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Abstract

The cryogenic resonant-mass gravitational radiation antenna at the University of Western
Australia (UWA) has obtained a noise temperature of <2 mK using a zero order predictor
filter. This corresponds to aIms burst strain sensitivity of 7x 10-19 . The antenna has
been in continuous operation since August 1993. The antenna operates at about 5 K and
consists of a 1· 5 tonne niobium bar with a 710 Hz fundamental frequency, and a closely
tuned secondary mass of 0·45 kg effective mass. The vibrational state of the secondary mass
is continuously monitored by a 9·5 GHz superconducting parametric transducer. This paper
presents the current design and operation of the detector. From a two-mode model we show
how we calibrate, characterise and theoretically determine the sensitivity of our detector.
Experimental results confirm the theory.

1. Introduction

Resonant-mass gravitational wave (GW) antennas have been painstakingly
improved over the past 20 years (Hamilton 1992; Astone et ale 1993). Cryogenic
operation, superconducting transducers, improved vibration isolation and increased
acoustic Q-factors have contributed to a 104 fold improvement in energy sensitivity
over Weber's (1960) original antennas. Two types of superconducting transducers
have been developed: SQUID based inductive or capacitive sensors (Michelson
and Taber 1981) and parametric transducers utilising radio frequency (Bocko
and Johnson 1984) or microwave resonators (Veitch et al. 1987). Although the
latter devices have been promoted as potentially very sensitive transducers, they
have not previously been successfully implemented in a full scale antenna. The
problems encountered included the possibility of the transducer causing parametric
excitations of the antenna (Braginsky and Manukin 1977), excess noise due to
the microwave readout electronics, and the effects of low frequency seismic noise.

The UWA detector consists of a niobium bending flap of 0·45 kg effective mass
tuned near to the fundamental frequency of a 1· 5 tonne niobium resonant bar,
configured with a 9·5 GHz re-entrant cavity parametric transducer. We report
the first successful operation of a large scale cryogenic resonant-mass antenna
instrumented with a superconducting parametric transducer. We show that the
system achieves a noise temperature of less than 2 mK, which represents a
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three-fold increase in noise energy sensitivity over SQUID based systems operated
to date. Parametric instability of the antenna is avoided by controlled operation
in the cold damped regime where the mean energy of antenna displacement
fluctuations is about 10 times less than the unloaded value. The noise in the
readout electronics is reduced by using a 10 GHz sapphire loaded superconducting
cavity oscillator (Giles et ale 1989) with the lowest ever measured phase noise at
1 kHz (Tobar and Blair 1994), and cryogenic microwave amplification employing
an active carrier suppression technique (Ivanov et ale 1993a). The effect of seismic
noise is greatly reduced by an improved cryogenic vibration isolation system
(Blair et ale 1993) and a non-contacting microwave coupling to the transducer
(Ivanov et ale 1993b).

A lumped-mass model of a resonant mass interacting with a capacity transducer
was implemented to characterise and calculate the potential sensitivity of the
UWA GW detector. The validity of the model was confirmed by showing its
consistency with measured parameters and the sensitivity of the detector. A
frequency domain approach is adopted here, similar to the methods· used at
Stanford University (Michelson and Taber 1981; Price 1987), Louisiana State
University (Xu et ale 1989) and the University of Maryland (Richard 1986) which
all use transducers based on SQUID amplifiers.

2. Cryostat

The new gravitational wave dewar design has been previously described (Blair
et ale 1992), and is shown in Fig. 1. The thermal vacuum vessel is a stainless
steel cylinder 4 m long and 1· 6 m in diameter with two removable domed ends.
Inside, two concentric copper shields surround the combined helium storage vessel
and experimental space to shield it from room temperature radiation. The liquid
nitrogen shield is suspended by fine steel cables from the vacuum vessel, and
the 30 K shield hangs in a similar fashion from the liquid nitrogen shield. Both
shields are constructed of copper sheet that is soft soldered to a frame of copper
pipes, and both are wrapped in layers of superinsulation. Liquid nitrogen is
injected into the nitrogen shield every few hours to maintain its temperature at
about 120 K. Boil-off gas from the liquid helium storage shell circulates through
the inner shield to make efficient use of the enthalpy remaining in the cold gas
before recovery.

The experimental vessel is a double walled cylinder 3 m long, with an outer
diameter of 0·96 m and an inner diameter of 0·87 m. The annular space forms
the liquid helium storage shell, and has a capacity of about 380 litres. The axis
of the inner cylinder is fixed below the axis of the outer cylinder to maximise
the time that the internal wall is covered by liquid helium. A copper sheet
framework within the liquid helium storage volume promotes convection to ensure
temperature uniformity even when the liquid helium level is low.

