through of the matching procedures described
above. The compromise is in the level of physical significance to be given to
details of such functions. The inclusion of short-scale distance functions is not
without precedent (White and Sham 1981).

(b) Accept only the four sets of functions which conform to the usual concepts
about envelope functions, and in this case two of the matching conditions must be
abandoned. For the conduction states it would seem reasonable, if this course is
adopted, that the conditions to retain would be those relating to the magnitudes
of the three functions tP, e and ~, and to the first integral of equation (3). That
is, in (72) delete from consideration C4 ,i and C6 ,i . For light holes and spin-orbit
split-off states, the energetic proximity of the functions would make conditions
on the magnitudes of e and ~ and on the first integrals of equations (4) and
(5) the desirable conditions to meet. That is, in (72) CI,i and C2 ,i would be
ignored, the latter in parallel with the Schuurman and 't Hooft choice of s = 0
for valence states.

(c) Abandon all but the two solutions produced by the equation for the
prime function in its appropriate energy range. In this case only the prime
function and its derivative can be matched, or else the prime function and the
first integral of the differential equation which was solved to produce the prime
function. In this case the support functions which led to the establishment of
that differential equation are not subject to any form of explicit matching.
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(d) Approximate the prime function differential equations by replacing the
effective-mass-like coefficients with the spatially varying effective masses. That is,
in analogy to equation (15), solve in the appropriate energy ranges the equations

_!.- (~. 8'l/J) = (E - Eso)'l/J,
8z mel 8z

8 (m 8fJ)
- 8z mlh 8z = (Ev - E)O,

_!.-(~ 8¢) = (Eso - E)¢.
Bz m so 8z

Again only two conditions are to be met and two functions are available.

(80)

(81)

(82)

3. Application

The principles emerging from the above theory are as follows:

(i) At the principal extrema, the decoupled equations exhibit a strong similarity
to the very much simplified equations (80)-(82). Thus one would expect that both
approaches would yield similar values for the principal energy gaps and effective
masses. Of course, with spatially varying E; and Eso the energy denominators in
equations (26), (45) and (63) are not strictly equal to the energy gaps required
by equations (9)-(11), (13) and (14), so the agreement is not exact.

(ii) The decoupled equations incorporate the non-parabolicity expected of the
coupled set of equations (3)-(5), and this can make the sub-band widths and
gaps deduced from them differ strongly from those deduced from the simplified
set (80)-(82) which do not incorporate non-parabolicity.

(iii) There is an inevitable approximation which is built into the coupled
equations themselves by virtue of their origin in a limited basis set, and this is
reflected in the character of the solutions available. Several practical methods
of meeting the difficulties have been suggested, but the degree to which their
predictions would differ is not easily assessed a priori, and thus a numerical test
is worth while. However, it is expected that the physically reasonable criterion
that differences will mostly be dependent on the changes in the band parameters
in one repetition length will be met.

(iv) An important parameter, the band offset ratio, has made no explicit
appearance in the above theory, but will have an important impact on the
spatial variation at all energy differences, and thereby on the detailed solutions,
bandwidths and bandgaps. This consideration is not unique to the present
methodologies.

Table 1. Input parameters for the calculations

mel/mO mhh/mo mlh/mo mso/mo e; (eV) L1 (eV)

GaAs 0·067 0·454 0·070 0·143 1·43 0·343
Gao· 25Alo· 75As 0·094 0·510 0·090 0·172 1·82 0·327
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In order to make a numerical assessment of principles (i)-(iii), model calculations
have been carried out for a sawtooth 8L of composition Gal-xAlxAs; that is, x
varies linearly with distance from zero at one side of a layer to some maximum
value at the other side, then abruptly drops back to zero at the start of the next
layer. The sawtooth grading profile was selected for computational advantage
in that it permits a single solution to yield results for a range of superlattice
repetition lengths (8RL), representing a range of effective confinement potentials.
Three gradings of aluminum concentration were used. The first, indicated by
the numeral 1 in the accompanying tables, assumed x == 0·25 at 16 nm from
the pure GaAs side of the layer; in like manner the second and third gradings,
indicated in the tables by the numerals 2 and 3 respectively, had x == 0·25 at 14
and 12 nm respectively. thus, for a 8L of given length, increasing confinement
potential corresponds to grade 1, grade 2 and grade 3 in that order. For a 8L

Table 2. Conduction band energy (meV) and effective mass (m/ mo x 103
) at the principal

conduction band minimum as calculated by the four methods of Section 2e for a Gat-xAlxAs
sawtooth superlattice for three superlattice repetition lengths

The grades of aluminium concentration and the definition of the energy origin are described
in Section 2

Grade SRL External energy Effective mass
(nm) (a) (b) (c) (d) (a) (b) (c) (d)

1 2 872·4 872·5 872·8 872·7 69·6 69·5 69·1 68·2
8 914·3 914·6 915·2 914·6 74·5 74·5 74·2 74·8

14 940·8 941·1 942·7 940·6 160·3 156·3 155·8 166·1

2 2 874·4 874·6 874·9 874·8 69·8 69·8 69·2 68·4
8 921·9 922·3 923·1 922·3 76·2 76·1 76·0 76·6

