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Abstmct 

The electromagnetic interaction in the Einstein-Infeld-Hoffmann (EIH) equations of motion 
for charged particles in Einstein's unified field theory (EUFT) is found to be automatically 
precluded by the conventional identification of the skew part of the fundamental tensor with 
the Faraday tensor. It is shown that an alternative identification, suggested by observations of 
Einstein, Bergmann and Papapetrou, would lead to the expected electromagnetic interaction, 
were it not for the intervention of an infelicitous (radiation) gauge. Therefore, an EIH analysis 
of EUFT is inconclusive as a test of the physical viability of the theory, and it follows that 
EUFT cannot be considered necessarily unphysical on the basis of such an analysis. Thus, 
historically, Einstein's unified field theory was rejected for the wrong reason. 

1. Introduction 

Recently there has been considerable discussion of the nonsymmetric gravitational 
theory (NGT) of Moffat (1979, 1991). Damour et al. (1992, 1993) have assailed 
NGT, claiming it to be theoretically inconsistent and possessing unphysical 
behaviour, and Moffat and his collaborators have defended NGT (Moffat 1993; 
Cornish and Moffat 1993, 1994; Cornish et al. 1993). This debate is still open 
and, owing to the formal mathematical similarity of NGT to the nonsymmetric 
unified field theory of Einstein (1950, 1956), this discussion has some bearing on 
Einstein's theory, and thereby rekindles interest in what many have considered 
a closed subject. While NGT presumes the skew part of the nonsymmetric 
fundamental tensor to be a new, unknown field with possible novel couplings to 
matter, Einstein's theory assumes it to be of electromagnetic origin. 

Einstein's unified field theory (EUFT; Einstein 1950, 1956) was considered 
untenable owing to its apparent failure to produce correct equations of motion for 
charged particles. This apparent untenability stimulated consideration of various 
modifications to the theory (Bose 1953; Bonnor 1954; Moffat and Boal 1975; 
Klotz 1982; Antoci 1989), including the recent work of Damour et al. (1992, 
1993) and that on NGT (Moffat 1979, 1991, 1993; Cornish and Moffat 1993, 
1994; Cornish et al. 1993). A comprehensive review and general outline of the 
early work was given by Goenner (1984). 

The ostensible problem in EUFT is that charged particles do not appear to feel 
the electromagnetic field, a conclusion reached by Infeld (1950) for the earlier, 
and Callaway (1953) for the later version. Each investigator used a modified 
form of the Einstein-Infeld-Hoffmann (EIH) approximation scheme (Einstein and 
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Infeld 1949) which was developed to find the equations of motion of masses in 
general gelativity (GR) from the free-space field equations alone. It turns out 
that the two versions of EUFT are essentially equivalent insofar as equations 
of motion are concerned, so we may confine our attention to the earlier, upon 
which Infeld's analysis is based. 

The purpose of this paper is to show that an EIR analysis of EUFT is 
inconclusive as a test of the physical viability of the theory. There is no desire 
to demonstrate that the theory is viable-the purpose is merely to show that an 
EIR analysis is unable to conclude one way or the other. 

In the case of the Infeld-Callaway analysis, the conventional interpretation 
of the f J1." as the Faraday tensor causes the Coulomb interaction to vanish 
automatically due to 'extra' derivatives inherent in the interpretation. This 
would seem to suggest that the f J1." would need to be interpreted as potentials 
rather than as Faraday-tensor-type derivatives of potentials, if there is to be any 
prospect of a Coulomb interaction in the EIR equations of motion for EUFT. 

In fact, such an interpretation of the f J1." is suggested by three separate 
observations: (i) by the precise way that the EIH equations of motion arise from 
the field equations of GR, Einstein-Maxwell Theory (EMT) and EUFT; (ii) by 
the intimation of a gauge-fixing role for equation (6) below by Einstein (1956) 
and Bergmann (1956); and (iii) by an analysis due to Papapetrou (1948). Under 
this interpretation of fJ1." as potentials, EUFT in its original form would yield 
the Coulomb interaction in the EIR equations of motion, were it not for the fact 
that EUFT is put into the radiation gauge by the condition (6). 