The experimental space is supported near its centre by a 100 mm diameter thin
walled stainless steel tube which also acts as the pumping line. The experimental
space forms a common vacuum space with the volume that houses the room
temperature vibration isolation stack. This vacuum space is separate from that of
the main dewar thermal vacuum. The niobium bar and its associated cryogenic
suspension components are suspended from the top of the room temperature
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Fig. 1. Cross section of the antenna showing the niobium bar and vibration isolation system.

vibration stack by an 11· 2 mm diameter titanium alloy suspension rod which
hangs in the centre of the experimental space pumping tube. The niobium bar
and its suspension have no mechanical contact with the surrounding cryostat
except via the suspension rod at the base of the room temperature vibration
isolation stack. Mechanical and acoustic noise sources within the dewar, such
as boiling cryogens and structural vibrations, are completely separated from the
suspension of the niobium bar.

A key problem in the design of this suspension was in dealing with the heat
flux down the suspension rod. A novel and effective solution to this problem is
provided by a radiative heat shunt (Turner and Blair 1992). A set of blackened
copper fins is attached to the suspension rod and interleaved with, but not
contacting, a second set of fins attached to the inside of the pumping tube. The
second set of fins is thermally grounded through the pumping tube to the liquid
nitrogen shield. The heat shunt reduces the temperature of the suspension rod
at this point from near room temperature to less than 130 K. The heat flux into
the 4·2 K environment is thus reduced by a factor of about 4, to 40 mW. This
excess heat flux is balanced by thermal conduction through the low pressure
(10-4 Torr) helium exchange gas in the experimental space. At this pressure the
equilibrium temperature of the antenna is about 5·7 K, the acoustic Qs of the
fundamental modes of the antenna exceed 107 , and the antenna has a 27 dB
acoustic margin from the ambient laboratory noise level (i.e. the ambient noise
level has to be raised by 27 dB to effect our measurements).

The dewar has been operating continuously since July 1993 and has demonstrated
excellent cryogenic performance. It consistently records a liquid helium boil off of
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0·7 litres per hour (120 litres per week), and the nitrogen shield and associated
diffusion pump cold traps consume 500 litres of liquid nitrogen per week.

3. Vibration Isolation

The vibration isolation system for the niobium bar is a multistage low pass
filter consisting of ten stages at ·room temperature and a further seven cryogenic
stages. Previous theoretical modelling of this systems indicates we achieve rv300
dB of isolation (Blair et ale 1992).

We are primarily concerned with isolating the fundamental longitudinal mode
of the bar. However, the antenna is not a simple one dimensional resonator,
and the finite Poisson ratio of the niobium bar implies that longitudinal motion
induces a significant radial 'breathing' motion at the waist of the bar. The
vibration isolation and suspension system must therefore attenuate both vertical
and horizontal vibrations.

The room temperature vibration isolation stack is situated in the central
tower and consists of alternating layers of lead masses and rubber springs. The
seven stages of all-metal cryogenic isolation are supported by a 500 kg steel
intermediate mass which hangs from the room temperature isolation stack by
the titanium alloy suspension rod. The cryogenic isolation stages consist of four
13 kg steel masses suspended by short pendula from vertical cantilever springs.
The lead/rubber room temperature section and the cryogenic stages attached to
the large intermediate mass provide isolation in all six degrees of freedom. The
second last isolation stage consists of aluminium cantilevers mounted on a 50 kg
steel mass. This gives good vertical isolation, but weaker transverse isolation.

The antenna ultimately rests on a pure titanium 'Catherine wheel', a spiral
tapered spring which is soft in all degrees of freedom. It is designed to have
internal resonances well above the antenna frequency, a low mass, a high acoustic
Q-factor, and a high pressure contact coupling to the bar. The contact points
to the bar are defined by annealed copper spacers 10 mm in diameter and 1 mm
thick. These are intended to avoid any non-linearity in the contact point, which
might cause up conversion of low frequency acoustic noise.

Finite element modelling was used to ensure that none of the suspension
components had internal mode frequencies near the antenna normal mode
frequencies and their related harmonic mode frequencies. The fundamental flexure
mode of the intermediate mass occurs at 790 Hz and is the lowest internal mode
in the suspension above the antenna normal mode frequencies. The highest
suspension mode below the antenna normal modes is the first mode in the
cantilever springs, and this occurs at 350 Hz.