14 949·9 950·1 952·3 949·5 200·1 194·7 183·9 214·7

3 2 877·0 877·3 877·7 877·6 69·5 69·5 69·5 68·7
8 931·9 932·3 933·5 932·3 78·4 78·4 78·3 79·3

14 961·3 961·2 964·4 960·4 272·5 273·1 268·5 330·9

Table 3. Conduction bandwidths (bold type) and bandgaps (meV) and zone-centre (bold) and
zone-boundary effective masses (m/mox103

) calculated by the four methods of Section 2e

The data are for the first five bands of the sample with the largest confinement potential
considered, i.e, the one with the steepest composition grading (grade 3) and the largest

repetition length, 14 nm

Band Bandwidth/bandgap Zone centre/zone boundary eff. mass
number (a) (b) (c) (d) (a) (b) (c) (d)

1 3·20 3·14 3·34 2·74 272·5 273·1 268·5 330·9
82·2 82·2 80·3 87·2 -223·1 -228·6 -202·2 -256·0

2 22·1 22·0 23·4 24·1 47·8 48·1 46·3 45·1
46·7 47·2 43·9 52·9 -22·7 -23·0 -20·7 -20·3

3 58·0 57·3 60·9 71·4 13·5 15·1 14·2 12·4
28·4 29·3 24·2 38·4 -6·2 -6·3 -5·3 -5·0

4 90·5 89·3 94·8 126·5 5·7 5·8 5·0 4·4
19·4 21·1 14·8 33·9 -3·5 -3·6 -2·9 -2·5

5 110·4 108·3 114·9 177·4 3·3 3·6 2·9 2·3
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Table 4. Light hole band energy (me V) and effective mass (m/mox103
) at the principal

extremum calculated by the four methods of Section 2e for the same samples in Table 2

Grade SRL Extremal energy Effective mass
(nm) (a) (b) (c) (d) (a) (b) (c) (d)

1 2 579·8 579·8 581·5 581·8 72·6 72·6 72·0 71·0
8 609·1 607·8 609·8 610·2 75·5 76·3 75·5 75·5

14 626·9 628·2 630·8 630·9 89·8 115·6 111·1 115·4

2 2 582·8 580·8 582·8 583·2 72·3 73·0 72·3 71·1
8 615·0 612·6 615·0 615·5 76·5 77·5 76·5 76·5

14 637·8 634·8 637·8 637·8 125·8 131·7 125·8 107·5

3 2 582·2 582·1 584·5 585·1 73·6 73·5 72·7 71·3
8 618·7 618·9 621·9 622·5 81·2 79·4 78·0 78·0

14 641·7 643·1 646·8 646·4 95·5 156·3 148·0 162·4

Table 5. Light hole bandwidths (bold) and bandgaps (meV) and zone-centre (bold) and
zone-boundary secondary effective masses (m/mox103

) for the first five bands, using the same
'maximum confinement potential' as in Table 3

Band Bandwidth/bandgap Zone-centre/ zone-boundary eff. mass
number (a) (b) (c) (d) (a) (b) (c) (d)

1 8·52 5·89 6·21 5·74 95·5 156·3 148·0 162·4
50·2 54·4 53·8 59·6 -109·5 -110·4 -103·7 -112·2

2 30·0 27·0 28·8 35·4 44·5 39·3 37·4 32·6
27·5 27·4 25·6 34·7 -15·6 -15·8 -14·0 -10·6

3 47·1 49·7 51·8 86·9 13·3 13·4 12·1 8·1
13·4 12·1 11·9 26·2 -5·6 -6·4 -6·2 -3·4

4 54·9 58·4 56·9 140·0 6·7 6·4 6·3 3·1
2·4 3·8 6·4 23·5 -15·5 -4·1 -5·1 -1·8

5 56·3 55·5 54·6 189·5 8·3 4·1 5·1 1·7

Table 6. Spin-orbit hole energy (meV) and effective mass (m/mox103
) at the principal

extrema calculated by the four methods of Section 2e, for the same samples as in Tables 2
and 4

Grade SRL Extremal energy Effective mass
(nm) (a) (b) (c) (d) (a) (b) (c) (d)

1 2 923·9 923·9 924·0 923·8 144·5 144·5 144·0 144·9
8 949·3 949·4 949·1 948·6 162·6 161·4 159·9 156·7

14 963·7 963·9 963·5 962·6 137·1 154·2 478·7 419·7

2 2 925·3 925·2 925·3 925·1 143·5 144·3 143·5 145·2
8 953·7 954·1 953·7 953·1 162·3 166·3 162·7 160·1

14 967·4 969·7 968·8 967·7 163·9 164·5 673·2 510·9

3 2 927·0 927·0 927·1 926·8 145·5 145·9 144·2 145·4
8 960·7 960·4 959·9 959·0 165·0 175·6 169·1 165·3

14 977·5 977·2 975·6 974·0 152·6 191·2 1111·8 750·3
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Table 7. Spin-orbit hole bandwidths (bold) and bandgaps (meV) and zone-centre (bold) and
zone-boundary effective masses (m/mox103

