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Abstract 

Exact solutions for the spatially flat (k = 0) Robertson-Walker cosmological model in 
Brans-Dicke scalar tensor theory have been obtained in the presence of a causal viscous fluid. 
It is found that if the scale factor is a power function of the scalar field, then solutions can 
be obtained in the full causal theory but not in the truncated theory of non-equilibrium 
thermodynamics. 

1. Introduction 

Recently there has been a lot of renewed interest in the Brans-Dicke scalar 
tensor theory (Brans and Dicke 1961) mainly because of its possible role in 
producing what is known as an extended inflationary scenario (Mathiazhagan 
and Johri 1984; La and Steinhardt 1989). In this scenario, the expansion rate of 
the universe is slowed down by the scalar field from exponential to polynomial 
so that there is enough time for the universe to complete the phase transition or 
'roll over' from the inflationary phase to the radiation dominated phase. On the 
other hand, dissipative effects such as viscosity are of enormous importance in 
the early stages of the evolution of the universe particularly before the time of 
nucleosynthesis (see Gron 1990 and references therein). Moreover, the existence 
of bulk viscosity itself can lead to inflationary-like solutions (Padmanabhan and 
Chitre 1987). In this connection, Johri and Sudharsan (1989) and Beesham 
(1994) obtained some exact solutions in Friedmann-Robertson-Walker (FRW) 
cosmological models with a Brans-Dicke scalar field and a viscous fluid together. 
But these investigations considered only the first order deviation from equilibrium. 
Viscous fluids with this property lead to a violation of causality. To preserve 
causality, second order deviations from equilibrium need to be considered. But 
these second order theories, although being causal, may lead also to pathological 
behaviour of the cosmological model. It was pointed out by Hiscock and Lindblom 
(1983) that this undesirable feature is due to the fact that certain divergence 
terms had been dropped in these theories (see also Hiscock and Salmonson 1991). 
For this reason, the second order theories without the additional divergence terms 
are referred to as 'truncated' causal theories. For a full causal thermodynamic 
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model, the bulk viscous stress should involve both the first and second order 
deviations from equilibrium, as well as the divergence terms. For an excellent 
review, we refer to the recent work of Maartens (1995). 

In the present work, a spatially flat Robertson-Walker model is examined in 
Brans-Dicke theory with a bulk viscous fluid with full causal non-equilibrium 
thermodynamics. Following Johri and Sudharsan (1989), we assume a relationship 
between the scale factor R and the scalar field ¢ in the form R rv ¢t:X and 
investigate the possibility of finding a power law solution for the scale factor R. 

2. Field Equations and Their Solutions 

The gravitational field equations in Brans-Dicke (BD) theory can be written 
as 

(1) 

in units where 87rG and c are both equal to unity. The wave equation for the 
scalar field will be 

1 
D¢=--T. 

2w+3 
(2) 

Here ¢ is the scalar field, the constant w is the BD parameter and T is the 
trace of the energy momentum tensor TJ.Lv. For a perfect fluid distribution in a 
spatially flat (k = 0) FRW spacetime given by the metric 

(3) 

the field equations and the wave equation take the form 

. 2 ., . 2 

3 ~ + 3 R <1 _ ~ (<1) E 
R2 R ¢ 2 ¢ ¢' 

(4) 

(5) 

.. R . 1 
¢ + 3 - ¢ = -- (p - 3p) , 

R 2w+3 
(6) 

p and p being the density and pressure of the fluid. But if the effect of viscosity 
has to be included, the perfect fluid pressure should be replaced by an effective 
pressure Peff, which is given by 

Peff = P + 7r. (7) 
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Here p is the perfect fluid contribution and 7r is the bulk viscous stress. For the 
full causal theory of non-equilibrium thermodynamics, 7r is given by the equation 

7r + T7r = -3'" H - -T7r 3H + - - - - -. € ( T ~ T) 
<" 2 T ~ T' 

(8) 

where ~ is the coefficient of bulk viscosity, T is the relaxation time for bulk 
viscous effects, T is the temperature and H is the Hubble parameter HI R. Here 
~, T and T are all positive. The parameter € can take the values 0 and 1 for 
the truncated and full causal theories. For T = 0, the equation reduces to that 
for the noncausal theory. We shall also assume an equation of state connecting 
the perfect fluid pressure p and the density p in the form 

p = "(p, (9) 

where "( (0::; "( ::; 1) is a constant. With equations (7) and (9), equations (4)-(6) 
now become 

·2 .. . 2 

3 ~ + 3 R 1!.. _ ~ (1!..) £ 
R2 R ¢ 2 ¢ ¢' 

(10) 

(11) 

.. H. 1 
¢ + 3 - ¢ = -- (p - 3"( p - 37r) . 