4. Superconducting Microwave Parametric Transducer Readout

Fig. 2 shows a simplified diagram of the antenna and readout system. It operates
at about 5 K, and consists of a 1·5 tonne Nb bar with a fundamental frequency of
710 Hz bonded to a 0·45 kg Nb bending flap with a resonant frequency of 700 Hz.
The observed coupled frequencies are at 713 Hz (bar-like mode) and 694 Hz
(flap-like mode). The bending flap acts as a mechanical amplifier impedance
transformer to match the antenna impedance to the mechanical impedance of
the transducer (Paik 1974).
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Fig. 2. Diagram of the antenna and transducer system. The carrier suppression interferometer
and the microwave amplifier are located in the cryogenic environment. The frequency and
phase tracking servos are shown schematically. The re-entrant cavity transducer is pumped
by a low noise tuneable microwave source based on a SLOSC oscillator.

The vibrational state of the bending flap is continuously monitored by a
superconducting re-entrant cavity whose capacitance is modulated by the relative
motion of the bar and the bending flap. The low-noise microwave pump signal
based on a SLOSC oscillator (Giles et al. 1989; Tobar and Blair 1994) is coupled
radiatively to the transducer by two miniature microstrip antennas (Ivanov et al.
1993a). These eliminate the need for any wiring connection between the transducer
and its associated electronics, allowing a high level of mechanical isolation of
the antenna from the environment. The signal from the transducer is processed
in a phase sensitive microwave signal processing circuit (MSPC), comprising
an active carrier suppression interferometer, a cryogenic amplifier, and a room
temperature mixer. The carrier suppression interferometer is a key element of
the MSPC which allows low-noise cryogenic amplification of the extremely weak
signal reflected from the transducer. Two servo-control systems provide stable
operation of the MSPC. The first servo maintains a constant negative offset
between the pump source and transducer resonant frequency. This is required
to maintain parametric cold damping, and it also suppresses variations of the
transducer resonant frequency caused by low frequency seismic excitation of the
normal modes in the vibration isolation system. The second servo maintains
the carrier suppression interferometer locked to the 'dark fringe' despite the low
frequency rocking motions of the bar, which causes path length variations in the
non-contacting coupling.

The interaction of the parametric transducer with the resonant bar causes
changes in the resonant frequency and in the Q-factor of the antenna normal
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Fig. 3. Measured dependence of the acoustic quality factor
on the input power to the transducer, showing the parametric
cold damping at high power levels.

modes (Tobar and Blair 1993; Tobar et ale 1991; Linthorne et ale 1990). These
parametric effects can be used to characterise a detector, as shown in the following
section. We operate our detector in the cold damped regime. Experimental
observations of this effect are shown in Fig. 3. It is shown later that the damping
of the oscillator has no detrimental effect on the sensitivity of the detector. The
unperturbed Q-factors measured at a very low transducer input power are 3xl07

and 1· 3x 107 for the bar-like mode (713 Hz) and the flap-like mode (694 Hz)
respectively. As the microwave power is increased, non-dissipative parametric
cold damping causes the Q-factor to reduce.

5. Characterisation and Calibration of the UWA Detector

To calibrate and characterise the UWA detector we use a two-mode model of a
resonant-mass gravitational wave detector interacting with a resonant parametric
transducer (Tobar and Blair 1993; Tobar et ale 1991; Linthorne et ale 1990). A
schematic of this model is shown in Fig. 4.

If the pump oscillator frequency varies with respect to the transducer resonant
frequency, the pump acts to change the spring constant of the secondary mass.
From this effect the detector can be completely characterised and calibrated with
respect to this model. Fig. 5 shows how the pump oscillator affects the normal
mode frequencies of both the upper (713 Hz) and lower (694 Hz) normal modes
(normal mode parameters are represented with + and - subscripts respectively).

From the parametric effects on the resonant frequency shown in Fig. 5, and
the measured normal mode parameters presented in Table 1, we can determine
the uncoupled mode parameters from the model. These are presented in Table 2.