Since the EIR scheme produces a similarly vanishing Coulomb interaction when 
applied to EMT in the radiation gauge, the vanishing of the Coulomb term in this 
gauge for EUFT is not sufficient to conclude that EUFT is therefore necessarily 
unphysical, any more than the same situation in EMT is sufficient to conclude 
that EMT is unphysical-one recognises the lack of a Coulomb interaction to 
result from the choice of gauge. Of course, this is very different from asserting 
that EUFT is physical, which is not the intention. The purpose here is merely 
to show that, since an EIR analysis is inconclusive as a test of the viability of 
EUFT, historically, EUFT, rejected as it was on the basis of such an analysis, 
was rejected for the wrong reason. 

2. Field Equations 

In EUFT, both the fundamental tensor gJ1." and the connection r~" are assumed 
to be nonsymmetric. The field equations are (Einstein 1950; Infeld 1950) 

gJ1."'>' = g<T"r~>. + gJ1.<Tr~" , 

r J1. = !(r~T - r~J1.) = 0, 

R(J1.") = 0, 

R[J1."l =0; 

where RJ1." = a<Tr~" - Ha"rfJ1.<T) + aJ1.r f"<T)) 

- r~Tr~" + r~"rr<TT) . 

(1) 

(2) 

(3) 

(4) 

(5) 
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In this paper, Greek letters denote space-time indices (0,1,2,3) and Latin letters 
denote spatial indices (1,2,3). Round (square) brackets around indices denote 
symmetry (skew-symmetry) as usual. 

The symmetric part of the nonsymmetric fundamental tensor is identified with 
the metric tensor of GR, and the skew part fw was conventionally identified 
with the Faraday field tensor of classical electromagnetism. Equation (2) gives 
rise to the equivalent equation 

(Hf,."r;),r; =0, (6) 

where 9 = det(g,."v), which thus has the form of Maxwell equations. 
It was the failure of EUFT, with this interpretation of f,."v, to produce the 

Coulomb interaction in the EIR equations of motion that led to the widely-held 
view (Misner et al. 1973) that EUFT is unphysical, and prompted numerous 
modifications of the theory (Goenner 1984). 

3. EIH Equations of Motion 

The equations of motion for EUFT are obtainable using the EIR approximation 
scheme as employed by Infeld (1950) [and Callaway (1953)]. Rere we simply give 
an outline of the basic method. Full details may be found elsewhere (Einstein 
and Infeld 1949; Wallace 1940, 1941; Scheidegger 1953). 

The EIR scheme was originally developed to answer the question of whether 
the free-space field equations of GR were sufficient to produce the equations of 
motion of particles which were not test particles, i.e. which were also a source of 
the field (the geodesic principle applies to test particles only). Einstein suspected 
the non-linea~ity of the field equations of GR might give rise to constraints on 
the motions of particles, and thereby yield the equations of motion. 

The field equations are split, with the time component distinguished. The 
basic assumption is of 'slow' motion with respect to the speed of light, which 
may be easily formalised in terms of an expansion parameter based on the 
'speed of motion' rather than on 'strength of field'. Particles are represented as 
singularities in the field. Since the field equations do not therefore hold at the 
positions of the particles, they are each surrounded by a closed surface upon 
which the field equations do hold (and each surface encloses only one particle). 
The field equations are integrated, and it turns out that the values of the surface 
integrals are independent of the shapes of the surfaces-they depend only on the 
co-ordinates of the singularities and their time derivatives. One finds that in order 
for the whole system of equations to remain consistent at each successive instant 
of time, the surface integrals must take certain values. Since the value of the 
surface integrals depends only upon the motion of the enclosed singularities, the 
singularities are thereby effectively constrained to move in certain ways. In other 
words, the surface integrals imply integrability conditions and these conditions 
are the equations of motion of the particles. 

The Newtonian equations of motion arise in the first iteration of the EIR 
approximation, at the fourth order in the expansion parameter. When there is 
an electromagnetic energy-momentum tensor in the field equations, the correct 
charged-particle equations of motion emerge. 
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(3a) EIH for GR and EMT 

In the EIH method, the character of the entire approximation scheme depends 
upon the choice of solution of the lowest-order equations. No use is made of the 
more familiar exact solutions of the field equations, such as the Schwarz schild in 
GR or Reissner-Nordstrom in EMT-they have no role whatsoever in the EIH 
scheme. The EIH approximation scheme is independent of the results of the (full 
non-linear) field equations, such as these exact solutions. The point of contact 
between the field equations and the EIH scheme lies in the assumed character 
of the field functions. 