) for the first five bands, using the same 'maximum
confinement potential' as in Tables 3 and 5

Band Bandwidth/bandgap Zone-centre/ zone-boundary eff. mass
number (a) (b) (c) (d) (a) (b) (c) (d)

1 3·68 4·3 0·80 1·06 152·6 191·2 111·8 750·3
48·9 47·6 53·0 50·1 -367·6 -485·6 -1271·5 -668·9

2 15·4 17·0 13·3 10·7 64·5 105·8 86·1 99·0
29·7 28·3 32·9 30·7 -30·4 -30·1 -35·0 -49·2

3 47·0 57·6 53·4 34·5 20·8 13·8 18·7 27·6
5·0 17·0 23·0 20·6 -6·0 -4·1 -5·3 -10·3

4 136·4 113·7 112·4 64·2 3·8 3·8 4·5 8·9
43·3 15·6 16·6 16·5 -2·8 -2·9 -2·1 -4·7

5 139·2 167·4 164·0 91·9 5·0 2·8 2·0 4·4

of a given grade, increasing confinement potential increases with increasing SRL.
In each case the parameters S, P, 1'1 and 1'2 needed for the application of the
procedures described above were determined by first linearly interpolating (and,
as needed, extrapolating) to all grid positions the principal energy gaps, the
spin-orbit splittings, and the inverse effective masses, then at each grid position
applying equations (7)-(14). The basis for the interpolation/extrapolation is the
values given in Table 1 for GaAs and Gao. 75Alo .25As which have been drawn from
Schuurmans and 't Hooft (1985). For the purpose of interpolation/extrapolation
of the quantities Eel, E; and Eso appearing in equations (3)-(5), at every grid
position the energy origin was taken in the gap with Eel equal to 60% of the gap
at that position, in accordance with recent determinations (Miller et ale 1985;
Menendez et ale 1986) of the band offsets in these materials. Four methodologies
were used as described in the paragraphs (a), (b), (c) and (d) in Section 2e and
in the tables these procedures are identified by these letters. Some preliminary
results have already been reported (Duff and Hass 1990).

Some results of the model calculations for three SRL are given for conduction
states in Tables 2 and 3, for valence states in Tables 4 and 5, and for spin-orbit
states in Tables 6 and 7. The first of each pair of tables lists the principal
band edges and effective masses. The second of each pair deals with the sample
with the largest confinement potential of any treated in this study, i.e. the one
with the steepest grading of aluminum (grade 3) and largest repetition length
(14 nm), and for that sample lists the bandwidth, bandgap, zone-centre and
zone-boundary effective masses for each of the first five bands.

In general the results are well described in terms of the principles enunciated
above. In particular, at the principal band edges (Tables 2, 4 and 6) the
band energies and effective masses calculated by the various methodologies are
in substantial agreement, and any differences vary in a meaningful way with
concentration gradient and repetition length. However, as expected, significant
differences between the methodologies emerge for the properties at energies other
than the principal extrema. Thus, in Tables 3, 5 and 7 the calculated bandwidths,
bandgaps and secondary effective masses show greater sensitivity to the method
used than the other data. Mostly, the inclusion of the short-scale distance
functions appears to have little effect, as evidenced by the parallelism between
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the results for methods (a) and (b), in agreement with the notion that the
admixture of these functions would be small; this is encouraging as it is desirable
to avoid the computational complexity of such functions if possible. There is
also a measure of parallelism between the results of methods (c) and (d), and
this is understandable as both approaches use a single differential equation with
effective mass or effective-mass-like coefficients.

Which method should be used for grading profiles more general than the
sawtooth grading considered here? If the properties of interest are confined to
the neighbourhoods of the principal extrema, both the theoretical considerations
and the detailed calculations show that the simplest procedures, methods (c)
or (d) should be adequate. An exception occurs for the spin-orbit effective
mass, where the energetic proximity of the valence levels have had a significant
impact for the more highly confined states. For properties other than those
mentioned, method (b) recommends itself as reflecting the best features of the
full solution to the coupled equations without the complexity of the short-scale
distance functions. There is a caution: the only properties considered here were
those directly related to energy band structure-no wavefunction properties such
as transition rates were considered. It is entirely possible that small admixtures
of the undesirable functions may have a significant impact on transition rates
and other properties, and provided the admixture is small, their presence may
be tolerated. In this case the full complexity of method (a) would be needed,
and it would be up to experiment to adjudicate on the level of credibility small
admixtures of such functions may have.

4. Conclusion

The full content of the coupled equations derived from the Kane matrix,
equations (3)-(5), is available for superlattices of arbitrary layer composition
profile, using only relatively elementary procedures based on uncoupled equations.
The key to the development of the methodology is the recognition of the phase
relationships between the various envelope functions. At any energy the required
mutual consistency between the conduction, valence and spin-orbit envelope
functions is provided by the local self-consistency of the parameters A, Band
K2 as defined in the foregoing procedures. However, part of the 'full content'
involves envelope functions of questionable validity, but the admixture of such
functions should be small. For the applications of the procedures made in this
work, the undesirable functions did not play an important role in the properties
calculated, as anticipated.
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