The current values for the 1993/94 experimental run are consistent with the
1991 experiment. Between these experiments the bending flap was etched to tune
it closer to the bar frequency. For perfect tuning the ratio of the electromechanical
couplings of the two normal modes, !3r == !3+ /!3-, is approximately one. Because
m2/ml « 1, the normal mode electromechanical couplings will be dominated by
the secondary mass coupling (!32) (Tobar and Blair 1993). When this is true and
!3r == 1, then !3+ rv !3- rv !32/2. The general form of the normal mode couplings
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Fig. 4. Schematic of a two-mode resonant-mass GW detector
with resonant parametric transducer. The resonant-bar
(primary mass) and bending flap (secondary mass) are modelled
as two series lumped masses. The displacement of the secondary
mass capacitively modulates a resonant parametric transducer.
For the UWA GW detector this is a superconducting re-entrant
cavity. The two normal modes sensed by the transducer are
coupled modes containing a combination of the two uncoupled
modes.
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Fig. 5. Normal mode acoustic frequencies as a function of pump oscillator
offset from the transducer resonant frequency. The bold line is a theoretical
curve while the points are experimental measurements, the uncertainty in
measurements being approximately the size of the points.

Table 1. Measured normal mode frequencies and Q-factors, and re-entrant cavity transducer
frequency of the UWA GW detector

The measured Nb parameters without the secondary mass attached are also given

Measured parameters

w+/2rr (Hz)
w-/2rr (Hz)
Q+(x107

)

Q_(x107 )

Oo/2rr (GHz)
Ql
wl/2rr (Hz)
ml (kg)

1991

711·334
688·859
1·6±0·05
0·37±0·01
9·7732

(2.3±0.3)x108

709·7
755

1993/94

713·106
694·673
3·0±0·05
1·4±0·05
9·5
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Table 2. Calculated parameters of the UWA GW detector from the two-mode
model and the measured parameters given in Table 1

The discrepancy between the calculated (707·7 Hz) and measured bar
frequency (709·7 Hz) is due to mass loading of the bar by the bending flap

base

-0.25

Calculated parameters

wl/21r (Hz)
W2/21r (Hz)
Ql(x107

)

Q2( x 107
)

m2 (kg)
{3r

Or--- .............
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1991
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o·31±0·01
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0·213
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1993/94

707·7
699·9
20±0·5
1·0±0·05
0·43
0·413
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Fig. 6. Normalised mode couplings as a function of secondary
mass frequency. The curve represents the + mode and the
dashed curve represents the - mode. The vertical line shows
the tuning of the bending flap and intersects the normal mode
values calculated from the two-mode model. The horizontal
line is when {3r == 1.

has been calculated from the two-mode model previously (Tobar 1995) and is
given by

{3±

{32

8w± w2

8W2 w±
(1)

Fig. 6 shows the dependency of the normalised mode couplings as a function of
secondary mass frequency.

To calibrate the antenna we make use of the self-calibrating properties of the
re-entrant cavity. The transducer is configured to maximise d v / df (V Hz-I)
at the operating pump offset from resonance. This quantity is measured by
frequency sweeping the pump across the transducer resonance and measuring the
voltage frequency slope. Thus the displacement sensed by the re-entrant cavity
can be calculated from

8x± == (df /dv) (df /dx)-l 8v± . (2)
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Here 8v± is the measured voltage response of the normal modes, and df /dx is
the displacement sensitivity of the re-entrant cavity transducer (df / dx ",300 MHz
J-tm-1) . To first order df /dx is independent of temperature, and can be measured
at room temperature. By observing the re-entrant cavity frequency shift from
room temperature to 5 K, any second order change in df / dx can then be
calculated.

The energy in the normal modes of the oscillator is given by (where k is
Boltzmann's constant)

E± = kT±/2 = (m± wi 8x~)/2,

and in terms of the normal mode temperatures by

T± = (m± wi 8x~)/k.

(3a)

(3b)

Here m± are the normal mode masses, which have been shown to be given by
(Tobar 1995)

m± _ (8W± W±)-l
m2 - 8W2 W2 .

(4)

0' -- -----

1.5

N 1.25

~
+1

~
Q 0.75
~

CJ)
0
~ 0.5

0.25

Equations (4) are shown as a function of secondary mass frequency in Fig. 7.
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Fig. 7. Normalised normal mode masses as a function of
secondary mass frequency. The solid curve represents the +
mode and the dashed curve represents the - mode. The vertical
line shows the tuning of the bending flap and intersects the
normal mode values calculated from the two-mode model. The
horizontal line is when {3r = 1 (i.e. perfectly tuned system),
and at this point m+ = tn.: = 2m2.