Thus in GR, where the gravitational functions (Le. the symmetric gp,v) are 
interpreted as potentials, the lowest-order (Le. second-order) EIH functions were 
chosen to be Newtonian potentials <p, with <p being the total sum of each particle's 
own m/r-type Newtonian gravitational potential. 

In EMT, the electromagnetic functions Ap, are interpreted as electromagnetic 
potentials. To the lowest order (second), one obtains simply the Coulomb potential 
iP, with iP being the total sum of each particle's own q/r-type Coulomb potential. 

In the 'Newtonian' approximation, the EIH equations of motion for EMT 
arise (Wallace 1941) from a surface integral whose integrand is formed from the 
fourth-order part of 

Pij + ~8ijrtf3 Paf3 + 2(Tij + !8ij 'T}af3Ta(3) = 0, (7) 

where Pp,v is the usual Ricci tensor of GR, Tp,v is the usual electromagnetic 
energy-momentum tensor, and 'T}p,v is the flat space metric, diag(l, -1, -1, -1). 
The integrand contains derivatives and/or products of the second-order Newtonian 
and Coulomb potentials. The GR equations of motion are obtained by putting 
Tp,v = O. 

For later comparison, we show the result for the simplest case-two particles
and give only the equations of motion for particle '1'. Those of particle '2' are 
analogous. The equations of motion of particle '1' are found to be (in 3-vector 
form) 

mIX + 2ml V' [m2/rJ = 0, (8) 

where r is the distance between the two masses, x denotes the position 3-vector 
of particle '1', dots denote time derivatives, and ml and m2 denote the masses 
of particles '1' and '2' respectively. We see that this is the Newtonian equation 
of motion for particle '1' moving in the gravitational field of particle '2'. 

The modification to the gravitational equations of motion (8), brought about 
by the electromagnetic field in (7), is found from the surface integral of the 
non-gravitational terms. These are (Wallace 1940, 1941) 

-4iP,iiP,j + 28ij iP,siP,s , (9) 

and yield a term of the form 

ql V' [q2/r J (10) 
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which is clearly the Coulomb force on particle '1' (with charge ql) due to the 
field of particle '2' (with charge q2). 

(3b) EIH for EUFT 

In EUFT, the modification to the fourth-order gravitational equations of 
motion due to the electromagnetic field is found in a way exactly analogous to 
that used for EMT. The fJ-tv were conventionally interpreted as Faraday tensor 
derivatives of the electromagnetic 4-potential. The EIH integrand is formed from 
the fourth-order part of (3) by way of 

R(ij) + ~8ijr/"j3 R(aj3) = 0, (11) 

and contains the gravitational part of (7) (the P) which yields the same equations 
of motion (8) as in GR, together with non-gravitational terms containing products 
of the fJ-tv and their derivatives. 

The EUFT modification to the gravitational equations of motion is found 
by evaluating the surface integral of these non-gravitational terms, as in EMT, 
although in EUFT these terms appear in an integrand more complicated than 
that for EMT. 

This was the basis of Infeld's (1950) approach. However, Infeld did not fully 
simplify his non-gravitational integrand and, by use of the so-called Lemma of 
the EIH procedure (a formal algebraic result), he was able to correctly conclude, 
without evaluating any of the terms, that the integral vanished. This use of the 
Lemma, however, obscures what turns out to be an important fact. 