R 2w+3 
(12) 

Now one has the three equations (10)-(12), but four unknown quantities, namely 
the scale factor R, the scalar field ¢, the density p and the bulk viscous stress 
7r; hence the system of equations cannot be solved. We shall therefore assume a 
relationship between ¢ and R of the form 

¢ = ARO<, (13) 

and investigate the nature of the solution for the scale factor R. 
By eliminating p and 7r from equation (12) with the help of (10) and (11) one 

obtains 

~ ~ ~2 . 2 
2w - + 6wH - - w - = 6H + 12H 

¢ ¢ ¢2 
(14) 

where H = HI R. Using equation (13) it is now easy to obtain from (14) the 
following equation for the scale factor: 

(15) 



902 N. Banerjee and A. Beesham 

where (3 is a constant given by 

(3 = wa2 + 6wa - 12 . 
2(wa - 3) 

Equation (15) can be easily integrated twice to yield 

R=at1/ f3 , 

(16) 

(17) 

where a is a constant of integration and the second constant of integration, with 
the choice of the initial condition R(t = 0) = 0, can be put equal to zero. 

With the help of equations (13) and (17), expressions for P and 7r as functions 
of time can be obtained from (10) and (11) as 

P = potb, 

7r=7ro t b , 

where b = al (3 - 2, Po is a constant and 

A a [2a(3 + 4(3 - 6 - 4a - (2 + w)a2 ] 
7ro = a 2 - 'Y Po = constant. 

2(3 

(18) 

(19) 

Both in the truncated and the full version of causal thermodynamics, the 
coefficient of bulk viscosity e and the relaxation time T are assumed to be simple 
power functions of p in most investigations. In what follows, we shall determine 
the temporal behaviour of the absolute temperature T and also show that the 
solution that we have obtained for R is incompatible with the truncated theory. 
If we assume the simple relations 

e = eo pq and T = e I p , (20) 

where eo is a constant (eo> 0), we can integrate (8) with the help of (19) to get 

where 

al tb- bq+1 + a2 In t + D = E7ro In T, 
2 

7ro 
al = --.,---=----

eo pg-l(b - bq + 1) , 

a2 = 7ro b + 3po + 3E7ro + E7ro b 
(3 2(3 -2-' 

E 
D = - 7ro(1n Po - In a3) , 

2 

and a3 is a constant of integration. 

(21) 
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For E = 0, one gets the truncated theory but equation (21) is clearly inconsistent 
for E = O. For the full theory (E = 1), however, the equation is consistent and 
one can find the temperature as a function of time as 

T = To e(2at!mo )tb - bQ+t t2a2 / ell'o 

- 1'. ea4tb-bq+l 
- 0 t a5 , 

where E = 1, a4 = 2aI/7ro, a5 = 2a2/,rro and To is a constant. 

3. Discussion 

With the assumption ¢ '" Ra, we have found the exact solution for the spatially 
flat Robertson-Walker cosmological model with the Brans-Dicke scalar field and 
a causal viscous fluid in a full theory of non-equilibrium thermodynamics. It is 
interesting to note that our solutions derived here do not have corresponding 
analogues in general relativity without a scalar field. Indeed, if we try to put 
¢ = constant to generate the general relativity solution, we find that R = constant. 

Acknowledgment 

One of the authors (N.B.) would like to thank the University of Zululand for 
hospitality and the FRD (South Africa) for financial support. 

References 

Beesham, A. (1994). Proc. 5th Canadian Conf. on General Relativity and Relativistic 
Astrophysics (Eds R. B. Mann and R. G. McLenaghan), pp. 64-8 (World Scientific: 
Singapore) . 

Brans, C., and Dicke, R. H. (1961). Phys. Rev. 124, 925. 
Gron, O. (1990). Astrophys. Space Sci. 173, 191. 
Hiscock, W. A., and Lindblom, L. (1983). Ann. Phys. (NY) 151, 466. 
Hiscock, W. A., and Salmonson, J. (1991). Phys. Rev. D 43, 3249. 
Johri, V. B., and Sudharsan, R. (1989). Aust. J. Phys. 42, 215. 
La, D., and Steinhardt, P. J. (1989). Phys. Rev. Lett. 62, 376. 
Maartens, R. (1995). Class. Quant. Grav. 12, 1455. 
Mathiazhagan, C., and Johri, V. BG. (1984). Class. Quant. Grav. 1, L29. 
Padmanabhan, T., and Chitre, S. M. (1987). Phys. Lett. A 120, 433. 

Manuscript received 18 July 1995, accepted 16 March 1996 