If the bar and the bending flap were perfectly tuned both modes amplify
displacements of the bar by Viiil/Viii2' and assuming m2 «ml both normal
mode masses are given by m± = 2m2. If the flap is detuned from the bar
when Wl > W2 the bar becomes an infinite wall with respect to the flap and
m.: -+ m2, m+ -+ 00; when W2 > Wl the flap becomes stiff with respect to the bar
and does not act as a displacement amplifier. In this case rn., -+ m2, m : -+ 00.
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6. Sensitivity of the UWA Detector

(6a) Experimental Results

The energy of the displacement fluctuations of the resonant-mass system at the
frequencies of the normal modes can be expressed in terms of mode temperatures,
T±. At Pin = -45 dBm (input power to re-entrant cavity), T ± are equal (within
experimental error) to the physical temperature of the antenna (about 5 K),
consistent with the expected Brownian motion in the antenna. However, the cold
damping which reduces the Q-factors also reduces the mode temperature. At low
power levels the cold damping preserves the ratio T/Q (Fig. 8), which confirms
the intrinsic cold damped operation of the transducer. At higher power levels
the ratio T/Q increases proportionally to ~~. This occurs due to increased back
action noise which arises from pump oscillator amplitude noise which produces
fluctuations in the attractive force acting between the transducer and antenna.
In the low power regime the antenna sensitivity increases with Pin. However,
in the back-action regime the sensitivity decreases. Thus the antenna-transducer
system is characterised by a classical uncertainty relation for which there is an
optimum input power and integration time.
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Fig. 8. Dependence of the T/Q ratio of the minus mode on the
input power Pin to the transducer. The points are experimental
measurements and the curves are theoretical calculations. The curves
through the points estimate the errors in the T/Q values, while the
size of the points estimate the errors in ~n. The solid curve represents
the T/Q ratio for the present configuration. If the pump amplitude
noise is reduced from -140 to -160 dBc/Hz the break point shifts
to -3 dBm (dashed curve). The optimum sensitivity occurs at the
break point when the input power is -12 dBm. Below -12 dBm the
system operates in the non-dissipative cold damped regime where
T/Q remains constant. Above -12 dBm the amplitude noise acts
back on the oscillator degrading the T/ Q ratio proportionally to pi~l.

For measuring the antenna noise temperature Tn we use a pair of lock-in
amplifiers centred on the antenna normal modes, and a zero order prediction (ZOP)
algorithm based on this two channel synchronous detection system (Pallottino
and Pizzella 1991). When properly tuned this algorithm achieves a signal-to-noise
ratio only 2·3 times less than an ideal optimal filter. The noise temperature is
determined by fitting the observed energy distribution of the voltage noise at the
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filter output to a Boltzmann distribution. The conversion from voltage to energy
units is determined in a similar way as the mode temperature described in the
last section. An extra factor must be taken into account due to the effect of the
ZOP filter (Bonifazi et ale 1979). Fig. 9 shows some typical noise temperature
values, taken between day 200 and day 235 of 1994. A reproducible exponential
behaviour of the normal mode energy distribution was achieved, with a low level
of excess high energy events, as shown in Fig. 10.
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Fig. 9. Noise temperature of the UWA GW detector from day 200 to day 235 of 1994.

Noise temperature versus sampling time for each antenna mode are shown in
Fig. 11. A minimum in Tn occurs when contributions from the narrow band noise
(Brownian motion and back-action noise) and the broad band noise (additive noise
of the readout electronics) are equal. The antenna bandwidth b..f is the reciprocal
of the sampling time at which the minimum of T n is achieved. To calculate the
overall noise temperature of the antenna we use the relation 1/ T'; == 1/ T n(713)

+ 1/Tn (694) ' which comes from the fact that the signal-to-noise ratio is inversely
proportional to the noise temperature. This gives a detector noise temperature
of 2 mK. Thus with our present scheme we expect the antenna to operate at a
noise temperature of about 1 mK when an optimal filter is implemented. This
result is consistent with a detailed mathematical model of the detector (Tobar
and Blair 1995) presented in Section 6b. At the optimum power the broad band
noise is 3xlO-17 m/JHZ (referenced to the bending flap). This noise is entirely
due to the microwave amplifier. The narrow band noise is 6x 10-26 N2/Hz for a
cold damped mode temperature of 0·5 K.