Simplifying Infeld's integrand (Infeld 1950), we find it is 

<P,iS<P,js - <P,s<P,ijS, (12) 

which is to be compared with (9). The gravitational equations of motion in 
EUFT are thereby modified (Voros 1994) by a term of the form 

ql \7 [\72(q2/r)] . (13) 

The 'extra' derivatives in (12) compared to (9) result in the appearance of 
the Laplacian operator \72 in the EUFT analogue (13) of the EMT Coulomb 
force term (10) of the equations of motion. Since q/r is a harmonic function, 
this term will vanish identically even if the Coulomb potential does not, and 
there is therefore no electromagnetic modification to the gravitational equations 
of motion, whence Infeld's (and thus Callaway'S) inference that charged particles 
do not feel the electromagnetic field. Infeld's use of the Lemma meant he did 
not observe this. However, with the details of the calculation laid bare in this 
way we see that any possible Coulomb contribution to the EIH equations of 
motion is automatically precluded, entirely on account of these 'extra' derivatives, 
which are engendered by the conventional identification of fJ-tv with derivatives 
of electromagnetic potentials. 

These 'extra' derivatives would be avoided by an identification of the fJ-tv 
with potentials, which is consonant with the following observations of Einstein, 
Bergmann and Papapetrou. 
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Einstein (1956) noted that the curvature tensor, formed as usual from the 
r~v' is invariant under the substitution ('A-transformation') 

r~v --t r~v + t5~ A,v , (14) 

where A is an arbitrary function of the coordinates. This U(1) invariance he 
termed 'A-invariance'. The non-symmetric Ricci tensor, formed as usual from the 
curvature tensor, is also invariant under a A-transformation. Einstein then noted 
that postulating the equations (2) involves a normalisation of the r-field, which 
removes the A-invariance of the system of equations-the non-symmetric Ricci 
tensor reduces to the R/-,v defined in equation (5) if equation (2) is assumed. 

Bergmann (1956) noted that A-transformations are related to electromagnetic 
U(1) gauge transformations. Thus (2) implies, by way of (6), that the f/-'v are 
potentials, since gauge conditions are generally of the nature of single-derivative 
constraints. 

The possibility of interpreting the f/-'v as potentials was explicitly noted earlier 
by Papapetrou (1948), who analysed the field equations of EUFT in order to 
compare them with those of EMT. He concluded that the simplest interpretation 
of f /-'v was not as the field itself, but as the potential of the field. The apparent 
concern, that the skew tensor f/-'v is of a different character from the vector 
potential A/-, of Maxwell's electromagnetic theory, and thus that it might not be 
able to give rise to the correct number of degrees of freedom for a photon field, 
when examined in detail, turns out to be unfounded (see Section 4 below). 

As we noted earlier, in GR, where the gravitational functions are interpreted as 
potentials, the lowest-order EIH functions were chosen to be Newtonian potentials. 
In EMT, the electromagnetic functions are interpreted as electromagnetic potentials, 
and this gives rise, at the lowest order, to the Coulomb potential. Thus also 
in EUFT, informed by the interpretation of f/-'v as potentials, the lowest-order 
electromagnetic functions in the f /-'v must correspond to Coulomb potentials. 
This must be done in a way which follows the identification made for the metric 
in GR and EMT, i.e. that the lowest-order f/-'v be treated as a set of Coulomb 
potentials in accordance with the manner in which the lowest-order functions in 
the metric are treated as a set of Newtonian potentials in the EIH approach to 
GR and EMT. 

When this is done, we find (Voros 1994) that in EUFT the gravitational 
equations of motion are modified by a term of the form 

ql \1(Q2/r). (15) 

This term is to be compared with equation (10). It is clearly the Coulomb force 
on particle 1 moving in the field of the other particle. 

It follows from (15), therefore, that a Coulomb term may exist in the EIH 
equations of motion of EUFT in the interpretation of f/-'v as potentials, in contrast 
to the situation under the conventional interpretation as Faraday-tensor-type 
derivatives of potentials. 

However, equation (6), which has been identified, following the observations 
of Einstein and Bergmann, as a gauge-fixing equation, can be shown to take the 



Interpretation of the Skew Part of 9,.,v 51 

form <I> = 0, \7. A = 0 (to third order in the EIH scheme), which specifies the 
radiation gauge. 

In EMT, imposing the radiation gauge on the EIH scheme causes all the 
particle charges to be constrained to vanish. Since all the electromagnetic EIH 
functions depend on the charges, it follows that if the radiation gauge is imposed, 
then all the EIH functions vanish to all orders, the scheme 'collapses', and is 
thus inapplicable even in the case of EMT. There is nothing mysterious about 
this-the EIH scheme was developed to describe the interaction of particles; it 
is ill-suited to describing mdiation. 