From Fig. 11 the bandwidth of our antenna is about 1 Hz, which is less
than optimum because the bar and flap are detuned by about 10 Hz. This is
consistent with our model, which also predicts that more accurate tuning would
improve the bandwidth by up to a factor of 3. However detuning affects the
strain sensitivity only to second order. Electronic tuning can be achieved by
exploiting the parametric interactions of the transducer with the bending flap,
but only if the flap mode frequency is above the bar frequency (which is not the
present case) (Tobar and Blair 1993). To increase the bandwidth and sensitivity
for the existing antenna configuration, both series and back action noise must
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Fig. 10. Effective energy histogram for day 234, 1994, using a ZOP filter. The histograms
show expected gaussian behaviour, with about 20 non-Gaussian 'events' in the high energy
tail.

be reduced. The back action noise is due to amplitude noise in the pump
oscillator and the excess series noise is due to the finite carrier signal causing
non-linear upconversions in the cryogenic amplifier. A power stabilisation scheme
is expected to reduce the a.m. noise from -140 to -160 dBc/Hz (decibels with
respect to the carrier per Hz), and the series noise from 5x10-17 to 1·5x10-18

m/~). The model shows that for l1n == -3 dBm, the noise temperature is
reduced to 30 ILK, corresponding to a Lrns burst strain sensitivity of 10-19 with
a bandwidth of about 10 Hz. If the bar and the flap were tuned properly the
bandwidth would be increased to about 20 Hz. Except for the tuning, these
improvements can be implemented without interrupting long term operation.

(6b) Sensitivity Calculation from Noise Spectral Densities

When trying to detect a signal in a noisy environment a standard result in
signal detection theory states that the signal-to- noise ratio is optimised by a filter
which has a transfer function proportional to the complex conjugate of the signal
Fourier transform divided by the total noise spectral density (Wainstein and
Zubakov 1962). This principle was first applied to gravitational wave detectors
in 1981 (Michelson and Taber 1981), and has become a standard method for
determining the performance of resonant-mass gravitational wave detectors (Price
1987; Richard 1986; Bassan 1988; Solomonson et ale 1992). To calculate the
optimal signal-to-noise ratio we must know all significant noise sources, the



Resonant-bar Gravitational Wave Experiment 1019

Noise Temperature versus Integration Bandwidth for Day 234
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Fig. 11. Noise temperature versus sampling rate for the antenna normal modes.

transfer function of the detector, and the form of the gravitational wave signal.
It has been shown that (Michelson and Taber 1981)

SNR == .-!-.jOO IG21(jW)1
2IF1(wW dw = 4 roo IG21(j 27T f W IF1(fW df. (5)

21r -00 SX2(W) io S~2(/)

Here G21(j W) is the Fourier transform of the impulse response (or transfer
function) of displacement sensed by the transducer per force input at the resonant
bar, F 1 (w) is the Fourier transform of the force input or signal density, and
S x 2 (w) (m2 Hz-I) is the double-sided spectral density of all noise components
referred to a displacement at the transducer. The single-sided spectral density
is related to the double-sided spectral density by S~2(W) == 2S x2(w) (Reif 1965).
It is therefore valid to assume that the signal force is an impulse given by
F1(t) == FgD(t) (N), which Fourier transforms to F1(I) == Fg == V2Eml (N Hz-I),
where E is the impulse energy and ml is the oscillator effective mass (Michelson
and Taber 1981). In a noisy environment the magnitude of the signal density
must be compared with the magnitude of the noise density as a function of
frequency. Here we define

s;t(f) = Si (f)
wml'

(6)
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which has the dimension (m JHZ), and is a spectral form of the displacement
noise referred to a displacement at the resonan~ bar. Here st (NjJHZ) is the
noise referred as an input force spectral density.

Signal strain density and spectral strain sensitivity of a resonant-mass
detector. From the calculation of the cross section of a resonant bar antenna to
a gravitational burst of suitable polarisation and directivity it has been shown
(Pizzella 1975) that the peak displacement at the end of a resonant bar Xpeak is
related to the signal strain density Hs (f1) (strain/Hz) of the burst by

1f Xpeak

Hs(Jt} = 4" h L ' (7)

where Land flare the length and fundamental resonant frequency of the bar
respectively. The rms displacement of an oscillator of effective mass ml and in
equilibrium at temperature T'; is independent of Q and given by

t«:
(Xl) = X;t = V~·

Thus combining (7) and (8) we obtain

_ v'2 11" j kTn 2 ,
Hs(h) - 4 11 L ml WI

(8)

(9)

which relates the signal strain density detected with SNR == 1 to the effective noise
temperature of the detector. The signal strain density is the natural quantity
measured by the detector. To determine the detected strain of the gravitational
wave the signal bandwidth must be known (~fs), and is approximately given by

'h == Hs(fl) ~fs . (10)

If the signal bandwidth is greater than the detector bandwidth then ~fs will not
be known and can only be estimated. This will always be true for a gravitational
burst. Most gravitational wave groups assume a burst duration of 1 ms, which
is equivalent to ~fs == 1 kHz.

The resonant bar detector at the University of Western Australia has a large
cylindrical niobium bar as the fundamental resonant-mass, with an effective mass
of 755 kg (half the bar mass), length of 2·75 m and a fundamental resonant
frequency of 710 Hz. Substituting these values in (7) gives Hs(fl) == 5 ·45 X 10-22

JTn(mK) which is equivalent to h1m s == 5·45 x 10- 19JTn(rnK). The noise
temperature can be calculated from (5) by setting SNR == 1 and equating the
impulse energy E == kTn- Then by eliminating Tn from (5) and (9) the signal
density is calculated to be

1 100

1-2==4 dHs(ft) 0 h+(J)2 I, (11)
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where

h+(f) = ~ S-:(f) = st(f)
4 f L 8 f2 L ml .

1021

(12)

Note that h+(f) is related to 8:(f) in exactly the same way as Hs(fl) is related
to Xpeak in (7). This result is consistent with previous results (Price 1987; Dewey
1987). Here h+(f) is the single-sided rms spectral strain sensitivity (strain/VHZ)
of the resonant bar detector akin to the rms spectral strain sensitivity of an
interferometer detector. We can prove this by calculating the optimal detectable
strain sensitivity of a resonant bar antenna when the signal bandwidth is less
than the detector bandwidth (~fd)' From (11) it can be shown that

h == Hs(fl) ~fs == J~fs h+(fl)/2. (13)

If the detector bandwidth is less than the signal bandwidth, then we obtain

In general we have

~fs h+(fl) .
h = Hs(ft) tlfs = 2Jtlfd

_ ~fs ({OO 1 d f ) -! .
h - 2 Jo h+(f)2

(14)

(15)

Equations (13)-(15) give a means of converting from spectral strain sensitivity
to strain sensitivity.

Effective bandwidth. To estimate the effective detector bandwidth the signal
to-noise ratio may be written as

SNR = 100

Sur(f) df ~ Sur(fo) tlfeff , (16)

where Snr(f) is the signal-to-noise ratio density. The maximum value of Snr
occurs at fo, and is denoted Snr(fo). Thus the effective bandwidth is given by

~ I f'-I SNR _ h+( 1)2 roo _1_ df _ h+(fo)2 (17)
Jeff f'-I Snr(fo) - JO io h+(f)2 - 4Hs(fo)2 . .

From any signal-to-noise ratio or spectral strain density plot for any gravitational
wave detector, equation (17) determines an easy method for calculating the
detector's effective bandwidth.

Calculation of the UWA detector burst sensitivity. The UWA detector has
been operating with a low noise temperature since August 1993 (Blair et ala
1995). From the measured noise sources and the known transfer function we can
plot the spectral strain sensitivity of the current configuration, shown in Fig. 12.
With further anticipated improvements we may be able to reduce the spectral
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strain sensitivity as shown in Fig. 12 (Tobar and Blair 1995). Because of excess
transducer series noise the sensitivity of our detector is centred around two
narrow band regimes corresponding to the two normal modes of the resonant-mass
detector. For this configuration the modes can be considered as two separate
detectors, with f - == 694 Hz and f + == 713 Hz, and independent signal-to-noise
ratios or noise temperatures. However, when a burst signal is measured both
modes will detect a signal, and the net sensitivity will be better than the
individual mode sensitivities as given by (19).

§
-18

=s -19
Q

~ -20
~

-21
L
600 650 700 750

Frequency [Hz]
800

(18)

Fig. 12. (a) Current calculated spectral strain sensitivity of
the UWA GW detector. (b) Predicted strain sensitivity after
major detector improvements.

To calculate the mode temperature from the spectral strain sensitivity we
combine equations (5) and (12) to obtain

T. :::::: 8 ml it £2 ( roo _1_ df)-l.
n k io h+(f)2

Thus by integrating over each mode separately we calculate Tn+ and Tn - to be
1·6 and 4·4IhK respectively. The values of h+(f+) and h+(f-) are 7·6x10-22

per Vlli and 2· 6x 10-21 per Vlli respectively. From (17) the bandwidths of
the modes are calculated to be ~f+ == 0·3 Hz and ~f- == 0·8 Hz. These
values are consistent with the measurements using a first order predictor method
presented before. To calculate the burst strain sensitivity h1m s we assume that
the gravity wave signal has a 1 kHz bandwidth, and from (14) we calculate
h1m s+ == 6·9 X 10- 19 and h 1m s- == 1·1 X 10-18 . These values are consistent with
h1m s == 5·45 x 10- 19JT

n(mK) as expected. Now to calculate the overall noise
temperature or strain sensitivity we must use the following:

11Tn == 11Tn+ + 1ITn - , 1Ihims == 1Ihirns+ + 1Ihirns- . (19)

Thus the overall detector sensitivity is Tn == 1· 2 mK and h1m s == 5·9 X 10- 19 .