It therefore follows that this gauge constraint in EUFT, similarly constraining 
all charges to be zero, precludes a charged-particle interaction in the EIH equations 
of motion for EUFT. There is thus no Coulomb interaction in the equations of 
motion, despite the provision for one in (13), because it is proscribed by the 
gauge entailed by equation (6). 

4. Comments 

Some comments on the interpretation of f J.LV as potentials outside the context 
of the EIH approximation scheme are in order. 

At first glance it may seem unlikely that the skew tensor fJ.Lv could contain 
the degrees of freedom of the two helicity states of a massless spin-1 particle; 
one might be tempted to think that because the theory has a 2-form playing the 
role of gauge potentials, it might describe instead an axion field or something 
similar. However, such a conclusion is premature. The actual behaviour of the 
fJ.Lv, at least in the linearised case, is very suggestive, as we now report. 

A spin-projection analysis of the implied particle spectrum performed recently 
by Moffat (1993) on the linearised skew field equations of NGT (which has similar 
field equations to the later Einstein theory, and identicallinearised skew free-space 
field equations to those of the later EUFT) reveals that the six functional degrees 
of freedom in the skew fJ.Lv actually behave like two spin-1 fields (i.e. each having 
three functional degrees of freedom), both massless. It turns out that one of 
these does not propagate, so the six fJ.Lv effectively possess the same behaviour 
as a single propagating massless spin-1 field. 

However, this spin-1 field is further constrained to have only a scalar degree 
of freedom, due to the presence of the constraint equation (6) in the theory. [It 
can be shown that in the classical linearised skew field equations, the apparently 
six degrees of freedom in the fJ.Lv are reduced, by the linearised form of the 
constraint (6), to a single degree of freedom.] 

Moffat interprets this one remaining scalar degree of freedom as indicating the 
skew field to be a scalar field; however, we can see from the details of Moffat's 
result that the linearised skew free-space field equations of EUFT for the fJ.LV may 
also be interpreted as a constrained propagating massless spin-1 field. Indeed, 
by adding mass to the skew field fJ.Lv of their theory, Damour et al. (1993) were 
able to explicitly extract all three spin-1 functional degrees of freedom, whence 
their interpretation of fJ.Lv as a massive fifth-force-type vector field. 

What role the constraint equation (6) has in EUFT remains an interesting 
question-within the limited context of the EIH approximation, it behaves 
like a gauge-fixing equation. It would have a more complex role outside this 
approximation. 
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5. Conclusion 

Equation (6) reduces to Maxwell's equations given the a priori identification 
of if'v with the electromagnetic (Faraday) field tensor. We have seen that 
this identification frustrates the inference of a Coulomb interaction via the EIR 
procedure owing to the presence of 'extra' derivatives on the Coulomb potential 
introduced by this identification. The (EIR-independent) gauge-fixing character 
of equation (6), to which Einstein and Bergmann allude, however, suggests 
an alternative identification of if'v with electromagnetic potentials, which was 
independently noted earlier by Papapetrou to be the simplest interpretation of 

the if'v" 
Given this identification of if'v as potentials, equation (6) imposes, within 

the context of the EIR scheme, a gauge which precludes the existence of a 
charged-particle interaction in the equations of motion-the radiation gauge. The 
absence of a Coulomb interaction in EMT in the radiation gauge is not usually 
taken to mean that EMT is therefore physically unviable. It is clear that the 
absence of such an interaction in this circumstance for Einstein's theory also does 
not allow the standard inference that EUFT is therefore necessarily unphysical 
owing to the lack of such an interaction, which latter was the contention of Infeld 
(1950) and Callaway (1953). 

Thus, an EIR analysis of EUFT is inconclusive as a test of the physical 
viability of the theory. This is not to say, of course, that the theory is viable-we 
have merely found that an EIR analysis, which, historically, was the basis of 
rejecting EUFT, is unable to determine the physical viability of EUFT one way 
or the other. 

Given that the skew field if'v has been found to behave like a constrained 
massless propagating spin-1 field in the linearised approximation, one is led to 
wonder what might emerge from Einstein's unified field theory if the constraint 
equation (6) on the if'v were to be relaxed. 
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