With major improvements to the parametric transducer it seems possible that
curve b in Fig. 12 may be achieved (Tobar and Blair 1995). In this configuration
the series noise would be low enough that the sensitivity would be largest between
the two modes, and occur at fa == 708·8 Hz with h+(fo) == 3·3 x 10-22 per
Vlli. From (18) and (14) the sensitivity of this configuration is Trl == 13 jLK and
h1n1s == 6·3 X 10-20 , with a 6 Hz bandwidth.
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7. Sensitivity to Monochromatic Signals

Recently the millisecond pulsar (PSR0437-4715) was discovered (Johnson et al
1993) and shown to be just 100 parsecs away. It is fortuitous that the fourth
harmonic of its frequency (694·75 Hz) is exactly the same (to within the bandwidth
of 1 Hz) as the minus mode of the UWA gravitational wave antenna. From
Fig. 12 and equation (11), the calculated sensitivity for an observation with
the UWA detector is h == 5 X 10-25 after r == 1000 hours integration (here we
substitute b..fs == l/r. So far about 40 millisecond pulsars have been discovered
and, as the bandwidth of resonant-mass GW detectors increases with improved
technology, so will the probability of monochromatic wave detection.

8. Data Acquisition and Analysis

The data acquisition and processing system for the microwave signal is shown
schematically in Fig. 13. The output of the mixer is amplified, bandpass filtered,
and then phase sensitively detected with two 'lock-in' amplifiers tuned to the
resonant frequencies of the antenna normal modes. The data acquisition software
is installed on a Macintosh IIx personal computer equipped with a 12-bit A/D
converter. The two quadratures outputs of each lock-in are sampled at 10 Hz,
recorded to hard disk, and automatically transferred to a SUN workstation for
data processing. The raw data are archived periodically to an 8 mm Exobyte
tape, copies of which are stored off-campus. Each block of recorded data contains
the timing of its first record, from which the times of all the other samples in
the block may be determined. Timing information to an accuracy of ±1 ms is
provided by a cesium clock at CSIRO which is accessed via a computer network.
This may be replaced by timing from the Global Positioning System should the
network time prove unreliable.

Ant=, Microw~v
processing

circuit

Reference
frequency

(HP3325A)
x

ADC
12-bil

LP
filter

ADC
12-bi

Monitor
computer
(Mac SE)

Fig. 13. Block diagram of the data acquisition system.

The data processing and display software is written in MATLAB, and is based
on software developed by the research group at Louisiana State University for
their Allegro antenna. The recorded data are filtered with a two-pole lowpass
filter (at an appropriate cutoff frequency) so as to reduce the effects of aliasing,
before being resampled at the optimum sampling rate. Presently, the noise
temperatures of the antenna normal modes are calculated using a zero order
prediction (ZOP) algorithm as discussed previously in Section 6.

A continuously updated record of the antenna performance is generated and
stored. Noise temperature histograms are generated hourly and placed in an
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antenna p.erformance summary file. All calculations are performed at the previously
determined optimum sampling rate. The impulsive events with energies above a
certain threshold are catalogued, to form a daily list of candidate gravitational
wave events to be exchanged with researchers operating other detectors. These
events are first vetoed against electromagnetic pulse, cosmic ray, and seismic
monitors located near the antenna.

Continuous real-time data monitoring and analysis of the two antenna modes
is also performed by two Macintosh SE personal computers equipped with a
12-bit AID converter. The two quadratures outputs of the lock-ins are low
pass filtered and then sampled at 1 Hz. The computers calculate and display
the instantaneous vibration energies of the antenna modes, and the cumulative
mode temperature and noise temperature histograms. This information is used
for diagnostic purposes.

9. Conclusions

The gravitational wave antenna at the University of Western Australia has
achieved a noise temperature of less than 2 mK. This vindicates our alternative
antenna design strategy based on a high Q-factor niobium bar, four-point antenna
suspension, and a superconducting parametric transducer. Minor improvements to
the transducer and data processing should reduce the noise" temperature without
interrupting the long-term operation of the antenna.
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